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Abstract

Motivation: Protein structure prediction remains as one of the most important problems in computational biology
and biophysics. In the past few years, protein residue–residue contact prediction has undergone substantial im-
provement, which has made it a critical driving force for successful protein structure prediction. Boosting the accur-
acy of contact predictions has, therefore, become the forefront of protein structure prediction.

Results: We show a novel contact map refinement method, ContactGAN, which uses Generative Adversarial
Networks (GAN). ContactGAN was able to make a significant improvement over predictions made by recent contact
prediction methods when tested on three datasets including protein structure modeling targets in CASP13 and
CASP14. We show improvement of precision in contact prediction, which translated into improvement in the accur-
acy of protein tertiary structure models. On the other hand, observed improvement over trRosetta was relatively
small, reasons for which are discussed. ContactGAN will be a valuable addition in the structure prediction pipeline
to achieve an extra gain in contact prediction accuracy.

Availability and implementation: https://github.com/kiharalab/ContactGAN.

Contact: dkihara@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein structure prediction remains as one of the most important
problems in biology, more specifically in bioinformatics, biophysics
and structural biology. Tremendous efforts have been paid for deter-
mining tertiary structures of proteins because the structures provide
indispensable information for understanding the principle of how
proteins carry out biological functions, developing drug molecules
and artificial protein design. To supplement experimental methods
of structure determination, computational protein structure predic-
tion methods have been developed over the last three decades.

As observed in the community-wide protein structure prediction
experiments, the Critical Assessment of techniques in protein
Structure Prediction (CASP) (Kryshtafovych et al., 2019) the accur-
acy of prediction methods has significantly improved in the past few
years. The main driver behind this accuracy boost is the improve-
ment of residue–residue contact or distance prediction, which is
used effectively to guide the construction of protein structure mod-
els. Residue contacts or distances of a protein are predicted from a
multiple sequence alignment (MSA) of the protein. Predicting resi-
due contacts from an MSA has over 20 years of effort by different

research groups toward establishing accurate prediction methods. In
principle, evolutionary constraints for maintaining residue–residue
contacts in a protein structure leave a trace in the MSA of the pro-
tein of interest and its homologous proteins. Earlier works applied
relatively simple statistical approaches to an MSA (Fariselli et al.,
2001; Ortiz et al., 1998). The accuracy of contact prediction was
substantially improved a few years ago when the so-called co-evolu-
tion approaches, which use statistical inference based on the Potts
model (Ekeberg et al., 2013), were introduced. The methods in this
category include CCMpred (Seemayer et al., 2014), Gremlin
(Kamisetty et al., 2013), EVFold (Marks et al., 2011), plmDCA
(Ekeberg et al., 2013), FreeContact (Jones et al., 2015; Kaján et al.,
2014) and MetaPSICOV (Jones et al., 2015). Further improvement
was observed more recently when deep learning, Convolutional
Neural Networks (CNN) and Residual Networks (He et al., 2016),
were applied to the problem. The methods in this category include
DeepCov (Jones and Kandathil, 2018), RaptorX-contact (Wang
et al., 2017), DeepContact (Liu et al., 2018) and trRosetta (Yang
et al., 2020).

Although substantial improvement in contact prediction has
been observed, contact prediction is still far from perfect. Here, we
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propose ContactGAN, a novel contact map denoising and refine-
ment method using Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014). GANs have been widely adopted for
high-level generation tasks in computer vision with applications
including image-to-image translation (Zhu et al., 2017), and image
super resolution (Ledig et al., 2017). ContactGAN takes a contact
map predicted by existing methods, which is considered as an imper-
fect, noisy input and outputs an improved map that better captures
correct residue–residue contacts compared to the original map.
ContactGAN was trained with predicted noisy contact maps
coupled with corresponding native contact maps, which the net-
works were guided to generate. We show that we gain a consistent
and substantial precision improvement over predicted maps by
CCMpred, DeepCov and DeepContact, on the validation dataset,
the CASP13 and the CASP14 datasets. It was also demonstrated that
combining multiple predicted maps computed by different methods
further improves the accuracy of generated maps. On the other
hand, the improvement over trRosetta was relatively small. The po-
tential reasons for that are extensively discussed. ContactGAN can
be the powerful last step of a contact prediction pipeline to improve
any existing contact prediction methods as demonstrated through
application to the four contact prediction methods.

2 Materials and methods

2.1 Protein structure and contact map dataset
We prepared a dataset of 5263 non-redundant protein structures,
for each of which a contact map was computed by four existing con-
tact map prediction methods. The predicted contact maps, together
with the native (i.e. correct) contact maps, were used for training
ContactGAN. A native contact map we use contains binary values,
1 or 0, where 1 indicates that the Cb atom distance of the corre-
sponding residue pair is 8 Å or shorter.

The protein dataset was constructed based on the PISCES (Wang
and Dunbrack, 2005) protein dataset selected with a 25% sequence
identity, which was released before May 2018 (i.e. the beginning of
CASP13). All these proteins were solved by X-ray or Nuclear
Magnetic Resonance. From the PISCES dataset, proteins longer than
700 amino acid residues or shorter than 25 amino acid residues
were discarded. Proteins were also excluded if they contain un-
known amino acids in their sequence, have a knot in the structure
that was checked by referring to the KnotProt2.0 database
(Dabrowski-Tumanski et al., 2019), or have consecutive missing res-
idues up to two residues in the structure. Structure gaps up to two
residues were filled with the Modeller (Eswar et al., 2006) automo-
del protocol. This step yielded 6640 protein structures. To further
ensure non-redundancy of structures, we filtered the remaining pro-
teins based on the CATH structural classification database
(Knudsen and Wiuf, 2010). We first removed proteins that are not
in the latest CATH-domain list and proteins in Class 6 (special struc-
tures), which yielded 5263 proteins. We then split these proteins
into training and validation datasets such that there were no over-
lapping CATH codes up to the topology (T) level. The split was also
made to ensure that both datasets have sufficient presence of all 4
CATH classes. The final counts of proteins in the training and valid-
ation datasets were 4962 and 301, respectively.

In addition to this dataset, we used all the 43 contact prediction
(RR) target domains in CASP13 and all the 49 RR targets in
CASP14 as independent test sets. They are listed in Supplementary
Table S1.

2.2 Predicting contact maps with four existing methods
We used four existing prediction methods, CCMpred, DeepContact,
DeepCov and trRosetta, to predict contact maps of the proteins in
the dataset described above. Input MSAs were generated using
DeepMSA (Zhang et al., 2020). We used HHsuite (Steinegger et al.,
2019) version 3.2.0 and HMMER (Potter et al., 2018) version 3.3 in
DeepMSA. For sequence databases, Uniclust30 database (Mirdita
et al., 2017) dated October 2017, Uniref90 (Suzek et al., 2015)
dated April 2018 and Metaclust_NR database (Steinegger and

Söding, 2018) dated January 2018 were used. These database
releases are before CASP13 has started.

CCMpred is a baseline contact prediction method, which uses
the Pseudo-Likelihood Maximization of direct couplings between
pairs of amino acids in an MSA of the target protein (Seemayer
et al., 2014). DeepContact is one of the deep learning-based contact
prediction methods (Liu et al., 2018). We used the DeepContact
code made available at Github by the authors. DeepCov is another
method that uses deep learning (Jones and Kandathil, 2018).
trRosetta uses the ResNet CNN architecture (He et al., 2016). It
was shown that trRosetta had superior performance to other exist-
ing methods on the CASP13 dataset. For trRosetta, we generated
MSAs at three different E-values in the HHblits search steps of the
DeepMSA pipeline, 0.001, 0.1 and 1.0. Since trRosetta outputs pre-
dicted distance between residue pairs, we used a distance cutoff of
8 Å to decide if two residues are in contact. Since we ran trRosetta
with three MSAs of different E-value cutoffs, we obtained three dif-
ferent contact predictions, which were considered as a 3-channel in-
put for ContactGAN.

2.3 Architecture of ContactGAN
ContactGAN takes a predicted contact map by four prediction
methods mentioned above as input and outputs a refined map.
ContactGAN adopts the GAN framework, where two networks, a
generative and a discriminative network, are trained with sets of
predicted (noisy) and corresponding native (i.e. correct) contact
maps so that refined maps can be generated by learning patterns
from predicted and native maps. A native contact map we use con-
tains binary values, 1 or 0, where 1 indicates that the Cb atom dis-
tance of the corresponding residue pair is 8 Å or shorter.

Figure 1 shows the network structure of ContactGAN. Figure 1a
illustrates the overall architecture. The generator network, illus-
trated in Figure1b, is a CNN consisting of a 2D convolution layer
with 32 channels and a kernel size of 9, which is followed by 9 or 18
ResNet blocks, a 2D convolution layer and finally by a sigmoid
layer. 18 ResNet blocks were used when refining contact maps gen-
erated by trRosetta and 9 for all the other methods. The discrimin-
ator network (Fig. 1c) is a fully convolutional binary classifier. It
takes a contact map output from the generator and the correspond-
ing native contact map and classifies the two maps into classes, ei-
ther native (correct) or predicted. The discriminator network

Fig. 1. The architecture of ContactGAN. (a) The overall structure that connects the

generator and the discriminator networks. (b) The network structure of the gener-

ator network. X is equal to 18 for handling maps from trRosetta and 9 for the other

methods. (c) The detailed structure of the discriminator network. See text for more

details
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consists of 4 units of the combined ‘Conv2dþIN’ block (pink) and
‘Conv2dþINþDropout’ followed by one unit of Conv2dþIN with
512 channels, conv2d with 512 channels and a sigmoid layer. The

details of these blocks are shown in Supplementary Figure S1.

2.4 Parameter training for ContactGAN
A contact map predicted by a contact map prediction method (e.g.
CCMpred), which we hereby refer to as a noisy map, is an input to

the generator network of ContactGAN. The output map of the gen-
erator network and the corresponding native contact map of the
noisy map were then used as inputs to the discriminator network.

Out of 5263 pairs of noisy and native contact maps, 4962 pairs
were used for training and 301 were used for validation.

ContactGAN was trained separately for each contact prediction
method using predicted maps and corresponding native contact
maps. Note that protein sequence information and other features,

such as MSA and secondary structure prediction, were not used in
ContactGAN.

For training GANs, the generator and discriminator networks
are trained together with a min-max game-style objective function

given by Equation (1):

min
G

max
D

E
x � Pd

logD xð Þ
� �

þ E
z � Pg

log ð1�DðzÞ
� �

� (1)

where G and D are parameters of the generator and the discrimin-
ator networks of ContactGAN, Pd is the real (correct) data distribu-
tion, Pg is the generated (fake) data distribution, D(x) and D(z) are

predicted probabilities by the discriminator that the real (x) and
fake data z are real. The generator receives noisy data as input and

generates denoised data. The discriminator then classifies input data
to denoised data or real data. The minimax objective ensures that
the generator generates good quality denoised data that can fool the

discriminator into classifying denoised data as real data. Following
the above common practice for general GAN, the objective function
for ContactGAN is formulated as shown in Equation 2, which is a

linear combination of a content loss and an adversarial loss:

Loss ¼ Losscontent þ 10�3 Lossadversarial ; (2)

where

Losscontent ¼
XL

i¼0

XL

j¼0

Ti;j � G Nð Þð Þi;j
� �2

(3)

and Lossadversarial ¼ �DðG Nð ÞÞ (4)

Here, L is the protein sequence length, T corresponds to the na-
tive contact matrix (map), and N is the input predicted (noisy) con-

tact matrix, G(N) is the denoised matrix and D(G(N)) is the
discriminator’s prediction of the denoised map, which ranges be-
tween 0 to 1. We optimize the negative of D(G(N)), as we want to

fool the discriminator to consider that the denoised map to be as
good as the native map. The content loss is defined by the Mean

Squared Error (MSE) between the denoised map and the native
map. The adversarial loss is given as the negative softmax probabil-
ities of the discriminator predictions.

We employed the Two Time-scale Update Rule (TTUR) (Heusel
et al., 2017) to use separate learning rates for the generator and the

discriminator for stable GAN training. We used learning rates of
0.0001 for the generator and 0.0004 for the discriminator

(Supplementary Note S1). The batch size was set to 1 as contact
maps (i.e. proteins in the dataset) are of different sizes. ContactGAN
was trained for 50 epochs (Supplementary Fig. S2). We choose the

best performing model on the validation dataset for testing the
CASP13 and CASP14 test datasets. The computational time needed

for training and inference is provided in Supplementary Table S2.

2.5 Building structure models from a contact map
To build protein structure models from the predicted contact map,
we used the energy minimization protocol, MinMover, in pyRosetta
(Chaudhury et al., 2010). Detailed procedure is explained in

Supplementary Note S2.

3 Results

ContactGAN was evaluated on three datasets, the validation set in

the non-redundant protein dataset as well as the CASP13 and
CASP14 contact prediction targets. We evaluated whether

ContactGAN could improve the quality of predicted contact maps
by the four existing methods, CCMpred, DeepContact, DeepCov
and trRosetta.

3.1 Contact map improvement with ContactGAN
In Table 1, we summarize ContactGAN’s performance in improving

residue contact map prediction on the validation set and the
CASP13 set. In this table, we only showed precision considering pre-

dicted contacts with the top L/1 highest probabilities (L is the length
of the protein). Results with more metrics are provided in
Supplementary Tables S3–S5. Supplementary Figure S3 shows

improvements of the precision of individual predicted contact maps
on the validation and the CASP13 datasets.

The first three rows in Table 1 show results for individual meth-
ods, CCMpred, DeepCov and DeepContact. ContactGAN made

Table 1. Improvement on L/1 prediction by ContactGAN

Method Validationa CASP13

Med1Lgb Lg MedþLg Lg

CCMpred 0.245 0.193 0.164 0.121

0.421 0.333 0.287 0.217

DeepCov 0.457 0.349 0.320 0.231

0.470 0.361 0.368 0.250

DeepContact 0.450 0.351 0.382 0.267

0.480 0.374 0.408 0.283

C 1 Dvc 0.457 0.349 0.320 0.231

0.523 0.410 0.402 0.284

C 1 Dt 0.450 0.351 0.382 0.267

0.514 0.405 0.420 0.299

Dv 1 Dt 0.450 0.351 0.382 0.267

0.521 0.411 0.438 0.310

C 1 Dv 1 Dt 0.450 0.351 0.382 0.267

0.537 0.426 0.437 0.314

trRosetta 0.702 0.583 0.657 0.510

0.707 0.585 0.667 0.516

9 blocksd 0.696 0.580 0.650 0.512

Note: Results shown are for top L/1 prediction.
aResults of two datasets are shown: On the left, the validation set of 301

proteins in the non-redundant protein dataset; on the right, the CASP13

dataset.
bThe columns Lg consider only long-range contacts (residue pairs separated

by more than 23 residues) while MedþLg columns consider medium- and

long-range contacts (residue pairs separated by more than 11 residues).
cEach result corresponds to top L/1 contact predictions with the highest

probabilities where L is the length of the protein. Two values shown: up, ori-

ginal average precision by the existing method; bottom, average precision of

denoised contact maps by ContactGAN. In the middle rows, contact maps of

two or three methods were used as input: C, CCMpred; Dv, DeepCov; Dt,

DeepContact. When multiple maps were used as input, the highest precision

among the existing methods was shown as the original results. For trRosetta,

three independent contact predictions were combined, each of which used an

MSA with different E-value cutoffs, 0.001, 0.1 and 1.0.
dNine blocks of ResNet were used in the generator.
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substantial improvements for these methods in all the metrics, which
was consistent between the validation set and the CASP13 set.
Particularly, the improvements were largest for CCMpred, which
had the lowest original precision among the three methods. For
CCMpred, ContactGAN improved L/1 Long precision on the valid-
ation set from 0.193 to 0.333, an improvement of 72.5%. For the
CASP13 set, the improvement for L/1 Long was slightly larger,
79.3% (from 0.121 to 0.217). The improvement ranged from
71.8% to 79.3% for other metrics shown in Table 1 for CCMpred.
The improvement was also consistent for DeepCov and
DeepContact, but with smaller improvement margins than observed
for CCMpred. For DeepCov, ContactGAN showed an improvement
of 3.43% and 8.23% for L/1 Long on the validation and the
CASP13 sets, respectively. The corresponding values for
DeepContact were 6.55% and 5.99%, respectively.

The middle rows in Table 1 present ContactGAN performance
using multiple channels, where a pairwise combination of the above
three methods and all three methods together were used as input
channels. To be able to take two or three contact maps as input, the
network architecture of ContactGAN was modified accordingly.
The row with ‘C þ Dv’ shows the precision values with CCMpred
and DeepCov as two input channels for ContactGAN. With these
two channels, ContactGAN showed substantial improvement in
every evaluation category over the two individual methods. It is
interesting to note that the improvement was achieved not only over
CCMpred, the method with lower accuracy, but also over the better
method, DeepCov. We see similar improvements when
CCMpredþDeepContact and DeepCovþDeepContact were used as
two-channel inputs. Then, we further extended the use of multi-
channels to three channel inputs with CCMpred, DeepCov and
DeepContact altogether (CþDvþDt in the table), which resulted in
a further improvement over two channel inputs.

Improvements by combining additional method(s) are apparent
in Figure 2, where L/1 Long precision values of each individual
method and its combinations with other methods are compared.
From originally predicted contact maps predicted by a single
method, ContactGAN improved them with a large margin, which
was further improved by using additional contact maps predicted by
different methods (2 input channels). Furthermore, an even higher
precision was achieved by using three methods as input.

In the last row of Table 1, we show the results of the application
of ContactGAN to trRosetta, a relatively new method which

showed one of the best performances among those published and
available (Yang et al., 2020). Since the base accuracy of trRosetta is
significantly better than the other methods, we combined three dif-
ferent channels of trRosetta, each using different MSAs generated
with a sequence E-value cutoff of 0.001, 0.1 and 1.0, respectively,
instead of combining with the other methods. Compared with the
best prediction among the results with the three E-values, which is
0.001, ContactGAN made small but consistent improvements for all
the metrics. For L/1 Long, ContactGAN improved by 0.34% and
1.17%, for the validation set and the CASP13 set, respectively. The
performance gains seen on trRosetta are lower than for the other
methods, but these improvements in Table 1 have P-value <0.05 by
t-test. Supplementary Table S5 provides P-values of other metrics.
Supplementary Figure S3 shows change of the L/1 long precision val-
ues of individual contact maps.

The generator for trRosetta used a deeper network (18 ResNet
blocks) than the networks for the other contact prediction methods
(9 blocks) (Fig. 1). We also trained a generator with nine ResNet
blocks for trRosetta and applied, which is shown in the last row of
Table 1. The smaller generator showed a lower precision than the
18-block one, which was still better on average than the best among
the original trRosetta (i.e. E-value of 0.001) for the CASP13 set
(0.512). But for the validation set, the result (0.580) was worse than
the best trRosetta with an E-value of 0.001. We further tested the
performance of the network when only generator was trained with-
out the discriminator. ContactGAN consistently showed better per-
formance than the generator-only network (Supplementary Table
S5).

We were also curious if a GAN trained on maps generated by
one method was able to refine predicted maps by another method
(Supplementary Fig. S4). As shown, overall ContactGAN could not
improve maps if it was trained on maps by a different method,
which implies that the trained GAN captured method-specific pre-
dicted contact patterns. One exception was observed when the GAN
trained on DeepContact map was applied to DeepCov maps, where
we see improvement on 22 maps out of 43 maps. Prediction accur-
acy of DeepCov and DeepContact are similar but the opposite case,
i.e. GAN trained on DeepCov did not improve maps by
DeepContact (Supplementary Fig. S4b).

Next, we investigated which types of contacts were improved by
ContactGAN. Particularly, we examined contacts between residues
in secondary structure elements, a-helix and a-helix (denoted as
a� a below), b-strand and b-strand (b�b) and a-helix and b-strand
(a�b). To quantify the change made by ContactGAN, we com-
pared the fraction of correct contacts between secondary structure
elements predicted among the top L/1 long-range contacts before
and after applying ContactGAN (Supplementary Fig. S5). For both
validation and the CASP13 set, all three types of correct secondary
structure interactions increased. For the validation set, particularly
the fraction of b�b correct contacts increased while correct a� a
contact predictions were particularly increased in the CASP13 set
consistently across different prediction methods. Thus, the second-
ary structure preferences observed in the validation set and the
CASP13 set were not consistent.

3.2 CASP14 contact prediction dataset
We further tested ContactGAN on the 49 CASP14 contact predic-
tion targets. Table 2 shows the L/5 and L/1 precisions and
Supplementary Table S6 provides results on the full metrics. Similar
to the results on the previous two datasets, consistent improvements
were observed by ContactGAN. The margin of the improvements
on the L/1 long precision was 1.58% (for DeepCov) to 57.0% (for
CCMpred). The improvement for trRosetta was smaller, 2.45%,
but the change of the distribution of L/1 long precision was statistic-
ally significant (P-value < 0.05). T-test results of other metrics are
provided in Supplementary Table S6.

3.3 Examples of improved contact map predictions
In this section, we show four examples of pairs of contact maps be-
fore and after applying ContactGAN. The first example (Fig. 3a) is

Fig. 2. Improvement of L/1 Long precision by using additional predicted contact

maps as input channels. Two sets of lines are shown for validation and CASP13

results for each of CCMpred (solid gray line), DeepCov (dashed line) and

DeepContact (dashed and dotted line). Original indicates precision of the original

contact maps, X-channel(s) indicates predictions by GAN with X¼ 1,2 and 3 chan-

nels as inputs. In the case of 2 channels, every method has 2 possible combinations

of input. The order of the combinations was as follows: For C: CþDv, CþDt. For

Dv: CþDv, DvþDt. For Dt: CþDt, DvþDt. Precision values plotted are taken from

Table 1

Protein contact map refinement using generative adversarial networks 3171

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3168/6206362 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab220#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab220#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab220#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab220#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab220#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab220#supplementary-data


a ContactGAN application to a map by CCMpred. For this large
protein of 561 amino acids (PDB ID: 1HK8A), the original map by
CCMpred is covered by noisy predictions with low probability val-
ues. In contrast, ContactGAN map denoised it into more distinct
contact patterns, which yielded a 77.3% improvement in L/1 long-

Fig. 4. GDT-TS score of protein structure models generated with contact maps be-

fore and after ContactGAN. GDT-TS of structure models using predicted contact

maps for the 35 CASP13 targets are shown. Out of 180 models generated (see

Supplementary Note S2) the best GDT-TS score is shown in first column and values

of the model with the best Rosetta score (the contact constraint term was not

included) is shown in second column. X-axis, models built with original predicted

contact maps; y-axis, with maps after applying ContactGAN. (a) Using maps pre-

dicted by CCMpred. The best GDT-TS value among the pool was plotted for each

target. The number of targets where GDT-TS improved/tie/worsened after

ContactGAN is 29/0/6 (P-value < 0.0001), respectively. We show these three num-

bers in this format for the rest of the panels. The number in the bracket indicates the

P-value of the significance test conducted. (b) Maps by CCMpred. GDT-TS of the

best Rosetta score models was plotted. 20/0/15 (0.009). (c) The two-channel

ContactGAN with DeepCov (Dcv) and DeepContac (Dct). Circles, comparison

against Dct; triangles, against Dv. Against Dct: 35/0/0 (< 0.0001); against Dcv: 27/

0/8 (< 0.0001). (d) The best Rosetta score models for the 2-channel with Dcv and

Dct. Against Dct: 25/0/10 (0.003); against Dcv: 20/1/14 (0.348). (e) A three-channel

with CCMpred, Dcv and Dct. Crosses, CCMpred; circles, Dct; triangles, Dcv.

Against CCMpred: 34/1/0 (< 0.0001); against Dcv: 28/0/7 (0.000); against Dct: 34/

0/1 (< 0.0001). (f) GDT-TS of the best scoring models are plotted for the three-

channel ContactGAN. Against CCMpred: 29/0/6 (< 0.0001); against Dcv: 25/0/10

(0.002); against Dct: 30/1/4 (< 0.0001). (g) trRosetta with the three E-value cutoffs.

compared to trRosetta with E-value 0.001 (which performed the best among the

three cutoffs): 22/1/12 (0.023). (h) the channel for trRosetta. Against trRosetta (E-

value: 0.001): 19/0/16 (0.049). Plots for the other contact prediction methods are

provided in Supplementary Figure S7.

Table 2. Improvement of L/1 precision on the CASP14 dataset

Method CASP14

L/5a L/1

MedþLgb Lg MedþLg Lg

CCMpred 0.275 0.247 0.157 0.128

0.379 0.314 0.255 0.201

DeepCov 0.496 0.417 0.322 0.253

0.527 0.407 0.345 0.257

DeepContact 0.531 0.434 0.329 0.243

0.551 0.445 0.352 0.252

C 1 Dvc 0.531 0.434 0.329 0.243

0.571 0.483 0.377 0.275

C 1 Dt 0.496 0.417 0.322 0.253

0.529 0.423 0.360 0.269

Dv 1 Dt 0.496 0.417 0.322 0.253

0.581 0.477 0.381 0.292

C 1 Dv 1 Dt 0.496 0.417 0.322 0.253

0.581 0.473 0.386 0.298

trRosetta 0.671 0.577 0.468 0.368

0.671 0.591 0.474 0.377

9 blocks 0.667 0.580 0.461 0.365

aTwo results on CASP14 dataset are shown: On the left, top L/5 contact

predictions with the highest probabilities; on the right, top L/1 with the high-

est probabilities. L is the length of the protein.
bThe columns Lg consider only long-range contacts (residue pairs separated

by more than 23 residues) while Med+Lg columns consider medium- and

long-range contacts (residue pairs separated by more than 11 residues).
cTwo values shown: up, original average precision by the existing method;

bottom, average precision of denoised contact maps by ContactGAN. In the

middle rows, contact maps of two or three methods were used as input: C,

CCMpred; Dv, DeepCov; Dt, DeepContact. When multiple maps were used

as input, the highest precision among the existing methods was shown as the

original results. For trRosetta, three independent contact predictions were

combined, each of which used an MSA with different E-value cutoffs, 0.001,

0.1 and 1.0.

Fig. 3. Examples of contact maps before and after applying ContactGAN. For each

panel, the map on the left is the original one predicted by an existing method and

the map on the right is the refined map by ContactGAN. The color scale shows pre-

dicted probability values of contacts, ranging from dark blue (0.0) to bright yellow

(1.0). Contacts with the residue itself along the diagonal line are removed. (a) A con-

tact map of Ribonucleotide-Triphosphate Reductase in E.coli [PDB ID: 1HK8A;

561 amino acids (aa)] predicted by CCMpred. The L/1 long precision improved

from 0.357 to 0.633. (b) Mg-ATPase Nucleotide binding domain (PDB ID: 3GWIA,

164 aa). The two-channel ContactGAN with CCMpred and DeepContact improved

L/1 long precision from 0.396 (by DeepContact) to 0.622. (c) A CASP13 target,

enterococcal surface protein (CASP ID: T0987, PDB ID: 6ORI; 405aa). Three-chan-

nel ContactGAN improved over DeepCov. L/1 long precision of domain D1, before:

0.405; after: 0.589. For domain D2, before: 0.367; after: 0.536. (d) A CASP13 tar-

get protein. Filamentous haemagglutinin family protein (CASP ID: T0968s1, PDB

ID: 6CP9; 126 aa). The original map was by trRosetta with E-value 0.001. L/1 long

precision, before: 0.407; after: 0.466
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range precision from 0.357 to 0.633. The next example is the refine-
ment on a DeepContact’s prediction (Fig. 3b). The right panel is
from a two-channel ContactGAN with DeepContact and CCMpred
as input. ContactGAN was able to clean the strong noise and
improved the L/1 long precision from 0.396 to 0.622 over
DeepContact. In Figure 3c, a map predicted by DeepCov for a 405
residue-long protein in the CASP13 dataset was improved by the
three-channel ContactGAN. Similar to the previous two cases, the
original map suffered from high noisy probability values for medium
and long-range contacts, which were cleaned by ContactGAN. The
last example was a refinement for a contact map by trRosetta (MSA
E-value: 10�3) (Fig. 3d). Compared to the previous cases, the
improvements by ContactGAN visually seem minor; however, they
include enhancement of critical very long-range contacts between
residues 12–18 and 112–118. These correct contacts were very
weakly predicted by trRosetta with the min, max and the average
values of 0.002, 0.143 and 0.03, respectively, which were strength-
ened to 0.003, 0.794 and 0.213, respectively. The precision im-
provement of L/1 long contacts was 14.5% overall. In
Supplementary Figure S6, more examples of improved maps over
trRosetta are provided where the improved margin was relatively
large.

3.4 Effect of contact map improvement in str. modeling
We further examined how the improvement in contact map predic-
tion transfer to resulting protein structure models. Figure 4 shows
GDT-TS (Zemla, 2003) of models built for the 35 CASP13 targets
using predicted contact maps before and after applying refinement
using ContactGAN. In Figure 4, we showed results of a one-channel,
a two-channel, the three-channel ContactGAN and ContactGAN
for trRosetta. The rest of the ContactGAN results are shown in
Supplementary Figure S7. For each target, 180 models were gener-
ated using pyRosetta as described in Supplementary Note S2.
Dependency of the modeling results on the probability cutoff of con-
tact prediction and the folding protocols used are provided in
Supplementary Table S7. The left column in Figure 4 shows the larg-
est GDT-TS among the generated models while in the right column,
the best energy models by the Rosetta score were considered. The
improvements of the GDT-TS distribution by ContactGAN in all
the panels are statistically significant (P-value < 0.05).

Using a refined contact map by ContactGAN produced a higher
GDT-TS model for a majority of the targets (panel a, c, e, g). The ac-
tual counts of improvements are provided in figure captions. This is
also true for trRosetta (panel g), where the improvement is observed
for 22 targets and 1 tie. When models selected by the Rosetta energy
(the right column of the figures) were considered, the margin be-
tween the number of improved and worsened targets by
ContactGAN shrank, but this is a scoring problem where the
Rosetta energy failed to select better quality models. Model selection
would improve by some recently developed model quality assess-
ment (QA) methods. Some examples of improved structure models
are provided in Supplementary Figure S8.

4 Discussion

In this work, we developed ContactGAN, which refines predicted
contact maps using a GAN architecture. Overall, ContactGAN
made improvement to a majority of the contact maps in the
three datasets tested. The improvement of contact maps also led
to better protein structure models. The margin of the improve-
ment observed was the largest for CCMpred, where the original
accuracy was relatively low, and the smallest for trRosetta,
which produced substantially more accurate maps than the other
prediction methods. The difficulty of improving trRosetta maps
may be attributed to three reasons: First, the original prediction
has already more accurate than other methods. Second, trRosetta
uses CNN as ContactGAN does. Third, since trRosetta is aimed
for residue distance prediction, it was trained on residue distance
distribution data, which is richer information than residue con-
tacts information, which was used to train ContactGAN. To

increase the margin of the improvement over trRosetta’s contact
maps, increasing the depth of the networks and the training data-
set size would certainly help. More fundamentally, redesigning
the loss function used in training may be effective. Similar to
ContactGAN, we expect that GAN can also improve predicted
residue distance maps, which is left for us as a future work.
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