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Abstract

Motivation: In DNA storage systems, there are tradeoffs between writing and reading costs. Increasing the code rate
of error-correcting codes may save writing cost, but it will need more sequence reads for data retrieval. There is po-
tentially a way to improve sequencing and decoding processes in such a way that the reading cost induced by this
tradeoff is reduced without increasing the writing cost. In past researches, clustering, alignment and decoding proc-
esses were considered as separate stages but we believe that using the information from all these processes to-
gether may improve decoding performance. Actual experiments of DNA synthesis and sequencing should be per-
formed because simulations cannot be relied on to cover all error possibilities in practical circumstances.

Results: For DNA storage systems using fountain code and Reed-Solomon (RS) code, we introduce several techni-
ques to improve the decoding performance. We designed the decoding process focusing on the cooperation of key
components: Hamming-distance based clustering, discarding of abnormal sequence reads, RS error correction as
well as detection and quality score-based ordering of sequences. We synthesized 513.6 KB data into DNA oligo pools
and sequenced this data successfully with Illumina MiSeq instrument. Compared to Erlich’s research, the proposed
decoding method additionally incorporates sequence reads with minor errors which had been discarded before, and
thus was able to make use of 10.6–11.9% more sequence reads from the same sequencing environment, this
resulted in 6.5–8.9% reduction in the reading cost. Channel characteristics including sequence coverage and read-
length distributions are provided as well.

Availability and implementation: The raw data files and the source codes of our experiments are available at:
https://github.com/jhjeong0702/dna-storage.

Contact: jeongwook@postech.ac.kr or hpark1@jnu.ac.kr

1 Introduction

As the big data era has arrived, we are seeing massive data increase,
which requires the next-generation storage system. Existing storage
systems, such as solid-state drives, hard disk drives and magnetic
tapes, have several limitations including the need for more data cen-
ters or a short lifespan. Therefore, the deoxyribonucleic acid (DNA)
storage system is being studied for future data center archives
(Church et al., 2012; Goldman et al., 2013). Currently, the cost of

magnetic tapes is about 16 dollars per terabyte (Dong et al., 2020).
On the other hand, the writing cost of DNA storage is about 530
million dollars per terabyte (Antkowiak et al., 2020), and the read-
ing cost is about 0.01–1 million dollars per terabyte (Dong et al.,
2020). However, while the current data center archives require mil-
lions of dollars for the maintenance expenses, DNA storage only
requires thousand times less expenses, and the writing and the read-
ing costs are rapidly decreasing (Dong et al., 2020).
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The DNA storage system is a medium that stores data into DNA
molecules which correspond to sequences of four bases: adenine (A),
cytosine (C), guanine (G) and thymine (T). While a computer stores
data into a sequence of bits, a DNA storage system stores data in the
four bases, i.e. A, C, G and T (Bornholt et al., 2016). It is natural to
map binary data to DNA sequences by matching two bits into one
base (ex: A¼00, C¼01, G¼10, T¼11), followed by actual syn-
thesizing the DNA strands. We call short DNA strands by DNA oli-
gonucleotides (simply oligos). After the synthesis, polymerase chain
reaction (PCR) is performed to amplify the synthesized oligos, and
then sequence reads are produced from the DNA oligo pool using
sequencing equipment. During these steps, base errors inevitably
occur from biological and chemical causes, typically classified into
three types: substitution, deletion and insertion errors. Various
error-correcting techniques have been applied to resolve base errors
in the DNA storage system. For example, Erlich and Zielinski
(2017) used fountain code and Reed-Solomon (RS) code as error-
correcting codes, while Chandak et al. (2019) used low-density par-
ity-check (LDPC) code and Bose–Chaudhuri–Hocquenghem (BCH)
code. Organick et al. (2018) succeeded in synthesizing a large
amount of data into a DNA storage system using RS code.
Takahashi et al. (2019) used the Hamming code and were able to
make the whole process into an automatic system, and Heckel et al.
(2019) analyzed different DNA storage channel characteristics to-
gether and devised error-correcting code schemes in the DNA stor-
age system. Recently, Press et al. (2020) used hash functions and
convolutional structures to correct insertion and deletion errors as
well as substitution errors by a greedy search algorithm.

For a given DNA storage system, there are tradeoffs between the
writing cost and the reading cost (Heckel et al., 2019). Choi et al.
(2019) used degenerate bases and Anavy et al. (2019) used

composite DNA letters to reduce the writing cost. In terms of error
correcting codes, increasing the code rate of error-correcting codes
by reducing the redundancy can save the writing cost, but it will re-
quire more sequence reads to decode successfully. However, if we
focus on improving only the processes at the reading side for the
given information at the writing side, we can improve the reading
cost without increasing the writing cost. It is noted that the reading
cost reduction implies not only the decrease of the reading cost liter-
ally but also condensing more information possibly into the same
oligo pool when the maximum number of sequence reads is limited.
Clustering, alignment and decoding processes in the DNA storage
system were considered as separate stages in past researches
(Chandak et al., 2019; Erlich and Zielinski, 2017), but we propose
that we can use the clustering and alignment information together in
the decoding procedure, to improve the performance of the error-
correcting code. That is, we can raise the code rate of the DNA stor-
age, effecting the writing cost reduction as well.

In this article, we design a whole workflow from sequence clus-
tering to decoding for error correction in DNA storage systems using
fountain codes and RS codes. The algorithms and parameters of
DNA storage systems are jointly optimized to improve error-
correcting performance. We design the decoding process focusing on
the cooperation of key components: Hamming-distance based se-
quence clustering, discarding of abnormal sequence reads, RS error
correction as well as detection and quality score-based ordering of
sequences. More precisely, the proposed decoding scheme incorpo-
rates the sequence reads with minor errors, which may have been
discarded in the previous studies.

We conducted experiments that support the proposed decoding
scheme. We synthesized 513.6 KB of the image file in Figure 1 into
DNA oligo pools using the encoding scheme from Erlich and
Zielinski (2017), which adopted RS code within each oligo sequence
and fountain code across the oligo sequences. We encoded the same
data to two different oligo pools, one with the constraints (GC-con-
tent of 45–55% and homopolymer-run length up to 3) and the other
pool without the constraints, and sequenced successfully for both
pools with Illumina MiSeq system. We show that the proposed
scheme makes use of 10.6–11.9% more sequence reads from the
same sequencing environment, resulting in 6.5–8.9% of reading cost
gain for successful decoding compared to Erlich’s decoding scheme
in both experiments. Note that we also provide channel characteris-
tics from our experiments, including sequence coverage and the
read-length distributions. The experiment results are available on-
line at: https://github.com/jhjeong0702/dna-storage.

The article is organized as follows. In Section 2, we propose a
new decoding method of error-correcting codes for DNA storage
systems and discuss our experiments including the encoding, synthe-
sis, sequencing and decoding processes. We compare the processes
of the proposed decoding method and Erlich’s decoding method. In
Section 3, we show experiment results as well as the channel charac-
teristics with figures and tables.

2 Materials and methods

To show an improvement in performance of the proposed DNA
storage decoding scheme, we designed and performed two different
decoding experiments to compare for the same oligo pool. We chose
the encoding method of Erlich and Zielinski (2017), which adopts
fountain code, especially Luby transform (LT) code (Luby, 2002),
and RS code, only changing some parameters to adjust to the experi-
ment to our circumstances.

2.1 Encoding and synthesis
As we mentioned above, we used LT code (Luby, 2002) as the inter-
oligo code and RS code as the intra-oligo code as in Figure 2. Each
oligo has length 152 nucleotides (nt) in total (16 nt seed þ 128 nt
payload þ 8 nt RS code), which is to match that of Erlich and
Zielinski (2017). A (38, 36) RS code was used in the finite field
GF(28), where each parity symbol of RS code is 4 nt and the

Fig. 1. Image file of the campus map of Seoul National University was used for the

synthesis of our experiments

Cooperative sequence clustering and decoding for DNA storage system 3137

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3136/6255306 by guest on 25 April 2024

https://github.com/jhjeong0702/dna-storage


minimum Hamming distance (dmin) value is set to 3, which allows
the RS code to be used for either two-symbol error detection or one-
symbol error correction. We synthesized a 513.6 KB image file of a
simplified map of Seoul National University into 16 050 oligo
sequences and created 18 000 oligo sequences in total using an LT
code with redundancy of 1.12. Then, the seed was added, and RS
encoding was done for each oligo sequence. The sequence primers
were also added at both ends, ‘GTTCAGAGTTCTACAGT
CCGACGATC’ on the 5’ side and ‘TGGAATTCTCGGGTGCC
AAGG’ on the 3’ side.

To check the effect of the homopolymer-run and GC-content
(Ross et al., 2013), we synthesized two different pools using exactly
the same data and encoding method, that is, one with constraints
and the other without constraints. Here, while processing the LT
encoding, the constrained pool already checked the homopolymer-
run length and GC-content for each of the encoded oligo sequences.
After the LT encoding, when an oligo had homopolymer-run length
over three or a GC-content not in the bound of 45–55%, we dis-
carded that oligo and proceeded with the LT encoding again until
we had 18 000 suitable encoded oligo sequences. The non-
constrained pool did not use this step, and thus we completed the
LT encoding in one go and discovered that the non-constrained pool
had maximum homopolymer-run length of 13 and GC-content of
32.89–68.42%. The oligo pools were synthesized by Twist
Bioscience, about 300 ng of each DNA oligo pool were made.

2.2 Sequencing
The sequencing procedure followed the way previously described
(Erlich and Zielinski, 2017). The PCR amplification (50 ll) contain-
ing 25 ng of oligo pool, 2.5 ll of each 10 lM primer and 25 ll Q5
Hot Start High-Fidelity 2X Master Mix (New England Biolabs) was
performed using primers named RP1 (50-AATGATACGGCGACCA
CCGAGATCTACACGTTCAGAGT TCTACAGTCCGA-30) and
RPI1 (50-CAAGCAGAAGACGGCATACGAG ATCGTGATGTG
ACTGGAGTTCCTTGGCACCCGAGAATTCCA-30), with the fol-
lowing thermocycling: 30 s at 98�C, followed by 10 cycles of 10 s at
98�C, 30 s at 60�C, 30 s at 72�C and a final extension step of 5 min
at 72�C. The amplified library was cleaned up with AMPure XP
(Beckman Coulter) kit and eluted in 20 ll nuclease free water
(Invitrogen).

We used the Illumina Miseq Reagent v3 kit (600 cycle) with
151 nt run in both forward and reverse directions according to the
manufacturer’s recommendation. For the constrained pool, Q30
was 97% and output had 14 million forward-reads and 14 million
reverse-reads (total 28 million), excluding 20% PhiX spike-in. For
the non-constrained pool, Q30 was 94% and output had 20 million
forward-reads and 20 million reverse-reads (total 40 million),
excluding 30% PhiX spike-in.

2.3 Clustering and decoding
To compare the performance of Erlich’s decoding scheme and the
proposed decoding scheme, we randomly sampled the same amount
of reads from each of their original forward and reverse read
FASTQ files. Then we merged these reads with the PEAR algorithm
(Zhang et al., 2014) version 0.9.2 and used the merged FASTQ files
to proceed to the next step. For each random sampling, 200 different
trials were carried out and we counted how many of the 200 trials
ended with decoding success.

2.3.1 Erlich’s decoding method

After merging the forward and reverse reads, we take only the se-
quence reads of the same length (152 nt). Then, we put exactly the
same sequence reads for all 152 nt into a cluster. We sort the clusters
from the largest size to the smallest size and then we check if errors
in each sequence read are detected by the RS code. If the RS check is
not correct, we discard the sequence read, and go on to the next
cluster group. In this scheme, alignment is not required because
there is only one kind of sequence read in a cluster. We put all se-
quence reads passed by the RS check into the LT decoding procedure
one by one in the sorted order. In this decoding method, LT erasure
decoding is used. Because we determined the order of the input se-
quence reads, preceding sequence reads have more priority in the LT
decoding. The following sequence reads are used for only deciding
the remaining information. The LT decoding stops with decoding
success declaration as soon as all data are recovered or stops with
decoding failure declaration if any data are not recovered though all
reads passed by the RS check have been input to the LT decoder. It
is noted that this LT decoder trusts the input reads to be always cor-
rect because they pass the RS check and treat the empty oligo se-
quence positions as erasures.

2.3.2 Proposed decoding method

The procedures for the random sampling and merging steps are the
same as Erlich’s method. One thing we added right away is that we
can use the RS code for error correction, which contrasts with the
Erlich’s method that only uses it for error detection. As dmin of the
RS code is three, only one symbol error correction is possible, and if
there are two or more errors in a sequence read, there is a possibility
that it could be corrected to an incorrect codeword. To avoid this
situation, we add four techniques C1, C2, C3 and C4 as in Figure 3
to the proposed decoding process as follows.

C1: First, we use the clustering algorithm based on Hamming
distance whose distance value is carefully chosen considering the
capability of RS code for error detection and correction. In the se-
quence reads, most of them are correct and only a few have errors,
but we found that the errors have critical influence on decoding fail-
ure. When there are several correct sequence reads and a few se-
quence reads with small errors, they are almost surely originated
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Fig. 2. Simple abstraction of the proposed DNA oligo structure of length 152 nt with 18 000 different sequences
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from the same oligo sequence and thus clustering them together
helps to find the correct sequence read. Therefore, we calculate the
Hamming distances between a particular sequence read and all the
other cluster groups we made, and then the particular sequence read
belongs to the cluster which has the Hamming distance �2.
Otherwise, the new sequence read makes a new cluster. After all the
sequence reads are clustered, we combine the sequence reads in each
cluster into one single sequence where each position has the base
with majority. For example, if there is a cluster group of
fAGTGCCGT, AGTGCCAT, AGTCCCAT, ACTTCCATg, we
combine them into AGTGCCAT. If there is a position that we can-
not decide a unique base with the majority rule, we leave the pos-
ition undecided, save all the bases which appeared in that position,
and let them be decided by the RS code later. For example, if there is
a cluster group of fTCTTAGCC, TCTTAACCg, we do not combine
them because the base at position 6 cannot be decided. Meanwhile,
we decided to use Hamming distance 2 because of the RS code that
can correct up to one symbol error and detect up to two symbol
errors. Suppose there is a cluster group of size 2 and let X and Y be
the two sequence reads in the same cluster. Then, there are three
possible cases when the RS check is done for both X and Y:

i. X: RS passed, Y: RS passed (X and Y being identical).

ii. X: RS passed, Y: RS failed.

iii. X: RS failed, Y: RS failed.

In the first case, X and Y are identical. We can use one of X and
Y for the decoding process later. In the second case, we should use
the sequence read X which passes the RS check because Y may be
corrected to a wrong codeword if Y contains two symbol errors. In
the third case, if X and Y are corrected to the same codeword, we
can use the corrected sequence read, where we can guess that both
contain one symbol error each. Otherwise, we throw them away.

C2: Next, we added a discarding step for filtering out abnormal
sequence reads based on the Hamming distance. To prevent an
errored sequence read from being inferred to a wrong oligo sequence,
keeping large Hamming distance between sequence reads are consid-
ered during the encoding step. However, if a pair of sequence reads
has smaller Hamming distance than we intended, it means at least
one of them contains several errors, and thus we try to find out that
errored sequence read and exclude it during the decoding process.
For example, when we encoded data for the non-constrained pool
using the LT code, each encoded oligo sequence had Hamming dis-
tances of at least 81 to every other sequence. This means that when
we are at the clustering step, if a sequence read has Hamming dis-
tance of 50 to a specific cluster, this sequence read has a lot of errors
and would be corrected to a wrong codeword by the RS code, having
a critical effect on the whole decoding process. Therefore, while we

are in the clustering step, if we find a minimum distance from a spe-
cific sequence read to all the other cluster groups between 3 and 79,
we discard that sequence read and do not use it in the rest of the
decoding process (sequence reads with the Hamming distance of 80
could be corrected to an encoded oligo sequence with Hamming dis-
tance 81, and thus we do not discard them). Likewise, we use the
same discarding strategy for the constrained pool, too. This strategy
can be applied to other DNA storage systems with different values
using their own encoding parameters.

After these steps, we put the clusters into our final decoding step,
RS decoding and LT decoding, using a descending order of cluster
size. For the LT decoding, we also use LT erasure decoding strategy
of Erlich and Zielinski (2017). As long as the number of sequence
reads is not very large, the portion of clusters including only one se-
quence read is not negligible and they will have critical effect on the
decoding performance if they have errors.

C3: Erlich’s method does not consider an order for cluster
groups of size 1. Using a cluster of size 1 that has some errors for LT
decoding makes the decoding performance worse. To solve this
problem, we decided to use the quality score (Q-score) values in the
FASTQ file. When we compare the sequence reads with the original
encoded oligo sequences, the error statistics tell us that sequence
reads with low Q-score values imply a large number of errors (but it
does not mean that high Q-score values imply less errors). Also, we
can guarantee that the cluster groups of size two or more mostly
have only 1 or 0 symbol error, meaning we can correct them with
the RS code later. As a result, the cluster groups of size 1 are sorted
in the descending order according to the multiplication of probabil-
ities derived from all 152 Q-score values from the sequence reads,
and we then use the higher value sequence reads first, and the lower
value sequence reads later. For a FASTQ file, the Q scores are given
as the American Standard Code for Information Interchange (ASCII)
characters, and thus we use a formula (Illumina Inc., 2013) given as

P ¼
Y152

k¼1

ð1� 10�
QðkÞ
10 Þ: (1)

Q-score means the probability of how much we can trust the
base-calling system for each base during the sequencing (with
Illumina equipment). Assuming all basecalls are independent
(Urgese et al., 2020), multiplying all the 152 probabilities derived
from the Q-scores can represent the reliability of the specific se-
quence read, and thus sorting of the clusters with size 1 by this P
value can be useful for LT decoding.

C4: Before using these clusters (or combined sequences) for LT
decoding, we first check the RS code. If a cluster passes the RS
check, we put it into LT decoding in a descending order of cluster

Reads a�er PEAR 
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Any pair of two reads which have Hamming distance up to 2 
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Fig. 3. Steps of the proposed decoding process. All sequence reads that have up to Hamming distance 2 belong to the same cluster. Then, we sort them by the descending order

of the cluster size. For the groups of clusters with size 1, we proceed the discarding step by comparing Hamming distances to the combined sequences of the preceding clusters,

and surviving groups of clusters with size 1 are sorted by the product of quality score values in descending order. Before the LT decoding, RS check for error detection is per-

formed. The sequences which pass the RS check are decoded first by LT decoder, and the sequences with RS error are sent to a heap and used for the LT decoding after the RS

correction at the very last. For the LT decoding, the combined sequences of clusters size at least 2 are decoded first
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size. If a combined sequence does not pass the RS check, it means
that we need to use it after the RS correction, and thus we send it
into a heap for later use. When all the LT decoding calculations of
RS-passed clusters are complete and we are still lack of indices for
LT decoding, then we use the clusters from the heap with RS cor-
rected symbols.

3 Results

As we mentioned before, we synthesized two oligo pools, a con-
strained pool and a non-constrained pool. In the decoding process,
we implemented two different algorithms, one is Erlich and
Zielinski (2017) method in Section 2.3.1, and the other is our pro-
posed method in Section 2.3.2.

3.1 Experiment results
To compare the decoding success rate for Erlich’s and the proposed
decoding methods, we randomly sampled sequence reads from each
pool, and input them to the two decoding methods. We decoded
200 different instances of random sampling for each decoding
method and checked how many times decoding success is declared
out of the 200 trials in Table 1 and Figure 4.

As seen, the proposed decoding method has better performances
for every random sampling number. Seeing the smallest random
sampling number marked with (*) which achieves 200 decoding suc-
cesses out of 200 trials, it is clear that the proposed decoding
method has 6.5–8.9% reading cost advantage. Also, the decoding
performance of the proposed method looks much better when the
random sampling number is small, but seeing in terms of decoding
failure rates, the gain (the ratio of the proposed method’s to Erlich’s)
comes similar for all points of the random sampling numbers of
reads. Performance gain at small random sampling numbers will
give more chance to successful recovery if there are not enough
sequencing data, influencing on the reduction of the reading cost.
Moreover, the proposed decoding method works well when there is
a scarcity of LT indices and clusters. In Erlich’s method, only 4 trials
out of total 1014 decoding failures (0.39%) in Table 1 were able to
collect all LT indices, but our proposed method jumps to 215 trials
out of total 286 decoding failures (75.17%). This means that under
the same experiment circumstance, using Erlich’s method caused
lack of LT indices, but our proposed method can use the clusters
that might have been discarded in Erlich’s method and restore the
uncollected LT indices safely.

Specifically, we arranged the clustering and decoding statistics at
the smallest random sampling number of all 200 decoding successes,
which are 86 000 for the constrained pool and 82 000 for the non-

constrained pool as shown in Table 2. The proposed decoding
method combined more sequence reads in clustering stage, decreas-
ing the ratio of the clusters of size one for all cluster groups from
38.3–40.5% to 11.6–14.0% and decreasing the ratio of the clusters
of size one for all sequence reads from 12.8–14.5% to 2.8–3.5%.
Moreover, we discarded 0.30–0.58% of sequence reads that con-
tained many errors and used 1.08–1.28% more clusters for LT
decoding through RS correction. Compared to the decoding experi-
ment which applied all the ideas other than C3, the non-constrained
pool of 82 000 oligos had 8 more decoding success by the aid of
only C3 but the result for the constrained pool of 86 000 oligos
stayed unchanged. In total, the proposed decoding method was able
to make use of 10.6–11.9% more sequence reads from the same
sequencing environment than Erlich’s method.

The major strength of this improvement is that the increase of
the computational complexity in our decoding method is negligible
compared to Erlich’s method. Contributions C1 and C2 can be cal-
culated while the clustering stage is in progress, contribution C3 gets
conducted for only cluster groups of size 1, and we can correct the
errors for C4 during RS syndrome check of each sequence read.
Furthermore, reading cost reduction implies not only the decrease of
the reading cost literally, but also condensing more information pos-
sibly into the same oligo pool when the maximum number of se-
quence reads is limited. That is, we can raise the code rate of the
DNA storage, effecting the writing cost reduction as well.

One thing we should be aware of is that the constrained pool is
generally known to need a smaller amount of sequence reads for
decoding success than the non-constrained pool. Our results imply
that both decoding methods work better when proper GC-content
and homopolymer-run are kept. In the large random sampling num-
ber for Erlich’s method, the decoding performance is reversed be-
tween the constrained pool and the non-constrained pool, and we
think that it is because of the accidental inclusion of sequence reads
with large errors, which is excluded in the proposed decoding
method.

3.2 Channel characteristics
We calculated several channel characteristics regarding our DNA
storage pools from the experiment data for future use. Using the
PEAR algorithm (Zhang et al., 2014), we merged the forward-reads

Table 1. Erasure decoding performance comparison by the number

of successful decoding trials

Total 200 Constrained pool Non-constrained pool

Random sampling

number

Erlich’s

method

Proposed

method

Erlich’s

method

Proposed

method

72 000 1 98

74 000 17 147

76 000 89 179 6 138

78 000 161 192 56 173

80 000 176 196 143 193

82 000 190 199 179 200

84 000 196 199 187

86 000 198 200 196

88 000 198 198

90 000 195 200

92 000 200

Note. The proposed method reaches the perfect recovery faster and shows

higher recovery rates before reaching it than Erlich’s method.
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Fig. 4. Comparison of decoding success trials for random sampling numbers
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and the reverse-reads for all lengths and checked the distribution of
the lengths as in Table 3. More than 83% of the sequence reads
have the correct length, and constrained pool has higher percentage
of merged sequence reads than the non-constrained pool. Also, the
percentages of shortened sequence reads are higher than the percen-
tages of lengthened sequence reads, and this implies that deletion
errors occur more frequently than insertion errors in the DNA stor-
age system.

Using the merged sequence reads of the correct length, we calcu-
lated the frequency of sequence reads to each encoded oligo sequen-
ces, which is also called a sequence coverage, in Figure 5. We
matched them by the smallest edit-distance to each encoded oligo se-
quence. Although the two pools had different numbers of reads after
the sequencing, we wanted fair comparison for the coverage.
Therefore, we randomly sampled the same number of merged reads
(90 000 reads) from the two pools, and compared them together
with the ideal Poisson distribution of mean coverage 5. In Figure 5,
the two pools are spread widely compared to the ideal Poisson distri-
bution. Also, we observed that the coverages of both pools have
similar distributions after the PEAR algorithm (Zhang et al., 2014),
while Table 3 shows that the constrained pool has better merging
percentages than the non-constrained pool. The advantage of con-
strained coding is clearly shown when the sequence reads are at the
merging stage.

While we were checking the Q-score values, we wanted to see
the correlation between the edit distance and the P-value mentioned
in Section 2.3.2. We chose one of our randomly sampled FASTQ
files and expressed the correlation in Figure 6. As a result, we can
see that most of the dots are located in the bottom right section of

the graph, making a very gradual slope of decreasing as P value
becomes bigger. This correlation implies that when the P value is
high, the probability of a sequence read to have a large edit distance
is very low, which strengthens one of our contributions of using P
value during the decoding procedure. Moreover, there are a few
dots located very far from the main cluster, and we think they were
generated from the random errors of biological and chemical rea-
sons. This also explains the validity of our discarding strategy using
the Hamming distance.

4 Discussion and conclusion

We proposed a new decoding method that was helpful for decoding
procedure in the DNA storage system. We mainly focused on the
fountain code and the RS code structure, but our work can be
applied to any DNA storage using the intra- and inter-oligo code
structure and the Hamming-distance based clustering. In particular,
any error detection codes, such as cyclic redundancy check (CRC)
code, are suitable for the intra-oligo code, and any erasure codes
such as fountain code, RS code and maximum distance separable
(MDS) code are suitable for the inter-oligo code. Our proposed
decoding algorithm is based on the four core techniques C1, C2, C3
and C4, and the applicability to the general code structure is
explained as follows.

First, any intra-oligo detection code also has some error correc-
tion capability, and the idea of C4 can be applied to the general
code structure. Second, the Hamming-distance based clustering is
simple but powerful, and thus it is popular for a decision making of
several sequence reads to an original encoded oligo sequence.

Table 3. Read-length distribution of merged sequence reads using

the PEAR algorithm

Length after PEAR Constrained pool Non-constrained pool

�149 nt 4.10% 2.78%

150 nt 0.51% 0.48%

151 nt 2.91% 2.78%

152 nt 85.78% 83.83%

153 nt 1.06% 0.99%

154 nt 0.02% 0.02%

�155 nt 0.29% 0.58%

Total 94.66% 91.46%

Note. Over 83% of the sequence reads have correct lengths for both pools,

and the percentages of shortened sequence reads are higher than the percen-

tages of lengthened sequence reads. Note that the constrained pool has higher

percentages of the merged sequence reads than the non-constrained pool.

Table 2. Clustering and decoding statistics at the smallest random sampling number of all 200 decoding successes (86 000 for the con-

strained pool and 82 000 for the non-constrained pool)

86 000 constrained 82 000 non-constrained

Number of merged reads 73 764.7 68 744.6

Erlich’s method Number of all clusters 24 682.9 24 579.9

Number of size-1 clusters 9443.2 9966.9

Ratio of size-1 clusters to all clusters 38.3% 40.5%

Ratio of size-1 clusters to all sequence reads 12.8% 14.5%

Proposed method Number of all clusters 17 634.7 17 328.9

Number of size-1 clusters 2054.2 2431.4

Ratio of size-1 clusters to all clusters (C1) 11.6% 14.0%

Ratio of size-1 clusters to all sequence reads (C1) 2.8% 3.5%

Number of discarded reads by Hamming distance (C2) 218.0 401.9

Number of decoding successes gained by Q-score sorting (C3) þ0/200 þ8/200

Number of RS-corrected reads (C4) 190.8 222.1

Read-utilization gain over Erlich’s method 10.6% 11.9%

Note. The numbers are average values of the 200 trials. We marked (C1–C4) at the end of each corresponding item in the proposed method part of the table.
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Fig. 5. Distribution of sequence coverage for 18 000 encoded oligo sequences in
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merged reads compared to the ideal Poisson distribution of mean coverage 5
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Research in Lenz et al. (2020) proved that the Hamming-distance
based clustering can achieve the capacity of the DNA storage chan-
nel efficiently without increasing the computational complexity. The
techniques C1 and C2 can be adopted to any Hamming-distance
based clustering and the specific threshold values in C1 and C2 de-
pend on the parameters of the general intra- and inter-oligo code
structure. Last, the idea of C3 can also be applied to the general
code structure because any intra-oligo code cannot perfectly detect
the errors and thus the usage of quality scores will be useful for the
inter-oligo erasure decoding.

In fact, clustering by comparing Hamming distances (Organick
et al., 2018; Zorita et al., 2015) and applying RS code for error cor-
rection (Meiser et al., 2020) are already mentioned, but the discard-
ing step using the Hamming-distance and sorting by Q-score values
for clusters with size 1 were proposed for the first time in the DNA
storage area in this article. By using clustering and alignment, we
were able to improve the decoding performance of the DNA storage
system. We carefully verified all our decoding steps by isolating each
step and finding out how it contributed to any performance im-
provement. We also provided the raw data files from our experi-
ments along with other statistics; these may be helpful in the
analysis of DNA storage channel characteristics.

In this article, we mainly focused on improving decoding per-
formance of adopted error-correcting codes. However, we realized
that there are many other factors that we need to study in order to
develop the technology for an effective DNA storage system. We
found that error correcting codes for the indices and CRC codes to
ensure the integrity of the entire file should be added to the encoding
stage. Abnormal sequence reads created by random errors should
also be analyzed, which may have been originated from the PhiX
sequences or byproducts, such as primer dimer.

After all, while we were working with Illumina sequencing
instruments, we think that the proposed decoding method may be
helpful for Oxford Nanopore sequencing instruments too. Previous
researches, such as Chandak et al. (2020) and Lopez et al. (2019),
used the Nanopore sequencing, but they also had the clustering stage
before the decoding stage. We verified our algorithms with Illumina
sequencing experiments, but our decoding algorithms can be used to
any DNA storage systems that need clustering stage regardless of the
types of sequencing equipment or the coding schemes. As mentioned
in Lenz et al. (2020), the Hamming-distance based clustering can
achieve the capacity of the DNA storage channel efficiently without
increasing the computational complexity, and clustering will be used
extensively even in the Nanopore sequencing instruments, leaving a
great possibility for the proposed decoding method to be applied.
Moreover, the applicability of the proposed decoding algorithm ba-
sically depends on not only the specific implementation of the DNA
storage system but also the error characteristics of the system. To as-
sess the applicability on the new DNA storage systems, we need to
first investigate the error characteristics of Newman’s microfluidic

library (Newman et al., 2019) and Choi’s disc system (Choi et al.,
2020), and it is a good topic for future research to extend our pro-
posed decoding scheme to their systems. We look forward to making
further efforts to continually raise the q-uality of decoding techni-
ques for DNA storage systems.

Funding

This work was supported by the Samsung Research Funding and Incubation

Center of Samsung Electronics under Project [SRFC-IT1802-09].

Conflict of Interest: none declared.

References

Ananda,G. et al. (2013) Distinct mutational behaviors differentiate short tan-

dem repeats from microsatellites in the human genome. Genome Biol.

Evol., 5, 606–620.

Anavy,L. et al. (2019) Data storage in DNA with fewer synthesis cycles using

composite DNA letters. Nat. Biotechnol., 37, 1229–1236.

Antkowiak,P.L. et al. (2020) Low cost DNA data storage using photolitho-

graphic synthesis and advanced information reconstruction and error cor-

rection. Nat. Commun., 11, 1–10.

Bornholt,J. et al. (2016) A DNA-based archival storage system. In:

Proceedings of the Twenty-First International Conference on Architectural

Support for Programming Languages and Operating Systems, 637–649.

Chandak,S. et al. (2019) Improved read/write cost tradeoff in DNA-based

data storage using LDPC codes. In: 2019 57th Annual Allerton Conference

on Communication, Control, and Computing (Allerton). IEEE, 2019,

147–156.

Chandak,S. et al. (2020) Overcoming high nanopore basecaller error rates for

DNA storage via basecaller-decoder integration and convolutional codes.

In: ICASSP 2020-2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2020, 8822–8826.

Choi,Y. et al. (2019) High information capacity DNA-based data storage with

augmented encoding characters using degenerate bases. Sci. Rep., 9, 1–7.

Choi,Y. et al. (2020) DNA micro-disks for the management of DNA-based

data storage with index and write-once-read-many (WORM) memory fea-

tures. Adv. Mat., 32, 2001249.

Church,G.M. et al. (2012) Next-generation digital information storage in

DNA. Science, 337, 1628.

Dong,Y. et al. (2020) DNA storage: research landscape and future prospects.

Nat. Sci. Rev., 7, 1092–1107.

Erlich,Y. and Zielinski,D. (2017) DNA Fountain enables a robust and efficient

storage architecture. Science, 355, 950–954.

Goldman,N. et al. (2013) Towards practical, high-capacity, low-maintenance

information storage in synthesized DNA. Nature, 494, 77–80.

Grass,R.N. et al. (2015) Robust chemical preservation of digital information

on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed.Engl.,

54, 2552–2555.

Heckel,R. et al. (2019) A characterization of the DNA data storage channel.

Sci. Rep., 9, 1–12.

Illumina Inc. (2013) bcl2fastq Conversion User Guide, Version 1.8.4. Illumina

Inc., San Diego, CA, USA, 23–24.

Lenz,A. et al. (2020) Achieving the Capacity of the DNA Storage Channel. In:

2020 International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2020.

Lopez,R. et al. (2019) DNA assembly for nanopore data storage readout. Nat.

Commun., 10, 1–9.

Luby,M. (2002) LT codes. In: The 43rd Annual IEEE Symposium on

Foundations of Computer Science, 2002. Proceedings. IEEE, 2002,

271–280.

Meiser,L.C. et al. (2020) Reading and writing digital data in DNA. Nat.

Protocols, 15, 86–101.

Newman,S. et al. (2019) High density DNA data storage library via dehydra-

tion with digital microfluidic retrieval. Nat. Commun., 10, 1–6.

Organick,L. et al. (2018) Random access in large-scale DNA data storage.

Nat. Biotechnol., 36, 242–248.

Press,W.H. et al. (2020) HEDGES error-correcting code for DNA storage cor-

rects indels and allows sequence constraints. Proc. Natl. Acad. Sci. U S A.,

117, 18489–18496.

Ross,M.G. et al. (2013) Characterizing and measuring bias in sequence data.

Genome Biol., 14, R51.

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
u

mi
ni

M
ti

de
nee

wte
b

sec
natsi

d

ea
ch

 o
li

g
o

-
sec

ne
u

qes
o

gil
o

de
d

oc
ne

d
na

daer

P value of Q-scores for each oligo-read

Fig. 6. Correlation between edit distance (sequence read to original encoded oligo

sequence) and P value for randomly sampled sequence reads. Most of the dots are

located in the bottom right section of the graph

3142 J.Jeong et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3136/6255306 by guest on 25 April 2024



Takahashi,C.N. et al. (2019) Demonstration of end-to-end automation of

DNA data storage. Sci. Rep., 9, 1–5.

Urgese,G. et al. (2020) BioSeqZip: a collapser of NGS redundant reads for the

optimization of sequence analysis. Bioinformatics, 36, 2705–2711.

Zhang,J. et al. (2014) PEAR: a fast and accurate Illumina Paired-End reAd

mergeR. Bioinformatics, 30, 614–620.

Zorita,E. et al. (2015) Starcode: sequence clustering based on all-pairs search.

Bioinformatics, 31, 1913–1919.

Cooperative sequence clustering and decoding for DNA storage system 3143

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3136/6255306 by guest on 25 April 2024


	tblfn1
	tblfn3
	tblfn2

