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Abstract

Summary: T cells play a critical role in cellular immune responses to pathogens and cancer and can be activated
and expanded by Major Histocompatibility Complex (MHC)-presented antigens contained in peptide vaccines. We
present a machine learning method to optimize the presentation of peptides by class II MHCs by modifying their an-
chor residues. Our method first learns a model of peptide affinity for a class II MHC using an ensemble of deep re-
sidual networks, and then uses the model to propose anchor residue changes to improve peptide affinity. We use a
high throughput yeast display assay to show that anchor residue optimization improves peptide binding.

Contact: mbirnb@mit.edu or gifford@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Machine learning holds great promise for improving therapeutic
molecules, and here, we show how it can be applied to enhance the
display of peptides that invoke cellular immune responses to patho-
gens and cancer. T cells surveille peptides displayed on the cell sur-
face by Major Histocompatibility Complexes (MHCs), or Human
Leukocyte Antigens (HLAs) in humans, and T cell-mediated killing
is initiated by recognition of a foreign peptide bound to an MHC.
Specifically, CD8þ cytotoxic T cells recognize peptides presented by
class I MHCs (MHCI), and CD4þ helper T cells recognize peptides
presented by class II MHCs (MHCII) (Hennecke and Wiley, 2001).
MHCIs have a closed peptide-binding groove and typically present
peptides of 8–11 amino acids; MHCIIs have an open binding groove
and typically present longer peptides, with a 9 amino acid core bind-
ing within the groove and the ends protruding from the groove.
Prediction algorithms have been utilized to predict peptide-MHC
binding. Recent strides in algorithmic performance have been
enabled by advances in computational methods (Chen et al., 2019;
O’Donnell et al., 2020; Racle et al., 2019; Reynisson et al., 2020;
Zeng and Gifford, 2019) and the development of new methodolo-
gies for generating training data, such as mono-allelic mass spec-
trometry (Abelin et al., 2019, 2017; Sarkizova et al., 2020) and
yeast display (Rappazzo et al., 2020). With the help of these tools,
peptide vaccines with constituent peptides computationally selected
for the ability to be displayed by MHCs have been utilized to amp-
lify T cell responses and proven clinically successful for patients

with cancer after eliciting CD8þ and CD4þ T cell responses (Abelin
et al., 2017; Hu et al., 2018; Ott et al., 2017).

Engineered peptides with modified residues can further improve
the effectiveness of such interventions. It has been observed that pep-
tides with modified peptide anchor residues can improve the tumor
cell killing response of the adaptive immune system (van Stipdonk
et al., 2009). For peptides presented by MHCI, not all modifications
to the antigen sequences improve the recognition of peptides by the
immune system, likely due to subtle structural changes that alter the
T-cell receptor binding interface (Cole et al., 2010). However, in
contrast to MHCIs, MHCIIs have open grooves in which presented
peptides are displayed in an extended conformation, resulting in
peptides binding in a highly conserved manner. The peptide side
chains at positions P1, P4, P6 and P9 are completely buried within
binding pockets in the groove and are considered anchor positions
(Jones et al., 2006). These four anchor residues are key determinants
of peptide-MHC binding affinity. Because of the highly conserved
conformation of peptides within the MHCII-binding groove (Jones
et al., 2006), changing the identities of the MHCII-binding anchor
residues will allow us to alter binding affinity without changing
binding conformation or the T cell receptor interface.

Traditional approaches to identifying good peptide modifica-
tions is a complicated process (van Stipdonk et al., 2009), necessitat-
ing the development of computational approaches. A rule based
approach, EpitOptimizer, has been used to design modified peptides
for MHCI binding with anchor position changes that resulted in
improved adaptive immune system response (Houghton et al.,
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2007). EpitOptimizer uses a limited sequence context for its sugges-
tions, and each MHCI molecule has a different set of rules. By con-
trast, PeptX (Knapp et al., 2011) uses a genetic algorithm to
determine the peptides most likely to be displayed by a specific
MHCI allele, which may provide helpful information for the subse-
quent design of a vaccine. The performance of PeptX was not ex-
perimentally evaluated.

We introduce a model-based approach to optimize peptide-
MHCII binding by optimizing the peptide anchor residues of
disease-associated peptides. We optimize peptide-MHCII affinity by
enumerating all possible changes to the anchor positions of a pep-
tide, then scoring them against an objective function in silico and

choosing the best ones. We utilized a yeast display platform for test-
ing our improved peptide sequences for binding to MHCII mole-
cules. This is computationally tractable due to the limited number of
anchor positions on a given peptide.

For our objective function, we use predictions from the PUFFIN
peptide-MHC binding model (Zeng and Gifford, 2019) trained on pep-
tide-binding data from a MHCII yeast display platform (Rappazzo
et al., 2020). PUFFIN uses an ensemble of deep residual networks to
quantify its uncertainty about its predictions, while achieving state-of-
the-art performance on MHCII-binding prediction tasks (Zeng and
Gifford, 2019). We show that our method generates peptide modifica-
tions that improve peptide-binding affinity for two MHCIIs.

Fig. 1. Characterization of peptide-MHCII binding by yeast display. (a) Details the generation of the training and validation data. The initial randomized library is used to gen-

erate the training data. The training data are used to train two variants of PUFFIN. One of these was used to select seeds from viral proteomes. These seeds were then optimized

and combined with some peptides from the original randomized library to produce the defined library. Yeast display was done on the defined library to produce the validation

data, on which most of our analysis is done. (b) Is a schematic of the construct used in the yeast display assay. (c) The overall process for yeast display. First, the peptide-MHC

is expressed on the surface of yeast, and then the linker between peptide and the MHC molecule is cleaved. Peptide exchange is catalyzed, and yeast are selected which retain

the Myc epitope tag. The resulting population is then sequenced and carried on to the next round
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2 Materials and methods

2.1 We evaluate the complete anchor substitution

landscape with a machine learning model
For a given MHCII, we train a neural network-based machine learn-
ing (ML) model (PUFFIN) (Zeng and Gifford, 2019) that takes a
nine residue peptide sequence as input, and outputs a measure of the
strength of the peptide-MHC interaction. We selected the PUFFIN
architecture because it outputs uncertainty estimates, which allows
us to compute Bayesian acquisition functions. PUFFIN achieves this
by outputting a distribution instead of a value (Zeng and Gifford,
2019), dropout (Gal and Ghahramani, 2016) and ensemble methods
(Lakshminarayanan et al., 2017). We leverage the relatively small
space of 204 � 1 possible anchor substitutions to evaluate an object-
ive function over each substitution based on the output of the model.
We then output the 10 substitutions that score the highest as the
proposed optimizations. The use of a neural network-based model
along with the complete enumeration of the anchor substitution
space allows our optimizations to take more complex interactions
between residues into account.

2.2 Data were collected using a high throughput peptide

display assay that measures enrichment as a surrogate

for affinity
The overall study is illustrated in Figure 1a. We utilize peptide-
MHC binding data from a yeast display platform for training
PUFFIN (Rappazzo et al., 2020) and adapt the platform for testing
our optimized sequences (Fig. 1b and c). In this platform, MHCIIs
are covalently linked to a query peptide with a flexible linker which
contains a 3C protease cleavage site. When the linker is cleaved, un-
bound peptides can be displaced from the MHC in the presence of a
high-affinity competitor peptide. The linker also contains a peptide-
proximal epitope tag, which we use to enrich yeast that maintain
peptide-MHC binding. Figure 1b illustrates the yeast display con-
struct. Data are collected over multiple iterative rounds of selection.
After each round of selection, deep sequencing is carried out on the
enriched yeast and we extract the peptide identity from the sequenc-
ing data (Chao et al., 2006; Mago�c and Salzberg, 2011; Masella
et al., 2012). We filter the deep sequencing results for reads that
match the invariant portions of the construct, from which we extract
the peptide sequence. The resulting dataset assigns to every observed
peptide its read count for each round of the yeast display assay.

We utilized data from two MHCII alleles: HLA-DR401 (HLA-
DRA1*01:01, HLA-DRB1*04:01) and HLA-DR402 (HLA-
DRA1*01:01, HLA-DRB1*04:02). This ensures that our results are
not an allele-specific artifact and allows us to study optimization for
multiple alleles.

For training the ML model, we utilized enrichment data from a
library consisting of 108 random 9-mer peptides flanked by invari-
ant peptide flanking residues (IPFR) which encourages binding in a
single register and simplifies identification of anchor residues
(Rappazzo et al., 2020). This dataset contains orders of magnitude
more peptide binders than comparable approaches and can be used
for improved peptide affinity prediction (Rappazzo et al., 2020),
which will be beneficial when scoring and selecting optimized
sequences. We used these data to train two predictors for each allele.
Adam was used for optimization (Kingma and Ba, 2015) and drop-
out was used for regularization (Srivastava et al., 2014). The first
predictor models the enrichment as a continuous value and outputs
a Gaussian distribution, while the second predictor models the en-
richment as categoricals and outputs a probability distribution over
the categories. In both cases, the enrichment value of a given 9-mer
is based on the last round of its appearance in the yeast display
experiment.

For testing our optimizations, we adapted the yeast display li-
brary for user-defined peptide libraries. This second yeast display li-
brary was cloned using a defined oligonucleotide library, and
selections were repeated to enrich for peptide binders.

Both the yeast display assay and the predictor training process
are described in greater detail in Supplementary Material.

2.3 We optimized the anchor residues of sequences

drawn from viral proteomes
We proposed anchor optimizations to 9-mers drawn from the pro-
teomes of the Zika, HIV and Dengue viral proteomes, which we
refer to as seed sequences. We selected three sets of sequences on
which to evaluate three different optimization tasks. These sets of
sequences are:

1. 82 seed sequences that have some affinity for HLA-DR401,

which we optimize for affinity to HLA-DR401.

2. 87 seed sequences that have some affinity for HLA-DR402,

which we optimize for affinity to HLA-DR402.

3. 44 seed sequences that have high affinity for HLA-DR402 and

some affinity for HLA-DR401, which we optimize for affinity to

both MHC alleles.

We use predictions from the categorical ML predictor as a surro-
gate for affinity in this context. Specific details underlying seed selec-
tion is given in Supplementary Material.

PUFFIN was designed to characterize the uncertainty of its
predictions by outputting a variance. This allows us to use various
Bayesian acquisition functions as our objectives. For this study,
we chose to study point estimate (PE) which is just the enrich-
ment, and upper confidence bound (UCB) which adds the enrich-
ment and the standard deviation of the prediction. For our third
task of optimizing for both alleles, the objectives were computed
for each allele individually and then added to produce the com-
bined objective.

Optimizations using PE and UCB were performed with both the
Gaussian and categorical models. Optimization with a given object-
ive was done by enumerating and evaluating all possible anchor sub-
stitutions with that objective and selecting the top 10 scoring

Fig. 2. Anchor optimization improves RSR. The distributions of RSR for (a) HLA-

DR401 and (b) HLA-DR402 are plotted for the optimized and control groups. The

sequences from the training data are split into two groups: ‘initial experiment (LRP

0-2)’ is composed of sequences which did not appear after round 2 in the initial dis-

play assay and is shown as a negative control, while ‘initial experiment (LRP 3-5)’ is

composed of sequences that did appear after round 2 and is shown as a positive con-

trol. The differences between the optimized groups and the negative controls [ran-

dom control, seed and initial experiment (LRP 0-2)] are significant for both alleles,

with P � 1:58e� 23 under the two-sided Mann–Whitney U test. Each plot is a

combination of a box plot and a violin plot, where the distribution is shown by the

violin plot in a lighter color, and the box plot shows the middle quartiles in a darker

color along with the median. The mean is indicated by a black vertical line. Flier

points are marked with the ‘j’ symbol
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substitutions, giving a total of 40 optimized sequences for each seed.
For each seed, 10 random anchor substitutions were also generated
as a random control. We add these sequences to a new yeast display
library for testing our designs.

Instead of adding the 9-mers directly, we first flanked them with
IPFR so the sequences would resemble those from the original
randomized library. Therefore, the sequences will take the form
‘AAXXXXXXXXXWEEG’, where ‘X’ denotes any residue
(Rappazzo et al., 2020). As a further control, we also flanked the 9-
mers with their wild-type peptide flanking residues (WPFR), which
were defined as the three residues that flanked the seed 9-mer in the
source proteome. Finally, we sampled some sequences that performed
well and some sequences that performed poorly in the training data
and added them as positive and negative controls, respectively. We
constructed a new yeast display library composed of these optimized
peptides and controls, and we conducted another series of selections
to enrich for binders. Figure 1a depicts this process.

To compare affinities between given peptides, for each peptide
we estimated the proportion of that peptide which survives between
rounds. This value is determined by fitting a geometric progression
to the concentration of each peptide. We assume that read counts
are drawn from a Poisson distribution that is parametrized by the
concentration of the peptide multiplied by a constant that is depend-
ent on the overall population being sequenced, and we fit the max-
imum likelihood estimate.

By fitting a geometric progression, we can extract the proportion
between successive values in the progression, which we can interpret
to be the proportion of peptides that survive a single round of the
experiment. The constant of the sequenced population is

undetermined, so the proportion we extract is a scalar multiple of
the true proportion. Therefore, this proportion is unnormalized, so
we refer to it as a round survival rate (RSR). While RSR is not
unique, we find that it is able to provide a highly consistent ranking
to the peptides (Supplementary Fig. S7).

This process is described in greater detail in Supplementary
Material. We use RSR as a surrogate for affinity for the remainder
of this text.

3 Results

3.1 Optimization improves the RSR of peptides for all

optimization objectives
We first examine the overall RSR distribution of the following
groups of sequences for each allele: sequences optimized for that
allele with PE under the Gaussian model, UCB under the Gaussian
model, PE under the categorical model, UCB under the categorical
model, sequences with random anchor mutations (negative con-
trol), seed sequences, sequences from the training data which were
not present after round 2 (negative control), and sequences from
the training data which were present after round 2 (positive con-
trol). We find that the groups of optimized sequences exhibit
higher RSRs for the alleles they were optimized for than either of
the negative controls (Fig. 2). The improvements are statistically
significant, with P � 1:58e� 23 between any optimized set and
negative control for either allele by the two-sided Mann–Whitney
U test.

Fig. 3. Number of sequences that exhibit improvement after optimizing with the point estimate objective under the Gaussian model. (a) For each seed sequence, we calculate

the number of proposed optimizations that achieve an RSR for HLA-DR401 that is higher than that of the seed. We then take that as a percentage of the number of proposals

to obtain the optimization success rate. We plot the distribution of these rates for both sequences optimized for HLA-DR401 affinity and the randomly perturbed sequences.

(b) For each sequence optimized for HLA-DR401 affinity and randomly perturbed sequence, we plot their RSR for HLA-DR401 against the RSR of the seed sequence they de-

rive from. (c) We calculate the distribution of optimization success rates for sequences optimized for HLA-DR402 using RSR for HLA-DR402. (d) We plot the RSR for HLA-

DR402 of sequences optimized for HLA-DR402 against the RSR of their seed sequence
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We find that no optimization method significantly outperforms
the others. Between any two groups of optimized sequences, P� 0:4
under the two-sided Mann–Whitney U test for both alleles. This can
be explained by the overlaps observed in the optimizations proposed
by different methods. When optimizing for HLA-DR401 affinity, if
we compare the proposals generated by two optimization methods
there are at most 2 seed sequences out of 82 whose proposed optimi-
zations did not include any common sequences. Likewise, for HLA-
DR402 for any two optimization methods there are at most 3 seed
sequences out of 87 that had no overlap. This suggests that the specif-
ic objective does not significantly affect the quality of proposals. We
compared the consistency of point estimate optimization proposals
where uncertainty estimates are not required between NetMHCIIPan
4.0 (Reynisson et al., 2020) and PUFFIN. We found that they pro-
posed overlapping optimized sequences (Supplementary Fig. S10).

3.2 Sequences can be optimized for single or multiple

alleles simultaneously
Since our method of generating proposals performs comparably
under the different objectives we tested, we will focus the rest of our
analysis on point estimate optimization under the Gaussian model
for simplicity. We include an analogous analysis of the other

optimization methods, which are similar, in Supplementary
Material (Supplementary Figs S1–S4).

We find that most optimized sequences outperform their un-
altered seed sequences (Fig. 3a and c). For HLA-DR401, for 44 out
of the 82 seed sequences, all of the proposed optimizations per-
formed better, while for HLA-DR402 this was the case for 72 out of
the 87 seed sequences. In sequences where optimization was less ef-
fective, we find that generally the seed sequence already performs
well via RSR (Fig. 3b and d).

We find that sequences that were optimized for both alleles were
generally able to improve their RSR for HLA-DR401 while main-
taining their RSR for HLA-DR402 (Fig. 4). Out of a total of 44 seed
sequences, there were 35 in which all proposed optimizations had a
higher RSR for HLA-DR401. For 23 seed sequences, all proposed
sequence optimizations outperformed the seeds on HLA-DR401 and
achieved greater than 80% of the seed sequence RSR for HLA-
DR402. For 13 seed sequences, all proposed optimizations outper-
formed the seeds on both HLA-DR401 and HLA-DR402.

If we instead consider seeds where the optimization criterion was
reached for at least 8 out of the 10 proposed sequences, these values
rise to 42, 35 and 18, respectively. For the random controls, they are
2, 1 and 1 (Fig. 4).

Fig. 4. Number of sequences that exhibit improvement for multiple alleles after optimizing with the point estimate objective under the Gaussian model. (a) For each seed se-

quence, we calculate the number of proposed optimizations that achieve an RSR for HLA-DR401 that is higher than that of the seed. We then take that as a percentage of the

number of proposals to obtain the optimization success rate. We plot the distribution of these rates for both sequences optimized for HLA-DR401 and HLA-DR402 affinity

and the randomly perturbed sequences. (b) We produce the same distribution but with optimization success rates based on HLA-DR402 affinity. The seed sequences were

selected to have high HLA-DR402 affinity. (c) For each optimized, random control and seed sequence, we plot their RSR for both alleles. (d) For each optimized and random

control sequence, we take their RSR and subtract the RSR of the seed sequence they derive from to obtain the changes in their RSR
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3.3 Our optimizations capture complex interactions

between residue positions
By analyzing our training data, we find that the identity of residues
outside of the primary anchor residues can have a significant impact
on which anchor residues will improve affinity. As an example
(Fig. 5), for HLA-DR401 if a sequence contains a threonine (T) at
the non-anchor position P7, then having an aspartic acid (D) at an-
chor position P6 tends to increase the RSR. However, if the se-
quence contains a D at the non-anchor position P7, then having a D
at P6 tends to decrease the RSR instead. Higher order effects can be
seen between other anchor and non-anchor positions as well, so
these relationships are not limited to adjacent positions nor to resi-
dues at P7, which can be considered an auxiliary anchor because of
its contacts with the MHC groove (Jones et al., 2006).

The dependency between anchor positions and non-anchor posi-
tions can be observed in the proposals generated by our method.
Out of the 820 sequences proposed using PE under the Gaussian
model for HLA-DR401, 20 (2%) have a D at anchor position P6.
Six of our seed sequences have a T at P7; of our proposed optimiza-
tions for these seeds, 17/60 (28%) have a D at P6. Conversely, nine
of our seed sequences have a D at P7, and none of their 90 proposed
optimizations have a D at P6. This demonstrates the advantages of
enumerating the full anchor residue landscape as it allows the cap-
ture of these higher order effects.

Given the presence of the higher order effects between peptide
positions, including non-anchor positions, it seems unlikely that a
more naive approach to anchor optimization could be as successful.
In particular, it is unlikely that there exists a set of anchor residues
that would optimize affinity in all non-anchor contexts. As further
support for this, we find that there are no sets of anchor residues
that were proposed for all seed sequences for any optimization task,
even when combining the proposed optimizations across all four of
our optimization methods. For HLA-DR401 optimization, the most
frequently proposed set is Y, D, T, A at anchor positions P1, P4, P6,
P9 (respectively), which was proposed for 54 out of the 82 seeds.
For HLA-DR402, the most frequently proposed set is L, W, T, A at
P1, P4, P6, P9 (respectively), which was proposed for 44 out of the
87 seeds. For optimization for both alleles, the most frequently pro-
posed set is F, M, N, A at P1, P4, P6, P9 (respectively), which was
proposed 34 out of 44 times.

3.4 Optimized sequences outperform seed sequences in

the absence of the invariant flanking residues, but is

less effective
All the optimized peptides we have presented so far have been
flanked with IPFR, which were used to train the model. If we replace
the IPFR with WPFR, we observe that the optimized sequences still
outperform the seed and random controls (Supplementary Fig. S6).
The improvement is still significant, with P � 5:51e� 5 when com-
paring the optimized sequences to the random control or seed
sequences for either allele under the two-sided Mann–Whitney U
test. However, the optimized sequences with WPFR significantly
underperform their IPFR counterparts (P� 1:36e� 22 for either al-
lele under the two-sided U test).

The reduction in improvement is only observed in the optimized
sequences for WPFR. In the case of the seed and random control
groups, the WPFR sequences either do not display any significant
difference or mildly outperform the IPFR counterparts
(0:0018 � P � 0:92 under the two-sided Mann–Whitney U test).

3.5 Optimized sequence motifs are consistent with MHC

binding preferences
The peptide optimizations made by our machine learning models
are consistent with the structures and peptide-binding motifs of
HLA-DR401 and HLA-DR402 in our training data. The polymor-
phisms between HLA-DR401 and HLA-DR402 affect the P1 and P4
binding pockets. Both alleles prefer hydrophobic amino acids in the
P1 pocket, although HLA-DR401 prefers larger amino acids, while
the truncated HLA-DR402 pocket prefers smaller amino acids. In

the P4 pocket, HLA-DR401 prefers acidic residues, and HLA-
DR402 prefers basic residues and large hydrophobic residues. The
conserved P6 and P9 binding pockets prefer polar and small amino
acids, respectively. The preference for each allele is reflected in
MHC allele-specific peptide optimization, shown for the optimiza-
tion with PE objective under the Gaussian model as an example
(Fig. 6a). Joint MHC optimization is also consistent with these pref-
erences: P1 and P4 amino acids are mutually preferred between both
alleles, such as F/I/L at P1 and increased usage of M at P4. P6 and
P9 amino acids are consistent with usage in individual allele-
optimized peptides. Amino acid frequency in the seed sequences is
also shown for reference (Fig. 6b).

4 Discussion

In this work, we introduced our method for optimizing the affinity
of peptide sequences for MHCIIs by replacing their anchor residues
with more optimal residues generated with the help of a machine
learning model. We validated this technique on two different
MHCII alleles, and showed that it is possible to optimize a single se-
quence for multiple alleles simultaneously. We have developed a
high throughput yeast display-based pipeline to test our optimized
sequences, and we introduced the notion of an RSR which allows us
to compare the results of the assay.

We demonstrated that our method leverages deep learning mod-
els in a way that allows the proposed optimizations to capture com-
plex interactions between residues. Our ability to optimize
sequences for two alleles simultaneously suggests that the method
can generalize to even more complicated objectives. These contribu-
tions improve our ability to engineer peptides for therapeutic pur-
poses, and allows us to develop more robust cocktails by allowing
their constituent peptides to fulfill multiple objectives.

We note that the method for generating proposals is independent
of the specific predictor used. Our results indicate that taking uncer-
tainty into account does not significantly improve the quality of the
proposals over using a simple point estimate, so a model that quanti-
fies its uncertainty is not strictly necessary. Therefore, substituting
PUFFIN for another algorithm that performs comparably to
PUFFIN should yield similar results.

As a caveat, we note that our optimization is less effective if we
allow arbitrary flanking residues. The reduction in improvement

Fig. 5. Whether a given anchor residue improves affinity can depend on non-anchor

residues. Peptides with aspartic acid at P7 tend to have lower RSRs when compared

to all peptides, and peptides that additionally have another aspartic acid at anchor

position P6 tend to have even lower RSRs than the peptides that just have an

aspartic acid at P7. In contrast, although peptides with threonine at non-anchor pos-

ition P7 also tend to have lower RSRs when compared to all peptides, peptides that

additionally have an aspartic acid at anchor position P6 tend to have higher RSRs

instead even when compared to all peptides. The differences found in these compari-

sons are significant, with P � 4:968e� 5 between any two groups mentioned above

under the Mann–Whitney two-sided U test. The sequences plotted and used for

computing significance are from the training data. Each plot is a combination of a

box plot and a violin plot, where the distribution is shown by the violin plot in a

lighter color, and the box plot shows the middle quartiles in a darker color along

with the median. The mean is indicated by a black vertical line. Flier points are

marked with the ‘j’ symbol
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when we change from IPFR to WPFR is only observed in the opti-
mized sequences and is not observed in seed or sequences with ran-
dom anchor residues. Therefore, it is likely that the drop in
performance is due to the predictor being trained on IPFR data, so
the predictor is unable to take the effects of flanking residues or regis-
ter shifts into account. The IPFRs also contain preferred amino acids
in the flanking sequences, such as the tryptophan at position P10.
Aromatic residues at P10 have been shown to bolster binding and
may impact the superior performance of IPFR peptides compared to
WPRF peptides (Rappazzo et al., 2020; Zavala-Ruiz et al., 2004). As
noted above, since our method is independent of the specific underly-
ing predictor, we should be able to address this issue by replacing our
current predictor with one that takes the flanking residues into ac-
count. More generally, the quality of our optimization should im-
prove as the quality of predictors available continues to improve.

Our future work will extend our method to incorporate wild-type
flanking residue information in our optimization, and will seek to char-
acterize the effect of anchor optimization on peptide immunogenicity.
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