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Abstract

Motivation: Recent breakthroughs of single-cell RNA sequencing (scRNA-seq) technologies offer an exciting oppor-
tunity to identify heterogeneous cell types in complex tissues. However, the unavoidable biological noise and tech-
nical artifacts in scRNA-seq data as well as the high dimensionality of expression vectors make the problem highly
challenging. Consequently, although numerous tools have been developed, their accuracy remains to be improved.

Results: Here, we introduce a novel clustering algorithm and tool RCSL (Rank Constrained Similarity Learning) to ac-
curately identify various cell types using scRNA-seq data from a complex tissue. RCSL considers both local similarity
and global similarity among the cells to discern the subtle differences among cells of the same type as well as larger
differences among cells of different types. RCSL uses Spearman’s rank correlations of a cell’s expression vector
with those of other cells to measure its global similarity, and adaptively learns neighbor representation of a cell as
its local similarity. The overall similarity of a cell to other cells is a linear combination of its global similarity and local
similarity. RCSL automatically estimates the number of cell types defined in the similarity matrix, and identifies
them by constructing a block-diagonal matrix, such that its distance to the similarity matrix is minimized. Each
block-diagonal submatrix is a cell cluster/type, corresponding to a connected component in the cognate similarity
graph. When tested on 16 benchmark scRNA-seq datasets in which the cell types are well-annotated, RCSL substan-
tially outperformed six state-of-the-art methods in accuracy and robustness as measured by three metrics.

Availability and implementation: The RCSL algorithm is implemented in R and can be freely downloaded at https://
cran.r-project.org/web/packages/RCSL/index.html.

Contact: guojunsdu@gmail.com or zcsu@uncc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in single-cell RNA sequencing (scRNA-seq) tech-
nologies have revolutionized the study of many important biological
processes, such as embryogenesis and tumorigenesis, in which an
understanding of the functions and composition of heterogeneous
cell types in the tissues is critical. As the transcriptome of a cell
largely determines its molecular makeup, and thus its functions and
cellular type, unsupervised clustering of individual cells based on
their transcriptomes can be a powerful approach to identifying all
the cell types including rare ones in complex tissues in an unbiased
manner (Buettner et al., 2015; Jiang et al., 2016; Xu and Su, 2015).

Despite great progress made in the last few years, the task remains
highly challenging owing to the unavoidable biological noise and
technical artifacts in scRNA-seq data as well as the high dimension-
ality of expression vectors.

The biological noise is related to the inherently stochastic nature
of gene transcription in individual cells of the same type, due to the
small copy number of molecules involved, unsynchronized cell
cycles and uneven cell divisions (Becskei et al., 2005; Kaern et al.,
2005; Paulsson, 2004; Raj and van Oudenaarden, 2008). As a result,
even different cells of the same type display a broad range of vari-
ation in RNA levels (Bar-Even et al., 2006; Newman et al., 2006;
Raj et al., 2008; Taniguchi et al., 2010; Xie et al., 2008; Young
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et al., 2012; Zenklusen et al., 2008). Technical artifacts result from
dropout events and batch factors in data generation, which are dif-
ferent from the conventional bulk RNA-seq data (Kiselev et al.,
2019). Intense efforts have been made to address these challenges
over the past few years. For example, we previously proposed a
quasi-clique-based algorithm with shared nearest neighbor (SNN),
SNN-cliq, to identify groups of highly similar cells (Xu and Su,
2015). Guo et al. (2015) designed a top-to-toe pipeline (SINCERA)
to distinguish major cell types. Seurat, which has become one of the
most popular choices for scRNA-seq data analysis, combines SNN
graphs with Louvain community detection to group cells iteratively
(Satija et al., 2015). SC3 integrates the results of multiple clustering
methods to obtain a consensus result (Kiselev et al., 2017).
Additionally, dimensionality reduction has also been integrated into
clustering methods, such as pcaReduce (�Zurauskien _e and Yau,
2016) and ZIFA (Pierson and Yau, 2015), to reduce the computa-
tional complexity. Meanwhile, some approaches like CIDR have
been proposed to mitigate the impact of dropout events by improv-
ing the dissimilarity matrix (Lin et al., 2017).

Another challenge in accurately clustering cells using scRNA-seq
data are related to their high dimensionality. Although a cell may
express tens of thousands of genes, only few of them determine its
type (Graf and Enver, 2009), and we usually have no prior know-
ledge of which specific genes determine cell types. To address this,
many new vector similarity metrics have been proposed such as
SIMLR (Bo et al., 2017) and MPSSC (Park et al., 2018). SIMLR
obtains a similarity matrix and identifies clusters via multikernel
learning. MPSSC clusters a learned multiple doubly stochastic simi-
larity matrix using sparse spectral clustering. In both the algorithms,
a similarity matrix was learned from the data to better capture glo-
bal structural relationships between cells. Nevertheless, these simi-
larity metrics do not take into account local structures in
quantifying cell similarities, which can be critical to discern subtle
differences between cells of the same type and cells of different
types, as indicated by our earlier proposed SNN metric (Xu and Su,
2015). In addition, most graph-based methods use the k-means algo-
rithm to find clusters in a post-process step after constructing the
similarity graph. Such two-stage algorithms inevitably lose some in-
formation from the original data in the post-process step.

In this work, we first propose a new metric that considers both
global and local similarities between the expression vectors.
Specifically, we use Spearman’s rank correlation (SRC) to measure
the global similarity and neighbor representation (NR) to capture
the local similarity between the cells. NR has been successfully used
in many dimensionality reduction algorithms, such as locally linear
embedding (Roweis and Saul, 2000), to capture local structures. We
adaptively learn NR for each cell using an optimization procedure.
Our metric is an optimized linear combination of Spearman’s correl-
ation and the learned NR. Once the similarity matrix between cells
is computed using this metric, the task of clustering the cells accord-
ing to their types is to identify all block-diagonal submatrices in the
similarity matrix or to partition the cognate similarity graph into
several connected components, where each block-diagonal subma-
trix or connected component corresponds to a cell type. It has been
proved that the number of block-diagonal submatrices in the simi-
larity matrix is equal to the number of zero eigenvalues of its
Laplacian matrix (Luxburg, 2007; Mohar, 1991; Nie et al., 2016).
Therefore, we posit that if we can reliably estimate the number of
clusters or cell types C based on the similarity matrix, then we can
transform it into a new matrix containing C block-diagonal subma-
trices, or partition the cognate similarity graph into C connected
components, by constraining the rank of its Laplacian matrix. More
specifically, if we can construct a matrix such that the number of
zero eigenvalues of its Laplacian matrix is exactly equal to the esti-
mated number of cell types, then we can divide cells into the same
number of groups/types.

Based on this idea, we have developed a novel clustering algo-
rithm RCSL (Rank Constrained Similarity Learning) by constructing
a block-diagonal matrix such that the number of zero eigenvalues of
its Laplacian matrix is equal to the estimated number of cell types in
the dataset and its distance to the similarity matrix is minimized.

When tested on 16 public scRNA-seq datasets with verified cell
types, RCSL generally outperforms the six state-of-the-art methods
compared.

2 Materials and methods

2.1 The RCSL algorithm
RCSL takes a single-cell gene expression matrix MG03N as the input,
where G0 denotes the number of genes, N denotes the number of
cells and an element mij in M represents the expression value of gene
i in cell j. RCSL consists of three steps (Fig. 1) detailed as follows.

Step 1. Data preprocessing. To control the quality of scRNA-seq
data, we filter out rarely expressed genes and ubiquitously expressed
genes, which contribute little to clustering. Specifically, we discard
genes expressed in <2.5% of cells as well as genes expressed in
>97.5% of cells with a variance <90% of the mean variance of
these selected ubiquitously expressed genes. These parameters were
chosen as we found that they could slightly improve the accuracy of
clustering results on most of the datasets (Supplementary Fig. S1).
Let the resulting matrix be MG3N.

Step 2. Construction of similarity matrix. For each pair of cells i
and j in MG3N, we calculate the SRC between their expression vec-
tors, defined as:

SS i; jð Þ ¼
PG

g¼1ðRiðgÞ � �Ri ÞðRjðgÞ � �Rj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPG

g¼1 ðRiðgÞ � �Ri Þ2
PG

g¼1 ðRjðgÞ � �Rj Þ2
q ; (1)

where Ri(g) and Rj(g) are the ranks of the expression level of gene g
in cells i and j, respectively, and �Ri and �Rj are the ranks in i and j
of the gene in the middle ordered by gene IDs, respectively. Let the
resulting matrix be SS (Fig. 1). As SRC is based on the ranks of val-
ues, it is insensitive to the difference of cell sizes. We perform princi-
pal component analysis (PCA) on MG3N (Wold et al., 1987), and
keep the top Q PCs that explain 95% of the variance. Let the result-
ing matrix be XQ�N (Fig. 1). We found that such dimensionality re-
duction has little influence on the accuracy of clustering
(Supplementary Fig. S1) but speeds up the algorithm somewhat

Fig. 1. Overview of RCSL. First, given a gene expression matrix MG0�N as the input,

RCSL filters out non-informative genes, resulting in matrix MG�N. Second, based

on MG�N, RCSL computes SRC matrix SS between the cells, performs PCA on the

genes, and preserves the top Q-PCs as matrix X. Third, RCSL learns the NR matrix

SNR based on X. Fourth, RCSL computes the similarity matrix S using a linear com-

bination SS and SNR. Finally, RCSL estimates the number of clusters C in S, and

learns the block-diagonal matrix B from S, with the constraint that B has C zero

eigenvalues. Each block-diagonal submatrix in B is a cluster of cells. RCSL also

infers trajectories of the identified cell clusters/types
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(Supplementary Fig. S2). Based on XQ�N, we compute the NR for
each pair of cells as their local similarity as follows.

For each cell i, we find k-nearest-neighbors (k-NNs) using the
Euclidean or cosine angle distance between their feature vectors in
XQ�N. We use the Euclidean distance, as it generally performs better
than the cosine angle distance in these study (see below). By default,
k is set to 0.65 N, which is a relatively large value to reduce the risk
of information loss. Since cells of the same type are not necessarily
close neighbors in Euclidean space as only few genes determine a
cell’s type, in order to identify the close neighbors of the cells, we
model each cell’s feature vector as a linear combination of the vec-
tors of its neighbors; then those with higher weights are its closer
neighbors. To find the weights, we solve a least-squares optimiza-
tion problem:

min
sNR
ij

XN
i¼1

jjxi �
X

j2KNNðiÞ
sNR
ij xjjj2s:t:

XN
j¼1

sNR
ij ¼ 1; (2)

where xi is the feature vector of cell i in XQ3N, KNN(i) the k-NNs
of i in Euclidean space, and sNR

ij the weight of cell j on i [sNR
ij ¼ 0 if j

62 KNN(i)]. Intuitively, the greater the sNR
ij value, the more similar j

is to i. Therefore, we call the learned weight vector sNR
i� the NR of i.

Let the resulting matrix for all the cells be SNR ¼ fsNR
1 ,sNR

2 ,. . .,sNR
N g.

Then, we define the similarity matrix between the cells as a linear
combination of SS and SNR (Fig. 1)

S ¼ cSs þ kSNRs:t:cþ k ¼ 1; (3)

where c�0 and k�0 are scalar parameters that balance the contri-
bution of SS and SNR in S. By default, we set c¼0.8 and k¼0.2, as
they generally perform best among other choices tested (see below).

Step 3. Calculation of block-diagonal matrix. We first estimate
the number of clusters C by hierarchically clustering the cells based
on S, and find C that yields the largest Krzanowski–Lai index
(Krzanowski and Lai, 1988) value from a range of C (by default, 4–
12). However, for small datasets (N<3000), we use a two-step
strategy to more accurately estimate C. Specifically, we choose three
C values with the largest Krzanowski–Lai indexes, and pick the one
with the largest sum of intra-class similarities based on S among the
three clustering results of RCSL. The hierarchical clustering is per-
formed using the R package NbClust with default settings.

To construct the block-diagonal similarity matrix BN�N between
the cells, we adopt the Constrained Laplacian Rank (CLR) proced-
ure (Nie et al., 2010, 2016). Briefly, CLR defines a diagonal matrix
DB ¼ diag (d11, d22, . . ., dNN), where dii ¼

PN
j¼1

bijþbji

2 , and bij is the
similarity between cell i and cell j in B. The Laplacian matrix of B is
defined as LB ¼ DB � BTþB

2 . An important property of the Laplacian
matrix is that the number of its zero eigenvalues equals the number
of connected components in the graph defined by B (Chung, 1997;
Mohar, 1991). Therefore, if a similarity matrix B can be found, such
that the rank of its Laplacian matrix is exactly N�C, then B will
have approximately C block-diagonal submatrix with proper per-
mutations, and the corresponding similarity graph will contain C
connected components. Each block-diagonal submatrix and corre-
sponding connected component form a cluster of cells. Ideally, B
should be highly similar to S, and the rank of LB is exactly N�C.
CLR therefore finds B by minimizing the difference between B and
S, with the constraint that the rank of LB is N�C;

min
B
jjB� Sjj1s:t:

XN
j¼1

bij ¼ 1; bij � 0; rankðLBÞ ¼ N �C; (4)

where the sum of each row in B is constrained to 1 to avoid rows of
all zeros in B (see details in Supplementary Note).

2.2 Time complexity of the algorithm
Given the expression matrix MG0�N, with N cells and G0 genes, Step
1 needs N*G0 calculations, so it runs at O(N). In Step 2, we sequen-
tially compute the SRC matrix SS and PCA matrix XQ�N, find k-
NNs of N cells, and learn the SNR matrix, each of these procedures
has a time complexity of O(N2). In Step 3, we perform T iterations

(by default, T¼30) on the N�N matrix S to estimate diagonal ma-
trix B, which needs O(TN2) calculations. As T is a small constant,
Step 3 runs at O(N2). Therefore, the time complexity of the RSCL
algorithm is O(N) þ 5O(N2) ¼ O(N2) (Supplementary Fig. S3).

2.3 Inference of trajectory and pseudo-time
Based on the clustering results of RCSL, we infer the developmental
trajectories and pseudo-temporal ordering of cells for time-series
scRNA-seq data. For each identified cluster of cells, we compute its
center as the mean of the feature vectors from one cluster in XQ�N

(Fig. 1), and the Kendall rank correlation (KRC) among all the cen-
ters. We construct a weighted similarity graph G, where the vertices
represent the centers and the edges represent their KRC values. We
find the minimum spanning tree (MST) using the Prims’ algorithm
(Prim, 1957). The MST that represents the shortest path connecting
all the centers without any circles is the most parsimonious explan-
ation of the relationships among the cell types during cell differenti-
ation, and thus likely reflects their developmental trajectory. We
determine the pseudo-temporal ordering between the cell types by
using the distance from a cell type to the predefined starting cell
type. The distance is defined as the reciprocal of the average similar-
ity between the two types of cells in the similarity matrix S.

2.4 ScRNA-seq datasets
We collected 16 publicly available scRNA-seq datasets (Table 1), in
which cell types were determined by the original authors using vari-
ous methods, including microscopic inspections for the embryonic
cells (oocyte, zygote, 2-cell stage, 4-cell stage, 8-cell stage, . . . and
blast cells), time of post-inductions for artificially induced differenti-
ated cells (day 0, day 1, day 2, . . .) as well as molecular markers and
cell purification using Fluorescence-Activated Cell Sorting for the
other datasets (for details see Supplementary Table S1). To further
ensure the accuracy of cell type annotations, we excluded cells with
ambiguous labels including ‘dropped’ cells in the Wang dataset,
‘contaminated’ cells in the Xin dataset and ‘unclear’ cells in the
Muraro dataset. We normalize raw read counts of genes using
counts per million followed by adding a pseudocount of 1 and log
(base 2) transformation.

2.5 Simulation datasets
We generated 10 simulated datasets containing 300–3000 cells
belonging to 4–7 cell types (Supplementary Table S3) using the
Splatter Bioconductor package (Zappia et al., 2017). Each cell
expresses 10 000–15 000 genes, whose levels are determined by the
cell’s type. The script for constructing simulation datasets is avail-
able at https://github.com/QinglinMei/RCSL/tree/master/R.

2.6 Evaluation metrics
To measure the consistency between identified clusters and known
cell types, we adopt three metrics: Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985), Normalized Mutual Information (NMI)
(Strehl and Ghosh, 2002) and Fowlkes–Mallows index (FM)
(Fowlkes and Mallows, 1983). We represent the known cell types as
R and the identified clusters as E. Let a be the number of pairs of
cells that are clustered in the same group in both R and E; b the
number of pairs of cells that are clustered in the same group in R but
in different groups in E; c the number of pairs of cells that are clus-
tered in different groups in R but in the same group in E and d the
number of pairs of cells that are clustered in different groups both in
both R and E (Kim et al., 2019). Then, ARI, FM and NMI are
defined as,

ARI R; Eð Þ ¼ 2ðad� bcÞ
ðaþ bÞðbþ dÞ þ ðaþ cÞðcþ dÞ ; (6)

FM R; Eð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a

aþ b

� �
a

aþ c

� �s
and (7)
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NMI R; Eð Þ ¼ MIðR; EÞ
½HðRÞ þHðEÞ�=2 ; (8)

where MI(R, E) is the mutual information of R and E, and H an en-
tropy function of R and E.

3 Results

3.1 Combination of global and local similarities

improves the accuracy of RCSL
To find the optimal values of weights c and k of global similarity
and local similarity, respectively, in the similarity metric S [formula
(3)], and to see how they affect the accuracy of RCSL, we ran RCSL
on the 16 datasets with varying vales of c (0.0, 0.1, . . ., 1.0) and

k¼1� c (1.0, 0.9, . . ., 0.0). As shown in Figure 2, with the increase
in c, that is, decrease in k, the accuracy of RCSL generally increases,
and reaches the highest level at c¼0.8, k¼0.2, then decreases.
Thus, it appears that using only global similarity (c¼1.0, k¼0.0) as
seen in most existing methods cannot guarantee the best perform-
ance on most datasets (Fig. 2). On the other hand, using local simi-
larity alone (c¼0.0, k¼1.0) generally underperforms using global
similarity alone (Fig. 2), due probably to information loss in the for-
mer. In this sense, it is not surprising that global similarity contrib-
utes more (80%) to the similarity score S than local similarity (20%)
for the best performance. Nonetheless, this contribution of local
similarity is necessary to the best accuracy in most datasets (Fig. 2).
In addition, we evaluate the performance of Euclidean distance and
cosine angle distance for defining k-NNs of the cells, and an ap-
proximate method LSH (Andoni et al., 2017) for finding the k-NNs,
and find that Euclidean distance in combination with our method
for finding k-NNs (Section 2) outperforms all other combination on
most of the datasets (Supplementary Fig. S4).

3.2 RCSL outperforms existing methods in clustering

cells
We next compare the performance RCSL on 16 scRNA-seq datasets
with that of five state-of-the-art tools including SC3 (Kiselev et al.,
2017), SIMLR (Bo et al., 2017), pcaReduce (�Zurauskien_e and Yau,
2016), CIDR (Lin et al., 2017) and Seurat (Satija et al., 2015) using
three metrics (Section 2). As mentioned before, SC3 is a popular
method based on the consensus result of multiple methods; SIMLR
is a similarity learning algorithm based on multikernel; pcaReduce is
an agglomerative clustering method based on statistical modeling;
CIDR is an ultrafast algorithm that imputes dropouts; and Seurat is
widely applied to large datasets. Notably, both SIMLR and RCSL
identify clusters by learning a block-diagonal similarity matrix from

Table 1. Summary of the 16 scRNA-seq datasets used in this study to assess the performance of the methods for clustering cells

Accession ID Dataset Tissue # Cells # Genes # Cell types Protocol Reference

GSE57249 Biase Mouse Embryos 56 25 734 4 SMARTer Biase et al. (2014)

GSE52583 Treutlein Mouse Tissues 80 23 271 5 SMARTer Treutlein et al.

(2014)

GSE36552 Yan Human

Embryos

90 20 214 6 Tang Yan et al. (2013)

GSE51372 Ting Mouse Pancreas 114 14 450 5 Tang Ting et al. (2014)

E-MTAB-3321 Goolam Mouse Embryos 124 41 480 5 Smart-Seq2 Mubeen et al.

(2016)

GSE45719 Deng Mouse Embryos 268 22 431 6 Smart-Seq2 Deng et al. (2014)

GSE98664 Hayashi Mouse Embryos 414 23 658 5 RamDA-seq Hayashi et al.

(2018)

GSE83139 Wang Human

Pancreas

457 19 950 7 SMARTer Wang et al. (2016)

GSE67835 Darmanis Human Brain 466 20 214 9 SMARTer Darmanis et al.

(2015)

E-MTAB-3929 Petropoulos Human

Preimplantat-

ion Embryos

1289 8772 5 Smart-Seq2 Petropoulos et al.

(2016)

GSE81608 Xin Human

Pancreas

1492 39 851 8 SMARTer Xin et al. (2016)

GSE85241 Muraro Human

Pancreas

2122 19 140 10 CEL-Seq2 Muraro et al.

(2016)

GSE65525 Klein Mouse Embryo

Stem Cells

2717 24 175 4 inDrop Klein et al. (2015)

GSE74672 Romanov Mouse Brain 2881 24 341 7 Drop-seq Romanov et al.

(2017)

GSE60361 Zeisel Mouse Brain 3005 19 972 9 STRT-seq UMI Zeisel et al. (2015)

SRP073767 PBMC4K Human 4292 58 302 11 10xGenomics

Chromium

Zheng et al. (2017)

Fig. 2. Effects of the values of c and k¼1� c on the accuracy of RCSL
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similarity matrices defined differently, therefore, we can compare
their learned block-diagonal matrix. Moreover, to show the contri-
bution of local similarity metric NR to the performance, we also im-
plement a variant (RCSL2) of RCSL that does not use NR, thus is
much faster than RCSL, though also runs at O(N2) (Supplementary
Fig. S3). More specifically, versions of the packages we compare
with our algorithm are as follows: SC3 (package version 1.14.0
from Bioconductor); SIMLR (package version 1.12.0 from GitHub)
(github.com/BatzoglouLabSU/SIMLR); pcaReduce (package version
1.0 from GitHub) (github.com/JustinaZ/pcaReduce); k-means
(kmeans function built-in R version 3.6.0); CIDR (package version
0.1.5 from GitHub) (github.com/VCCRI/CIDR); and Seurat (pack-
age version 3.1.5 from CRAN). For PCA-Kmeans, we use our XQ�N

as the input matrix. Since PCA-Kmeans is a stochastic algorithm, we
run it 100 times and present the average of the results. In addition,
since Kmeans cannot determine the number of clusters, we estimate
the number of clusters by NbClust for Kmeans. For the other meth-
ods, we follow its corresponding instructions and tutorials provided
by the authors and use its default parameters.

As shown in Figure 3, both RCSL and RCSL2 outperforms the
six existing methods on 11 of the 16 datasets (Table 1) based on
ARI values (average 0.73 versus 0.64). Specifically, on the Biase,
Darmanis, Goolam, Treutlein Xin and Ting datasets, RCSL achieves
significantly higher ARI than all the other algorithms. On the Deng
and Romanov datasets, both RCSL and RCSL2 perform much better
than the other algorithms. On the Wang and Hayashi datasets,
RCSL also gains the highest ARI. Only on the Zeisel, Petropoulos,
PBMC4K, Muraro and Yan datasets, SIMLR, Seurat or pcaRduce
outperform RCSL (Fig. 3). However, on average, both RCSL and
RCSL2 substantially outperform the six other methods (Fig. 3).
Similar results are seen using NMI and FM (Supplementary Figs S5
and S6). These results indicate that both the optimized similarity
metric (Fig. 2) and the clustering algorithm contribute to the out-
standing performance of RCSL.

3.3 RCSL outperforms existing methods in learning the

similarity among cells
We further seek to see whether the block-diagonal similarity matri-
ces B learned by RCSL have the intended block-diagonal structures.
To this end, we compare the SRC matrix SS, the similarity matrix S
in RCSL as well as block-diagonal matrices learned by RCSL,
RCSL2 and SIMLR. In the ideal case, if all cells are correctly clus-
tered, then when cells are sorted by their types, the resulting matrix
should exhibit clear-cut block-diagonal submatrices, in which simi-
larities between cells of different types are zero while those between
cells of the same types are non-zero. Figure 4 shows the matrices
learned by the four methods on eight datasets, in which cells are
ordered according to their annotated types, and the results of the
other eight datasets are shown in Supplementary Figure S7. Clearly,
for most datasets except for the Ting, Klein, Wang, Zeisel and Yan

datasets, there are no obvious block-diagonal submatrices for cells
in SS or S (Fig. 4 and Supplementary Fig. S7). In contrast, cells in the
similarity matrices B learned by RCSL, RCSL2 and SIMLR possess
clear-cut block-diagonal structures in all the datasets (Fig. 4 and
Supplementary Fig. S7). However, there are subtle differences
among the results of the three algorithms. For the Treutlein and
Klein datasets, both RCSL and RCSL2 correctly cluster the cells
according to their annotated types, whereas SIMLR incorrectly
groups multiple annotated cell types into one cluster. For the Biase,
Goolam and Darmanis datasets, RCSL and RCSL2 correctly clus-
tered the cells according to their annotated types, while SIMLR
divides one type into multiple clusters. For the Goolam, Ting and
Xin datasets, RCSL2 divides one cell type into multiple clusters,
while clusters identified by RCSL are in better agreement with their
annotated types, indicating the importance of including NR in the
similarity metric. In addition, clusters found by RCSL are cleaner
than those identified by RCSL2 and SIMLR in the off-diagonal
blocks. As expected, the quality of the learned block-diagonal simi-
larity matrices is consistent with clustering results measured by ARI,
NMI and FM (Fig. 3 and Supplementary Figs S5 and S6). Taken to-
gether, these results demonstrate that RCSL can better learn the
block-diagonal similarity matrix of different cell types than the two
other methods.

3.4 RCSL learns block-diagonal structures of cell–cell

similarities in a step-wise manner
To see how RCSL gradually learns the block-diagonal structures of
cell–cell similarities starting from a data matrix, thereby clustering
cells, we visualize the data matrix MG0�N, global similarity matrix
SS, similarity matrix S and block-diagonal matrix B of the 16 data-
sets using three visualization tools [PCA (�Zurauskien _e and Yau,
2016), t-SNE (Maaten and Hinton, 2008) and UMAP (McInnes

Fig. 3. Performance of the algorithms (RCSL, RCSL2, SC3, SIMLR, pcaReduce,

PCA-Kmeans, CIDR, Seurat) on the datasets measured by ARI. The last panel shows

the average ARI value for each algorithm over the 16 datasets

Fig. 5. 2D PCA display of the expression data matrices and matrices produced by

RCSL in the indicated datasets. The rows, respectively, correspond to MG0�N,

Spearman’s correlation SS, similarity matrix S and block-diagonal matrix B

Fig. 4. Heatmap of the SRC matrix SS, similarity matrix S in RCSL and the block-di-

agonal similarity matrices B learned by RCSL, RCSL2, SIMLR in the indicted eight

datasets. Cells are arranged according to their annotated types indicated by the dif-

ferently colored bar at the top and left of the matrices
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et al., 2018)]. Figure 5 shows the PCA 2D plots of the results from
six datasets. The PCA plots for the remaining datasets as well as t-
SNE and UMAP plots for all datasets are shown in Supplementary
Figures S8–S10. Interestingly, in some datasets such as the Goolam,
Ting, Klein and Yan datasets, most cells can be well separated
according to their types simply by the data matrices MG0�N and SS

in the 2D plots, owing to the markedly distinct gene expression pat-
terns of different cell types. In other datasets such as the Treutlein
and Muraro datasets, cells cannot be simply separated by the data
matrices MG0�N, SS and S. Particularly, for the Muraro and Klein
datasets, cells of the same type are dispersed, while cells of different
types are mixed in MG0�N, SS and S. In contrast, different cell types
in all the 16 datasets display clear-cut clusters in the block-diagonal
matrix B (Fig. 5 and Supplementary Figs S8–S10). Therefore, each
step in the RCSL algorithm contributes to the identification of cell
clusters/types in a dataset.

3.5 RCSL outperforms SIMLR in identifying sub-cell

types
Notably, like SIMLR, RCSL also tend to divide one cell type into multiple
sub-clusters in some datasets, particularly, developmentally related ones
(Biase, Deng, Goolam, Klein, Hayashi, Petropoulos and Yan) (Fig. 4 and
Supplementary Fig. S7). This might reflect the hierarchical lineage rela-
tionships of cell types produced in cell differentiation processes. Three
(Biase, Deng and Yan) of these datasets record subtypes produced during
embryogenesis (Supplementary Table S2). To see if RCSL is able to iden-
tify sub-cell types, we take a close look at the results from the three data-
sets (Fig. 6). For the Biase dataset containing four cell types, of which the
Blast type is divided into the Inner cell mass (ICM) and trophectoderm
(TE) subtypes (Supplementary Table S2), RCSL clusters the cells in five
groups (Zygote, 2-cell, 4-cell, ICM and TE), and correctly splitting the
Blast in the ICM and TE subtypes (Fig. 6). In contrast, SIMLR divides the
cells into at least eight groups, with the 2-cell type incorrectly split in four
clusters, the 4-cell type incorrectly split into three clusters (Fig. 6).
Moreover, SIMLR fails to divide the Blast type into the ICM and TE sub-
types (Fig. 6). For the Deng dataset containing six cell types, of which the
Zygote type is further classified into Zygote and Early 2-cell types, the 2-
cell type into Middle 2-cell and Late 2-cell types, and the Blast type into
Early, Middle and Late types (Supplementary Table S2), RCSL clusters
the cells into five clusters, identifying the Middle and Late 2-cell types, but
failing identify subtypes of the Zygote and the Blast type (Fig. 6).
However, there might be no clear-cut difference among these subtypes

based on their stages (Early, Mid and Late). In contrast, SIMLR divides
the cells into at least 13 clusters, with the 8-cell type incorrectly split into
four clusters, and the 16-cell type incorrectly split into at least two clus-
ters, though it also correctly clusters the two subtypes of the 2-cell type
(Fig. 6). For the Yan dataset containing six cell types, of which the Zygote
type is divided into Oocyte and Zygote subtypes, RCSL clusters the cells
in five groups, correctly identifying the 8-cell, 16-cell and Blast types, but
failing to identify subtypes of the Zygote type. Although SIMLR also is
able to correctly divide the Zygote type into two clusters, it splits the 16-
cell type into two clusters, the Blast type into three clusters, and the 8-cell
type into at least five clusters.

On the other hand, it is difficult to justify the subtypes identified
by RCSL and SIMLR in the other datasets, as subtype information is
unavailable. However, based on the results from the three datasets
where some subtypes are classified, it appears that RCSL is more ac-
curate in identifying sub-cell types than SIMLR that tends to over-
cluster the cells.

3.6 RCSL achieves high clustering accuracy on

simulated datasets
We have thus far demonstrated the high accuracy of RCSL for classi-
fying cell types using the 16 datasets with well-annotated cell types.
However, accurate cell type determination is still a challenging task,
particularly, in larger datasets, it is difficult to guarantee 100% ac-
curacy. To further evaluate the accuracy of RCSL, we ran it on 10
simulated datasets, in which the cell types are well defined
(Supplementary Table S3 and Section 2). Although RCSL slightly
outperforms RCSL2 on the simulated datasets, both achieve a very
higher average ARI of 0.95 and 0.94 (Supplementary Fig. S11), re-
spectively, suggesting that both are able to identify well-defined cell
clusters. However, this almost same performance of RCSL and
RCSL2 is in stark contrast to the result on the 16 real datasets,
where RCSL substantially outperforms RCSL with an average ARI
of 0.73 and 0.64, respectively (Fig. 3). Nevertheless, this is not sur-
prising, as the clusters in the simulated datasets are clear-cut though
the information is rather weak (Supplementary Fig. S12), while the
clusters in the real datasets are often vague with high background
noise (Fig. 4 and Supplementary Fig. S7). These results indicate that
considering both local and global similarity is more critical to iden-
tify cell types when the data are highly noisy.

3.7 RCSL correctly infers trajectories and pseudo-time

orders
Based on the clustering results, RCSL infers the developmental tra-
jectories and pseudo-temporal orders of the identified cell types in a
dataset, particularly when it is time-series-related. Figure 7 shows
UMAP displays of the trajectories and pseudo-temporal orders of
the identified cell types in four mouse embryo datasets (Goolam,
Hayashi, Yan and Deng) and a human preimplantation embryos
dataset (Petropoulos), in which both the cell types and developmen-
tal order are known. Remarkably, in each dataset, the inferred

Fig. 6. Heatmap of block-diagonal matrixes constructed by RCSL, RCSL2 and

SIMLR for the Bias, Deng and Yang dataset where sub-cell types are recorded. Cells

are arranged according to their annotated types and subtypes indicated by different-

ly colored bars at the top and left of the matrices

Fig. 7. Inference of developmental trajectories and pseudo-temporal orders of the

identified cell types in four mouse embryo datasets (Goolam, Deng, Yan and

Hayashi) and a human preimplantation embryos dataset (Petropoulos). The devel-

opmental trajectories (top) are visualized by UMAP. In the pseudo-temporal order-

ing of cells (bottom), the horizontal axis represents the estimated time of each cell

type starting from the known initial cell type, and the vertical axis indicates the real

cell stages/types
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trajectory is the same as the real developmental trajectory, and the
inferred pseudo-temporal ordering is also consistent with the true
developmental stages. The results for the other datasets are shown
in Supplementary Figure S13, where only an MST is shown if the
starting cell type is unknown in a dataset, or it the dataset is not
time series in nature.

4 Discussion

One of the major challenges for identifying heterogeneous cell types using
scRNA-seq data lies in how to define the similarity among cells owing to
inherent biological noise and unavoidable technical artifacts (Kiselev
et al., 2019). Moreover, only a few genes with similar expression patterns
play a key role in defining a cell’s type (Graf and Enver, 2009). To tackle
these problems, many similarity metrics have been developed (Kim et al.,
2019); however, they only consider global similarities (Bo et al., 2017;
Park et al., 2018) even though local similarities can be crucial to differenti-
ate the subtle difference between cells of the same type and cells of differ-
ent types (Xu and Su, 2015). In this study, we propose a new metric that
considers both the global similarity and local similarity between the cells.
Specifically, we quantify a cell’s similarity to the other cells as an optimal
linear combination of its global similarity and local similarity to other
cells. For the global similarity of a cell, we utilize the SRC between the ex-
pression vector of the cell and those of all other cells in the data. For the
local similarity of a cell, we adopt the NR that represents the cell’s feature
vector (principal components) as the optimal linear combination of the
feature vectors of the cell’s k-NNs in the Euclidean or cosine angle dis-
tance space. Thus NR in effect adaptively adjusts the weights on the edges
between the cell and its k-NNs in the corresponding similarity graph. The
importance of incorporating NR into the similarity metric is demon-
strated by the better performance of RCSL in almost all the datasets com-
pared to RCSL2, which does not use NR, particularly, when the data are
very noisy.

Another major challenge for identifying cell types using scRNA
data is how to cluster cells by their types based on the similarity ma-
trix (Kiselev et al., 2019). Although many clustering algorithms have
been proposed to identify cell types, the results are far from satisfac-
tory due to the often complex structures of similarity matrices
(Kiselev et al., 2019). On the other hand, clustering cells in groups by
their types is equivalent to converting the similarity matrix into a
block-diagonal matrix by permutation and minimal adjustment of the
similarity values. In the resulting block-diagonal matrix, each block-
diagonal submatrix corresponds to a connected component in the cor-
responding similarity graph, that is, a cluster or a cell type. We there-
fore adopt a method to compute such a block-diagonal matrix based
on the similarity matrix. We first estimate the number of clusters
defined in the similarity matrix and then iteratively find the block-di-
agonal matrix with the rank of its Laplacian matrix constrained.

We develop RCSL by combining the new similarity metric and the
method for constructing the block-diagonal matrix, aiming to more accur-
ately identify cells type in an often noisy scRNA-seq dataset. The results
on the 16 diverse datasets show that RCSL substantially outperforms
RCSL2 (a variant of RCSL that does not use local similarity), and RCSL2
outperforms the six other tools on many datasets, indicating that both the
metric and block-diagonal matrix finding method contribute to the out-
standing performance of RCSL. Although highly accurate, RCSL is lim-
ited by its O(N2) time complexity for computing SS, SNR and B. We are
currently developing a strategy to reduce the time complexity of RCSL to
NlogN, so that it can be applied to very large datasets generated from mil-
lions of cells.
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