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Abstract

Motivation: Aligning single-cell transcriptomes is important for the joint analysis of multiple single-cell RNA
sequencing datasets, which in turn is vital to establishing a holistic cellular landscape of certain biological processes.
Although numbers of approaches have been proposed for this problem, most of which only consider mutual neigh-
bors when aligning the cells without taking into account known cell type annotations.

Results: In this work, we present MAT? that aligns cells in the manifold space with a deep neural network employing
contrastive learning strategy. Compared with other manifold-based approaches, MAT? has two-fold advantages.
Firstly, with cell triplets defined based on known cell type annotations, the consensus manifold yielded by the
alignment procedure is more robust especially for datasets with limited common cell types. Secondly, the batch-
effect-free gene expression reconstructed by MAT? can better help annotate cell types. Benchmarking results on real
scRNA-seq datasets demonstrate that MAT? outperforms existing popular methods. Moreover, with MAT?, the hem-
atopoietic stem cells are found to differentiate at different paces between human and mouse.

Availability and implementation: MAT? is publicly available at https://github.com/Zhang-Jinglong/MAT2.

Contact: zengfeng@xmu.edu.cn or xmzhao@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

The integration of scRNA-seq datasets can be regarded as an
alignment problem (Cao et al., 2020) where the individual datasets
will be aligned against each other. When aligning multiple scRNA-

1 Introduction
Over the last decade, single-cell RNA sequencing (scRNA-seq) has

attracted more and more attention for unbiased exploration of tran-
scriptome variation at single-cell level (Tanay and Regev, 2017).
Accordingly, scRNA-seq has been widely utilized for investigating
cellular heterogeneity and transcriptional dynamics under various
conditions, e.g. the development lineage of certain cells or tissues
(Park et al., 2020; Treutlein et al., 2014; Zhong et al., 2020).
Generally, multiple scRNA-seq datasets may be generated by differ-
ent labs for a same biological problem of interest, where each indi-
vidual dataset may cover only a limited number of cell types.
Therefore, the integration of multiple scRNA-seq datasets is a prom-
ising strategy for uncovering the heterogeneity of cellular composi-
tions and the holistic biological process. However, it is a big
challenge for jointly analyzing multiple scRNA-seq datasets that are
generated by different labs due to technical variations or batch
effects, etc.

seq datasets, identifying cellular correspondences across datasets is
one of the most important steps. Accordingly, the existing
approaches for aligning multiple scRNA-seq datasets can be grouped
into two classes, i.e. cell alignment and cluster alignment approaches.

As typical cell alignment approaches, MNNCorrect (Haghverdi
et al., 2018), Seurat (Stuart et al., 2019), Scanorama (Hie et al.,
2019) and BBKNN (Polariski et al., 2020) select mutual nearest
neighbors (Haghverdi et al., 2018) from different datasets as
anchors based on their gene expression profiles or latent vectors.
Recently, cell cluster approaches become popular with robust results
of alignment, where cell clusters instead of cells are used for align-
ment at the population level. Among them, scMerge (Lin et al.,
2019) looks for mutual nearest neighbors between cell clusters, and
Harmony (Korsunsky et al., 2019) maximizes the mixing of cells
within clusters through soft clustering. Although the above methods

©The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 3263

20z Idy 61 uo 1senb Aq 859€/29/€9ZE/61/L€/2191HE/SONBULIOJI0IG/WOD"dNO"0IWUSPEOE//:SAY WO PAPEO|UMOQ


https://orcid.org/0000-0001-6795-1423
https://orcid.org/0000-0001-8766-5950
https://orcid.org/0000-0002-4531-3970
https://github.com/Zhang-Jinglong/MAT2
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab250#supplementary-data
https://academic.oup.com/

3264

J.Zhang et al.

perform well when aligning multiple datasets composed of common
cell types, they may fail to work on those datasets with few shared
cell types. In addition, most of existing approaches work in unsuper-
vised way by looking for cells with similar gene expression profiles
as same cell types, whereas the annotation of known cell types has
not been fully utilized.

In this work, we present a novel approach, namely manifold align-
ment of single-cell transcriptomes with cell triplets (MAT?), to align
multiple scRNA-seq datasets in their latent manifold space.
Compared with existing methods that only consider cells with similar
gene expression profiles as positive anchors across datasets, MAT?
also takes into account pairs of cells with functional difference as
negative anchors by employing contrastive learning (Chen et al.,
2020; Hoffer and Ailon, 2015), and composes the cells and the cells
forming the positive and negative anchors into cell triplets to guide
the alignment in a discriminative way. With contrastive learning,
MAT? is able to take into account of the prior knowledge of cell types
and define a more reasonable manifold space for cellular transcrip-
tomes, where the cells of the same type will stay closer. Moreover, by
reconstructing both consensus and batch-specific matrices from the la-
tent manifold space, MAT? can be used to recover the batch-effect-
free gene expression that can be used for downstream analysis. When
benchmarking on real scRNA-seq datasets, MAT? outperforms other
popular approaches with robust alignment results for cell type annota-
tion and performs especially well over datasets with few shared cell
types. We further integrated the human and mouse embryo datasets,
verifying that HSC-primed hemogenic endothelial cells (HECs) de-
velop at different paces in human and mouse.

2 Materials and methods

2.1 Datasets and pre-processing

As shown in Table 1, we collected nine datasets and grouped them
into four datasets according to tissues, each of which contains only
the genes shared by all batchs within every dataset. All datasets were
downloaded from NCBI’s Gene Expression Omnibus (GEO) data-
base (http://www.ncbi.nlm.nih.gov/geo/) and EBI’s ArrayExpress
database (https://www.ebi.ac.uk/arrayexpress/). References for the
datasets are available in Supplementary Table S1.

For each dataset, we will first select the top 2000 highly variable
genes as features through variance stabilize transformation (vst) in
Seurat (Stuart et al., 2019), then normalize the gene expression pro-
file of each cell as shown in equation (1).

X =X, - diag(s)™! (1)

where Xy = [x01,%02, .. .,%0n] denotes the original dataset with N
cells, G genes and x; denotes the original gene expression profile of

Table 1. Statistics of the four datasets

cell i. And s = [s1,s2,... 7sN]T denotes the size factors for every cell
with s; = [|xo;|| /G. The normalized dataset X = [x1,x2,...,xn] is
used as the input of MAT?, where x; € R represents the normalized
expression profile of cell i.

2.2 Manifold alignment of single-cell transcriptomes

with cell triplets

As shown in Figure 1, MAT? aligns multiple scRNA-seq datasets in
a manifold space. Briefly, MAT? consists of the following steps: (a)
Each gene expression matrix of a scRNA-seq dataset will be trans-
formed into a manifold space with the utility of encoder, and the
cells will be aligned against each other based on their gene expres-
sion with the help of contrastive learning. In contrastive learning,
for a cell of interest denoted as C, a cell from the same type but dif-
ferent datasets denoted as C,, and a cell from different types denoted
as C, will be considered, and a triplet (C, C,, C,) will be formed.
A consensus manifold will be achieved for all datasets, where C and
C, will stay close while C and C,, will be separated from each other
(Fig. 1a); (b) For each cell type with its consensus manifold, two
decoders (D and R) will be built to recover the deviation of cellular
transcriptomes from the consensus manifold and the consensus tran-
scriptome across multi-datasets, respectively (Fig. 1b). The former
(D) reflects the technology- or platform-specific effect on gene ex-
pression, while the latter (R) reveals the cell-type-specific regulation
of transcriptome. Therefore, MAT? can be regarded as a decompos-
ition of the original cellular transcriptome data into a consensus
gene expression matrix and a batch deviation matrix; and (¢) With
the cell-type-specific gene expression matrix, the downstream ana-
lysis, e.g. trajectory analysis and differential expression analysis can
be performed (Fig. 1c).

2.2.1 Alignment of single-cell manifolds

MAT? trains an encoder neural network to learn a nonlinear map-
ping function to map normalized dataset X into a low dimensional
latent space Z = [z1,22,. . .,2n] with z; € RK (K < G). We define a
positive anchor as a pair of cells of the same type but from different
datasets, while a negative anchor as a pair of cells of different types.
The goal of alignment is to minimize the distance between cells in a
positive anchor and maximize that in a negative anchor in the latent
space Z. For this, the contrastive learning is employed with the fol-
lowing objective function.

N
LZ) =)D T(ziz, 2 %) (2)

i=1 jeC! keC}

where T(-) denotes the triplet loss as shown in equation (3).

Platform and Number of Cell state Shared Difference between Accession
number of cells cell types cell types datasets number
Retina All by Drop-seq 19,19 (19 in total) Mature 100% Different batches GSE81904
® Batch 1: 13660
® Batch2:12825
Pancreas *  CelSeq: 1004 13,13,13,13 Mature 100% Different platforms * GSE81076
*  CeqSeq2: 2285 (13 in total) * GSES85241
®  Fluidigm C1: 638 * GSE86469

* SMART-seq2: 2394
Hematopoietic * SMART-seq2: 1494
* MARS-seq: 2699

Embryo All by STRT-seq
®  human: 528
® mouse: 597

6, 3 (6 in total)

5, 6 (6 in total)

Intermediate 50%

Intermediate 83.3%

* E-MTAB-5061

Different platforms and * GSE81682
developmental stages * GSE72857

Different species * GSE135202
* GSE139389
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Fig. 1. The schematic view of MAT?. (a) The gene expression matrix of each dataset is transformed into a latent consensus manifold, and the manifold alignment of multiple
datasets is achieved at the same time. (b) With the manifold, two decoders are employed to divide the original gene expression matrix into a consensus expression matrix and a

batch-specific deviation matrix. (c) The manifold and consensus gene expression can be used for downstream analysis, such as trajectory analysis and differential expression

analysis

lla—pll—lla—mn||+o if T>0
0, otherwise

T(“:P,"voﬁ) = (3)

and C! denotes a set of cells that can form a positive anchor
with cell i, and C/ denotes a set of cells that can form a
negative anchor with cell i. For any cell triplet (i, j, k) with j € C!
and k € C/, the distance between cells i and k is expected to be
significantly larger than that between cells i and j. In supervised
settings, MAT? utilizes cell type annotations to construct positive
and negative anchors, where a;;. is set to 1.0 for any triplet
(i, j, k). In unsupervised settings, for an anchor (i, j) generated
by Seurat with a score s;, MAT? randomly selects a cell & to
form a triplet (i, 7, k) with o3, = (s;; + 1) /2. By combining the trip-
lets formed with cells of known types and those formed with
anchors generated by Seurat based on unlabeled cells, MAT? can
be easily extended to work in semi-supervised mode as shown in
Section 3.2.

With the above objective function, an encoder neural network
composed of fully connected layers is trained with Pytorch and
optimized with Adam (Kingma and Ba, 2014), where the input size
is equal to the number of genes and the output size is set to 20 as
default. The neural network uses rectified linear unit (ReLU)
(Glorot et al., 2011) as the activation function in the two hidden
layers and linear activation function for the output layer. Two
more operations were adopted during learning, including L2 regu-
larization with a ratio of 0.01 and dropout (Srivastava et al., 2014)
with a ratio of no more than 0.3. The mini-batch stochastic gradi-
ent descent (Cotter et al., 2011) is used for optimization by ran-
domly selecting triplets for training, where a mini-batch contains
256 cell triplets.

2.2.2 Reconstruction of gene expression
After alignment in the manifold space, MAT? constructs two
decoders R and f° to learn the mapping functions from optimized
latent space Z = [21,%2,...,2n] to gene expression space. The con-
sensus gene expression X = [x],a5,...,x%] with &7 = fR(2;) was
built through the decoders /X, and the batch-specific deviation X =
[x¢,x4, ... x4] with x¢ = fP(2;,b;) was built through decoders f°,
where b = [b1,b,,...,bn]" represents the batch to which the cells
belong. Here, the reconstruction error for cell i is defined as mean
square error as shown in equation (4).
Ei = |l — o] | (4)

When training the decoders, contrastive learning is utilized to
force f2 to describe the batch-specific deviation. We choose the
same batch of cells as cell i to form B}, and the different batch of
cell i to form B; . Then the objective function for two decoders is
shown in equation (5).

N
LX) =33 > {T(xd w24, ) + Eipg} (S)

=1 peB; q€B;

where the value of fis 1.0, and E; 4 denotes the average value of re-
construction error for cells 7, p and q.

The two decoders used for reconstruction adopt the same train-
ing strategy as the encoder for alignment. The difference between
the two decoders is that X and f° are single-layer and two-layer
fully connected networks, respectively, where ReLU is used as acti-
vation function of the output layer in /X to obtain non-negative gene
expression.
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3 Results

3.1 Benchmark results on pancreas and retina

scRNA-seq datasets

We evaluated the performance of MAT? and compared it with the
state-of-the-art methods on retina datasets (Shekhar et al., 2016)
and pancreas datasets (Griin et al., 2016; Lawlor et al., 2017;
Muraro et al., 2016; Segerstolpe et al., 2016) (see Table 1). Here,
we selected four methods for comparison, including two state-of-
the-art methods, namely Seurat (version 3) (Stuart ez al., 2019) and
Harmony (Korsunsky et al., 2019), as reported recently (Tran et al.,
2020), scMerge (Lin et al., 2019) that can work in both supervised
and unsupervised modes, and a neural network model named
scANVI (Xu et al., 2021) that can work in supervised mode with
provided cell type annotations. We noticed that a similar approach
named INSCT (Simon ez al., 2020) was proposed when this manu-
script was drafted, which also uses cell triplets for alignment, and
we also compared MAT? against INSCT here. Since MAT?, INSCT
and scMerge can work in supervised and unsupervised settings, we
used MAT?-s and MAT?-u to respectively denote MAT?* working in
these two settings, and the same for INSCT-s, INSCT-u, scMerge-s
and scMerge-u. The same inputs to MAT? were also given to
scANVI so that it can work in supervised setting. Once the multiple
datasets were aligned into a single dataset in the gene expression
space or latent manifold space by a certain method, Louvain
(Blondel et al., 2008) was employed at different resolutions from 0
to 0.5 at interval of 0.01 to cluster cells to determine the cell types,
where each cluster represents a cell type. The adjusted rand index
(ARI) (Hubert and Arabie, 1985) was utilized to check the accuracy
of cell types assigned by clustering. For each method, the maximum
ARI calculated based on the clustering results of different resolu-
tions was used as the ARI of this method. Furthermore, local inverse
Simpson’s index (LISI) (Korsunsky et al., 2019) was adopted to as-
sess the degree of dataset mixing for each aligned dataset.

Figure 2 shows the results by the nine approaches over the
benchmark datasets. Overall, MAT?, especially MAT?2-s, achieved
the best results when assigning cells to corresponding cell types with
the highest ARI over the two datasets compared with the other
methods (Fig. 2a, Supplementary Tables S2 and S3). For dataset
mixing, the LISIs of MAT? were among the best on these two data-
sets, proving its ability to effectively integrate datasets from distinct
batches and platforms. Although INSCT-s, scMerge-s and scANVI
also work in supervised way, MAT?s significantly outperformed
scMerge-s by 47.1%, INSCT-s by 21.0% and scANVI by 19.4%
with respect to LISI on average, indicating the effectiveness of
MAT? when integrating multiple datasets.

To better demonstrate the performance of MAT?, Figure 2b and
¢ show the visualization results of pancreas datasets by UMAP
(Becht et al., 2019) without or with integration, respectively (the
results on retina datasets can be found in Supplementary Fig. S1).
From the results, it can be seen that all the methods except for
Harmony performed very well when separating distinct cell types
(Fig. 2a, right and Fig. 2c, top), where MAT?-s outperformed other
approaches while MAT?-u performed comparably well with Seurat.
We also noticed that MAT?, Seurat and Harmony perform well
with respect to LISI (Fig. 2¢, bottom), indicating the effectiveness of
these approaches to integrate multiple datasets. Surprisingly,
scMerge showed poor performance with respect to LISI, implying
insufficient dataset mixing of the same cell type, which is consistent
with previous reports that scMerge may fail to work in some cases
(Tran et al., 2020). Although we found a structure similar to MAT?
in INSCT, the actual performance of the two is significantly differ-
ent in the above dataset. In order to further make a fair comparison,
we also tested MAT? and INSCT with the datasets used in Simon
et al. (2020) (Supplementary Fig. S2). Whether using ARI or LISI for
metrics, MAT? had obvious superiority.

Since MAT?, INSCT and scANVI can work in supervised setting
and show best performance in above results, we investigated the ef-
fect of the number of training cells on the performance of MAT?-s,
INSCT-s and scANVI. Figure 2d shows the ARI results of MAT?-s,
INSCT-s and scANVI with the percentage of cells used for training

from 100% to 5%. With the number of training cells decreasing,
MAT?s showed robust performance with only 3.8% and 4.0%
reductions of ARIs on retina and pancreas, respectively
(Supplementary Table S4). INSCT-s and scANVI had a significant
decrease in ARI over the pancreas and retina datasets, respectively.
It can be seen that MAT?s trained with few (hundreds) samples still
worked efficiently, which is especially important for large datasets
with very few known cell types.

When integrating multiple scRNA-seq datasets, computation
consumption is also the issue to be concerned. We compared the
nine approaches with respect to their computation time and memory
usage with a Linux server equipped with 12-core AMD Ryzen
Threadripper 1920X, 125 GB RAM and GeForce RTX 2080 Ti.
The running time and memory usage of the nine approaches on the
cell sets composed of various numbers of cells sampled from pan-
creas datasets were respectively shown in Figure 2e and f, where the
time of reading data was not recorded. The CPU time for all the
approaches considered here with or without GPU can be found in
Supplementary Table S5, and the detailed memory usage can be
found in Supplementary Table S6. Note that it takes more time for
the additional step of reconstructing gene expression in MAT?, Even
s0, from the results, it can be seen that MAT? performed compara-
tively well with popular approaches. The results also indicate that
MAT? has the potential to integrate millions of cells on personal
computers.

3.2 MAT? aligns cellular states along developmental
lineage

The scRNA-seq technology has been widely used for tracing cell lin-
eage during developmental procedure, where various datasets may
be generated for the same procedure. Here, different approaches
were applied to align two hematopoietic datasets (Nestorowa et al.,
2016; Paul et al., 2015) with obvious batch effect as shown in
Supplementary Fig. S3a. The whole differentiation procedure con-
tains six cell types, i.e. long-term HSC (LT-HSC), megakaryocyte/
erythroid progenitor (MEP), granulocyte/monocyte progenitor
(GMP), common myeloid progenitor (CMP), multipotent progenitor
(MPP) and lymphoid multipotent progenitor (LMPP).

The UMAP visualization results based on the aligned datasets
generated by MAT?, scMerge, INSCT, Seurat, Harmony and
scANVI were shown in Supplementary Fig. S3. With cell type anno-
tations, MAT?-s could successfully identify most cell types with the
help of contrastive learning, and performed especially well to pre-
vent LT-HSC, MPP and LMPP that only occur in a single dataset
from being confused with the other three types. scMerge-s could suc-
cessfully identify most of the cells belonging to CMP, GMP and
MEDP shared between datasets, but failed to identify the other three
cell types. INSCT-s was difficult to integrate these two hematopoi-
etic datasets. When cell type annotations were not used, the un-
supervised approach including MAT*-u could identify MEP and
GMP cells while it failed to separate the other four cell types. In par-
ticular, a large number of anchors describing the correspondence be-
tween cells (e.g. 39.5% for Seurat) link LT-HSC, MPP and LMPP to
CMP, which made it difficult to separate the four cell types. When
looking at the results of cell annotations with respect to ARI, we
noticed that MAT?-s performed best on assigning cell types with
ARI of 0.922, surpassing the second ranked scMerge-s by 18.1%.

To evaluate whether gene expression reconstructed by MAT?
conserves the original biological signals, we clustered the cells in the
reconstructed gene expression space and performed the differential
expression analysis (P-value =0.01) with Seurat R package (Stuart
et al., 2019) (Supplementary Fig. S4). In the results of MAT?-s, the
differentially expressed genes (DEGs) with the same cell types had
similar expression profiles between datasets. scMerge-s also pro-
duced an accurate integration of the cells of CMP, GMP and MEP
in two datasets and generated the corrected gene expression.
However, the expression profiles of the DEGs derived from the
scMerge-s’ gene expression were significantly different between
datasets. Therefore, MAT? not only placed cells with the same cell
types together but also could get rid of batch effect to recover the
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Fig. 2. Benchmarking of MAT? and other the state-of-the-art methods on retina and pancreas datasets. (a) The results of cell type assignment (ARI) and dataset mixing (LISI)
on retina and pancreas datasets by the nine methods. (b) Visualization of the pancreas dataset with respect to both cell types (left) and platforms (right), where the pancreas
dataset has significant platform difference. (c) Visualization of the results of the nine methods using the same color in b to mark cell types (upper) and platforms (lower). (d)
The ARI results on the integrated retina and pancreas datasets by MAT?-s, INSCT-s and scANVI with the proportion of training cells ranging from 100% to 5%. (e and f) The
computation time and memory usage of the nine methods on pancreas datasets with increased sampling sizes

true biological signals. Considering the transition between cell types
is a continuous procedure, we extended MAT? to the semi-super-
vised mode, denoted as MATZ?semi hereafter. MAT?-semi first
forms the cell triplets based on labeled cells in the same way as that
of MAT?-s, and then mixes them with the cell triplets that have been
used in MAT?-u for training. In this way, MAT?-semi can utilize
known cell types and anchor scores for cells without labels. We eval-
uated MAT?-semi on hematopoietic datasets by keeping 10% of the
cell type annotations as labeled. MAT?-semi was able to show the
transition of gene expression patterns from CMPs to MEPs more ob-
viously (see Supplementary Figs S3 and S4) with only few cell type
annotations. At the same time, the DEGs found based on the results
of MAT? were consistent with the marker genes reported in the lit-
erature. For example, both Carl and Car2 were significantly upre-
gulated in MEP, which is consistent with previous reports that these
two genes are marker genes of erythroid progenitors (Paul ef al.,
2015). In addition, Dn#t was upregulated in MPP and LMPP, which
was confirmed by a previous work that regarded it as a marker gene
in both MPP and lymphoid lineages (Herman et al., 2018). The
above results demonstrate that the consensus gene expression of
MAT? is effective for aligning cellular states along developmental
lineage in datasets that are interfered by batch effects.

3.3 MAT? infers species-specific cell lineage during
HSC-primed HEC development

In this section, we investigated the performance of MAT? when
aligning two scRNA-seq datasets of HSC-primed HEC development

from human (Zeng et al., 2019) and mouse (Hou et al., 2020) em-
bryos (Table 1). The human and mouse datasets contain cells gener-
ated from the aorta-gonad-mesonephros (AGM) tissues of embryos
during the equal period. According to previous annotations (Hou
et al., 2020), the mouse cells annotated with the five cell types
involved in the mouse HEC development were used as training sam-
ples, where the cell types consist of early and late arterial endothelial
cell (aEC), hematopoietic cell (HC), HEC and venous endothelial
cell (vEC). Furthermore, the non-EC negative control cells (Neg)
from mouse dataset were used as control. With the clustering results
over the aligned dataset by MAT?, all the cells will be grouped into
six clusters with each cluster annotated with one of the six above
cell types. Therefore, the human AGM-associated endothelial cells
will be annotated as one of the five cell types, i.e. the early aECs,
late aECs, HCs, vECs and HECs.

We first looked at the gene expression reconstructed from the
results of aligned human and mouse data. As shown in Figure 3a,
the reconstructed gene expression was significantly correlated with
the original one (Pearson correlation, human, R=0.69, P <
2.2e—16; mouse, R=0.72, P < 2.2e—6), indicating the effectiveness
of MAT?. Next, we performed the tSNE (Maaten and Hinton,
2008) analysis on the reconstructed gene expressions as shown in
Figure 3b. From the results, we can see that the five cell types can be
well separated from each other and are far from the negative con-
trols (Neg). In addition, we looked at the marker genes specifying
distinct subpopulations of endothelial cells in both human and
mouse and wanted to see whether these marker genes have con-
served expression patterns between mouse and human. We noticed
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Fig. 3. Alignment of cells during human and mouse HSC-primed HEC development with MAT?. (a) Pearson correlation between original gene expression data and recon-
structed one. (b) tSNE visualization of mouse and human cells from AGM area, which were colored according to species (left) or cell clusters (right). (c—f) The expression of
marker genes in human (HG) and mouse (MM). (g) The trajectory analysis results from aECs to HECs in mouse and human. (h) The heatmap of genes differentially expressed
between human and mouse HSC-primed HECs. (i) The functional terms enriched in those genes from biological process

that four genes have similar expression patters in human and mouse
cells, where GJAS was highly expressed in aECs, NRP2 was highly
expressed in vECs, NTSE was highly expressed in vECs, and
RUNX1 was highly expressed in HCs and HECs (Figure 3c—f). For
example, the transcription factor RUNX1 was highly expressed in
both human and mouse HECs (Fig. 3f), which is coincident with the
observation that the upregulation of RUNX1 marks the initiation of
the endothelial-to-hemogenic transition (EHT) and priming of endo-
thelial cells toward HECs (Hou et al., 2020).

Considering species specificity, we further inferred the trajecto-
ries from aECs to HECs with ti_slingshot (Street et al., 2018) in
Dyno (Saelens et al., 2019) based on the reconstructed transcrip-
tome for human and mouse, respectively (Fig. 3g). It was a consen-
sus that the early aECs differentiated into the late aECs and HECs in
human and mouse data. However, the developmental paces of
HECs were different in two species. In human, the early aECs differ-
entiated to HECs ahead of the differentiation toward the late aECs
(Fig. 3g bottom). In contrast, in mouse, the early aECs first differen-
tiated to the late aECs and then HECs (Fig. 3g, top). With genes dif-
ferentially expressed between human and mouse HECs identified
with MAST (Finak et al., 2015) (P < 0.01), the discrepancy of gene
expression programs between human and mouse HECs was revealed
as shown in Figure 3h. The upregulated genes in human HECs
included HMGA1, CDS53 and ITGB2, which marked the develop-
ment of HCs. Furthermore, the gene ontology (GO) analysis of bio-
logical processes performed by clusterProfiler (Yu et al., 2012) R
package confirmed that the human HEC-specific genes were
enriched in hematopoietic lineage differentiation (Fig. 3i). On the
other hand, the upregulated genes in mouse HECs were intensively
involved in cell division and disjunction. Both the trajectory and
functional analysis indicated that two commitment events of the
early aECs happened at different temporal orders in human and
mouse embryos respectively, which is consistent with earlier specu-
lation of Hou et al. (2020). The above results indicate that MAT?

can help researchers align scRNA-seq datasets of different species to
study species-specific gene expression.

4 Discussion

The joint analysis of multiple scRNA-seq datasets can help elucidate
the comprehensive landscape of cellular compositions of certain tis-
sues or processes. In this work, we present a novel approach, MAT?,
for aligning cells from multiple datasets by taking into account nega-
tive anchors with contrastive learning, which outperforms other
popular approaches over several real datasets. Except for cell align-
ment in the manifold space, MAT? is able to reconstruct the consen-
sus gene expression profile for a certain cell type, which in turn can
be used for downstream analyses, e.g. trajectory analysis and differ-
ential gene expression analysis. We showcased that the transcrip-
tome reconstructed by MAT? can help reveal the gene expression
conservation and discrepancy between human and mouse AGM-
associated HSC-primed HECs.

The good performance of MAT? is attributed to contrastive
learning, which utilizes both positive and negative anchors when
integrating multiple scRNA-seq datasets. In contrast, both existing
cell alignment and cluster alignment approaches generally rely on
positive anchors when aligning single-cell transcriptomes, whereas
reliable positive anchors may be not always available especially for
datasets with unshared cell types. The superiority of using negative
anchors is that it can prevent distinct cell types from being mapped
to the same ones, thereby improving the stability of scRNA-seq data
integration, which is especially helpful for identifying rare cell types
or inferring cell lineages.

At present, the rapid development of multi-modal data makes it
a practical need to integrate these data for analysis. Compared with
using a single modality to identify cell states, multi-modal data can
provide more complete information to reveal the nuances of cell
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types, thus enhancing the understanding of regulatory mechanisms.
Existing methods have made some attempts in this direction. For ex-
ample, Seurat (Stuart et al., 2019) uses scRNA-seq data to transfer
cell types to scATAC-seq data, and LIGER (Welch et al., 2019) uses
scRNA-seq and DNA methylation data to jointly identify cell types.
Next, we envisage extending MAT? to single-cell multi-modal data
to gain a deeper understanding of the cell state and its transcription-
al regulation mechanism.
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