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Abstract

Motivation: Ordinal classification problems arise in a variety of real-world applications, in which samples need to be
classified into categories with a natural ordering. An example of classifying high-dimensional ordinal data is to use
gene expressions to predict the ordinal drug response, which has been increasingly studied in pharmacogenetics.
Classical ordinal classification methods are typically not able to tackle high-dimensional data and standard high-
dimensional classification methods discard the ordering information among the classes. Existing work of high-
dimensional ordinal classification approaches usually assume a linear ordinality among the classes. We argue that
manually labeled ordinal classes may not be linearly arranged in the data space, especially in high-dimensional
complex problems.

Results: We propose a new approach that can project high-dimensional data into a lower discriminating subspace,
where the innate ordinal structure of the classes is uncovered. The proposed method weights the features based on
their rank correlations with the class labels and incorporates the weights into the framework of linear discriminant
analysis. We apply the method to predict the response to two types of drugs for patients with multiple myeloma, re-
spectively. A comparative analysis with both ordinal and nominal existing methods demonstrates that the proposed
method can achieve a competitive predictive performance while honoring the intrinsic ordinal structure of the
classes. We provide interpretations on the genes that are selected by the proposed approach to understand their
drug-specific response mechanisms.

Availability and implementation: The data underlying this article are available in the Gene Expression Omnibus
Database at https://www.ncbi.nlm.nih.gov/geo/ and can be accessed with accession number GSE9782 and
GSE68871. The source code for FWOC can be accessed at https://github.com/pisuduo/Feature-Weighted-Ordinal-
Classification-FWOC.

Contact: jyahn@uga.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Data with ordinal outcomes are common in an overwhelming num-
ber of statistical problems, with broad applications in biomedical
science, social science and so forth. Examples of ordinal outcomes
include responses to a treatment in clinical studies that are classified
as ‘Complete Response’, ‘Partial Response’, ‘Minimum Response’,
‘No Change’ or ‘Progressive Disease’ (BladÉ et al., 1998); tumor-
node-metastasis (TNM) stages classified as ‘Stage 0’, ‘Stage I’, ‘Stage
II’, ‘Stage III’ or ‘Stage IV’; customers’ credit scores categorized as
bad, fair, good or excellent. These ordinal labels are in contrast to
nominal labels, such as species of flowers and types of tumors, in

that there are natural orderings among the classes. However, as the
values of the labels only reflect their relative orders and do not carry
any numerical meanings, the outcomes must not be treated as a con-
tinuous, or interval-valued variable. In supervised learning, the task
of classifying subjects into ordinally scaled outcomes is often
referred as ordinal regression, which suggests that conceptually it
lies between classification and regression.

We note that, in practice the underlying pattern of the ordinality
of the classes may not be straightforward for one to make a guess,
for instance a linear ordinality which the ‘regression-based’
approaches commonly assume. Figure 1 displays two-dimensional
toy data from four classes with three different ordinal structures:
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nearly nominal, non-linearly ordinal and strictly linear. The left
panel shows hardly any ordinality among the classes, from which
we can see that the natural ordering in the labels is not reflected at
all in the predictor space. The middle panel shows a curve-like pat-
tern, which implies that any 1D rule, such as a linear regression
equation, would be insufficient for classification. The right panel
displays a strictly linear ordinality among the classes, which many
traditional approaches assume. In this work, rather than assuming a
certain structure, we propose to learn it from the data.

With the development of modern technology, high-throughput
platforms are providing a large repository of data to facilitate the
biomedical research. Among many biomarkers, gene expressions
have been known to be powerful predictive features in predicting
clinical response. Especially, as the advent of pharmacogenetics sug-
gests, the genomic markup of a patient is believed to have significant
influence on medication response, such as disease prognosis and
drug toxicity, which will help clinicians prescribe personalized treat-
ment for patients (Duffy and Crown, 2008). In this article, we use
gene expressions of patients with multiple myeloma (MM) in two
datasets to predict the ordinal level of their drug responses. MM is a
type of cancer that is characterized by the proliferation of bone mar-
row of plasma cells (Terragna et al., 2016). Like other cancers, gen-
etic abnormalities play an essential role in the acquisition of MM.
Although it is a relatively uncommon cancer, the overall 5-year sur-
vival rate is only 54%. According to the American Cancer Society,
roughly 32 270 new cases will be diagnosed and also 12 830 deaths
are expected to occur due to MM in 2020. Modern treatments, such
as induction, consolidation and maintenance therapy for MM have
emerged over the years (Terragna et al., 2016). However, the prog-
nosis of MM still remains variable, partly due to the heterogeneity
of patients’ response to the treatments. A number of clinical and la-
boratory features have been used as a predictive tool for convention-
al treatment, however, they often fail to identify patients with high
risk in the modern therapies (Mulligan et al., 2007).

Both of the two datasets, we will analyze in this work have a
large number of predictors p relative to the number of observations
n. When p� n, many classical ordinal regression methods are no
longer applicable. While there is an abundant amount of research on
high-dimensional classification, relatively scarce attention has been
paid on ordinal classification with high dimension, low sample size
(HDLSS) data. Our methodological contribution in this work is a
new ordinal classification method for HDLSS data that has the fol-
lowing advantages: (i) the true ordinal structure will be learned from
the data, including irregular or non-linear ordinality; (ii) one can
visualize the estimated ordinality by projecting data onto a low-di-
mensional discriminant space; (iii) the method is scalable in the
sense that it can run with HDLSS data as well as low-dimensional
data; and (iv) it uses only important features that are relevant for
predicting ordinal labels. We employ the concept of ‘feature weight-
ing’ in machine learning (Cardie and Nowe, 1997) into linear dis-
criminant analysis (LDA) (Fisher, 1936), which has been shown to
be an effective framework in HDLSS classification literature. With
feature weighting, we would consider features that are concordant
with the ordinal information with a higher priority than those that
are not. Also we employ the group Lasso penalty to achieve a sparse

solution for better interpretation. The rest of the ARTICLE is organ-
ized as the following: we review existing works and introduce the
methodology in Section 2. In Section 3, we discuss the applications
on predicting ordinal drug responses based on gene expressions of
MM patients and compare the performance of different methods.
We also discuss the biological insights revealed by the proposed
method. Finally, we conclude with some discussions in Section 4.

2 Materials and methods

2.1 Related work
One of the most naive approaches for ordinal classification is to
treat the response as a numerical variable (such as 1, 2, 3, 4 and 5)
and fit a regression model. However, this approach would be sensi-
tive to the numerical representations of the labels, which are arbi-
trarily determined in most cases. In particular, it may be
unreasonable to assume equal distancing between adjacent labels.
Classical ordinal regression methods, such as the proportional odds
model (McCullagh, 1980) and the forward and backward continu-
ation ratio model (Ananth and Kleinbaum, 1997) assume a common
covariates effect between adjacent categories under a multinomial
logistic regression. A similar idea has been applied to support-vector
machines, by assuming parallel maximum margin separating hyper-
planes between the adjacent classes (Chu and Keerthi, 2005;
Herbrich et al., 1999; Shashua and Levin, 2003).

Some have suggested decomposing a K-class classification prob-
lem into K� 1 binary problems. Frank and Hall (2001) considered
discriminating a class with label less than j versus no less than j.
When K ¼ 4, three binary classifiers will be built on the three binary
classifications: fC1g versus fC2;C3;C4g, fC1;C2g versus fC3;C4g
and fC1;C2;C3g versus fC4g. Even though this approach takes into
account the innate ordinality and enjoys the convenience of using
any binary classifiers, at the same time it inevitably increases the
computing complexity and introduces multiple modeling errors.
Also the prediction can be ambiguous due to crossings of classifica-
tion boundaries (Qiao, 2017). Another way to modify a regular clas-
sification method for ordinal outcomes is to make use of a cost
function. Kotsiantis and Pintelas (2004) set the relative cost of mis-
classifying class i to class j (or vice versa) to be a function of ji� jj so
that misclassification to nearer classes will be less penalized than
one to farther classes. A similar idea has been implemented in ma-
chine learning by Piccarreta (2001) and also in deep learning (de La
Torre et al., 2018).

For ordinal classification with HDLSS data, such as drug re-
sponse prediction, machine learning approaches like k-nearest
neighbors and neural networks have been considered (Vougas et al.,
2019), however, the ordinality of the classes were not taken into ac-
count in their work. Some treated the multi-level ordinal drug re-
sponse as nominal or combine categories to reduce to a binary
classification problem (such as responders versus non-responders or
sensitive versus resistance) (Falgreen et al., 2015; Geeleher et al.,
2014; Ma et al., 2006), which clearly failed to model the progressing
nature of drug response. Another line of work is to regularize clas-
sical ordinal regression approaches in order to use them for HDLSS
problems. For example, Archer et al. (2014) applied Lasso to a con-
tinuation ratio model; Leha et al. (2013) applied the ‘twoing’ idea to
ordinal classification with gene expressions; Zhang et al. (2018) pro-
posed a hierarchical ordinal regression to predict the ordinal drug
response with gene expression profile for MM patients. However,
this line of approaches assume a strict ordinality among the classes,
in other words, they all assume that the classes are linearly aligned
in the predictor space.

2.2 Proposed methodology
We use X to denote an n� p input data matrix, with n observations

and p predictor variables. Let Xn�p ¼ ðxT
1 ; . . . ; xT

n Þ
T ¼ ð~x1; . . . ; ~xpÞ,

where xi 2 Rp is the ith row representing the ith observation and
~xj 2 Rn is the jth column for the jth variable. Each observation falls

into one of the K ordinal classes Ck, k 2 f1; . . . ;Kg and Ck inherits

Fig. 1. The 2D toy datasets from four classes that are nominal, non-linearly ordinal

and linearly ordinal, respectively
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the natural ordering where C1 � � � � � CK (� denotes the ordering).

We use y ¼ ðy1; . . . ; ynÞT to denote the vector which contains the
class labels, with yi 2 f1; . . . ;Kg.

Suppose that the jth variable ~x j has a mixture distribution with
K components with component means l1j; . . . ; lKj. We call ~x j order-

concordant if the component means are monotonically increasing or
decreasing with class labels, i.e. l1j � � � � � lKj or l1j � � � � � lKj.

Otherwise they are order-discordant. We naturally assume that
order-concordant variables are likely to be more related to the or-
dinal information than order-discordant ones. Thus, we propose to
use the absolute value of the rank correlation between ~x j and the

class labels y, i.e. wj ¼ jrank corrð~x j; yÞj as the weight for the jth

variable. A rank correlation measures the ordinal association be-
tween two quantities. Here, we consider two types of rank correla-
tions. First, Spearman’s rank correlation between Z and Q is the
Pearson correlation between the ranked variables rgZ and rgQ,
where rgZ and rgQ are rankings of the original variables, res-
pectively. Second, Kendall’s s between Z and Q is the ratio of the

number of concordant and discordant pairs: s ¼ 2
nðn�1Þ �

ðno:ofconcordantpairsÞ � ðno:ofdiscordantpairsÞf g, where the pair
ðzi; qiÞ and ðzj;qjÞ (i 6¼ j) is said to be concordant if zi > zj and qi >

qj or zi < zj and qi < qj holds, and otherwise discordant. When

there is a perfect monotonic relationship between the two sets of
variables, both Spearman’s rank correlation and Kendall’s s will be
þ1 or �1, depending on the direction of the association.

We propose to incorporate the feature weights into the frame-
work of LDA, which is well-known for its robustness and simplicity.
LDA aims to project the data onto a low-dimensional discriminant
subspace such that the projected data are best separated, in the sense
that it achieves maximum between-class covariance and minimum
within-class covariance. Assume that the kth class have the mean
vector lk and a common covariance Rw, for k 2 f1; . . . ;Kg. Then,
the set of vectors ðb1; . . . ;bK�1Þ that span the LDA subspace can be
obtained by the following optimization problem:

max
bl2Rp

bT
l Rbbl;

subject to bT
l Rwbl ¼ 1;

bT
l Rwbs ¼ 0;8 s < l;

(1)

where Rb is the between-class covariance matrix that could be esti-

mated as R̂b ¼
PK

k¼1
nk

n ðl̂k � xÞðl̂k � xÞT and Rw could be esti-

mated as R̂w ¼ 1
n�K

PK
k¼1

P
yi¼kðxi � l̂kÞðxi � l̂kÞ

T , with x being

the global mean vector and nk being the number of observations in
class k.

We can rewrite (1) so that the objective is to find a matrix
B ¼ ½b1; . . . ;bd	, for a given ðHTML translation failedÞ that
optimizes

max
B2Rp�d

traceðBTRbBÞ; subject to BTRwB ¼ Id;

which leads to the following generalized eigenvalue problem (GEP):

RbB ¼ RwBD; (2)

where D is a diagonal matrix containing the generalized eigenvalues.

To solve (2), we need to calculate R�1
w , which does not exist when

p > n. In order to solve this singularity issue, the regularized ridge-

type LDA (Friedman, 1989) was proposed to replace R̂w by R̂w þ
aIp for a > 0. We propose a regularization that incorporates the

weights by using aW instead, where W p�p is the diagonal matrix

containing wj ¼ 1�wj and wj’s are (standardized) absolute rank

correlations discussed above. The objective function of this feature-
weighted LDA is given as:

max
B2Rp�d

traceðBTRbBÞ; subject to BTðRw þ aW ÞB ¼ Id; (3)

where a > 0, whose solution satisfies the following GEP

RbB ¼ ðRw þ aW ÞBD: (4)

Once (3) is solved, we project the data onto the column space of
B, and apply the standard LDA for class assignment. We note that if
W is replaced by a ‘roughness’ penalty matrix, this approach can be
seen as the penalized LDA (PLDA) by Hastie et al. (1995), who also
showed the equivalence to a penalized optimal scoring. Thus, it can
be shown that the feature-weighted LDA is equivalent to finding
b1; . . . ; bk that are solutions to the following:

min
h2RK ;b2Rp

1

n

(
ajjYh�Xbjj22 þ bTðanW Þb

9=
; ;

subject to

1

n
hTYTYh ¼ 1;

(5)

where Y is an n� K indicator matrix whose columns corresponds to
the dummy coding of the K classes and h is the scoring vector in op-

timal scoring. From (5), it can be shown that W is actually imposing
penalties on b’s, such that a smaller wi (corresponding to a larger
rank correlation) will push the coefficient to be penalized less com-
pared to one with a larger wi.

When p is large, feature selection is essential for the interpret-
ability of the results. In order to achieve a sparse solution for fea-
ture-weighted LDA, we add a group LASSO penalty (Yuan and Lin,
2006) on the GEP (4). Jung et al. (2019) proposed a framework for
sparse GEP and suggested two algorithms to find a solution, namely
penalized orthogonal iteration (POI) and fast-POI. Here, we apply
the fast-POI algorithm to solve (4) with a group LASSO penalty:

pkðBÞ ¼ k
Pp

i¼1 jjbijj2, with bi being the ith row of B. The advantage
of group LASSO over LASSO is that the former can achieve the
sparsity at a group level. That is, whether or not a predictor will be
dropped out of the model is consistent for all the dimensions in the
discriminant subspace. A sparse estimate of B can be obtained by
solving the following:

min
B2Rp�d

trace
1

2
BTðRw þ aW ÞB� BTV

� �
þ k

Xp

i¼1

jjbijj2; (6)

where V is a p� d matrix whose columns are the eigenvectors of Rb

corresponding to the d largest eigenvalues of Rb, and k > 0 is a par-
ameter that controls the sparsity. We name this approach the fea-
ture-weighted ordinal classification (FWOC).

To solve (6), we apply the block coordinate descent algorithm,
which updates one coordinate at a time. The ith row of B, given bj is
fixed (j 6¼ i), is updated as the following until convergence:

bi ¼
1

sii
1� k
jjqijj2

� �
þ

qi;

where sii is the ith diagonal element of ðRw þ aW Þ, qi ¼ vi�P
i6¼j bijbj and vi is the ith row of V.

2.3 Tuning parameters
In the actual implementation, we re-parameterize so that Rw þ aW

is replaced by rRw þ ð1� rÞW so that the tuning range is bounded
within ½0;1	. Clearly r controls how much the classifier depends on
the ordinal information, in the sense that r 
 1 will yield the method
more focused on maximizing the separation of the classes without
regard to the ordinality. On the contrary, r 
 0 will yield a solution
more dependent on order-concordant variables than discordant ones
for classification. We propose to learn a good compromise from the
data in order to obtain an efficient classifier that reflects the ordinal-
ity. Another parameter k controls the sparsity of the solution. A
larger k imposes a heavier penalty on the solution thus yields a more
sparse solution. Note that, there is a upper bound of k that gives a
non-trivial solution to (6), which can be shown to be
kmax ¼ maxi2f1;...;pgjjvijj2.

We use the 5-fold cross-validation to select the optimal tuning
parameters ðropt; koptÞ, based on a grid search. When there are ties in
the grid space. we adopt a parsimonious rule of selecting the most

3272 Z.Ma and J.Ahn

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3270/6273574 by guest on 24 April 2024



sparse and ordinal solution, which favors larger k and smaller r. As
for the model evaluation used for cross-validation, we use Kendall’s
s between the predicted and actual labels.

3 Drug response prediction for MM

In this section, we test our high-dimensional ordinal classification
method FWOC using the datasets from Mulligan et al. (2007) and
Terragna et al. (2016), which correspond to GSE9782 and
GSE68871 in the Gene Expression Omnibus database, respectively.
The GSE9782 dataset was generated using the Affymetrix HG-U133
A/B platform and consists of 169 pre-treated tumor cell samples
from the patients with relapsed myeloma who were enrolled in the
Phase 2 and Phase 3 clinical trials of bortezomib. The GSE68871
dataset was generated using the Affymetrix HG-U133 Plus 2.0
Array and consists of 118 primary tumor cell samples obtained from
new MM patients who received the bortezomib-thalidomide-dexa-
methasone (VTD) induction therapy. A summary of the two datasets
is in Table 1. Both of the two datasets have five ordinal outcomes
(drug response). Note that, the observed proportions are severely
unbalanced in either dataset.

We consider the following three methods to compare with the
proposed FWOC: Archer et al. (2014), Zhang et al. (2018) and
Witten and Tibshirani (2011). Archer et al. (2014) incorporated
Lasso in continuation ratio model, and proposed the following

max
b2Rp

Lðbjy;xÞ � k
Xp

i¼1

jbij; (7)

where Lðbjy; xÞ denotes the likelihood for the continuation ratio
model and k is the parameter controlling the degree of L1 penalty.
We call their method PCRM (penalized continuation ratio model) in
this work. Zhang et al. (2018) proposed the following a multi-vari-
able ordinal model called BhGLM:

Pðyi ¼ kÞ ¼

1� logit�1ðxT
i b� c1Þ; for k ¼ 1

logit�1ðxT
i b� ck�1Þ; for k ¼ K

logit�1ðxT
i b� ck�1Þ � logit�1ðxT

i b� ckÞ; o:w:

8>>>><
>>>>:

in which a Cauchy prior was applied on the coefficients for sparsity.
Note that both of PCRM and BhGLM are model-based approaches
that assume linearly ordered classes. The third method by Witten
and Tibshirani (2011) is a well-known multi-class sparse LDA that
was originally developed for nominal multi-category classification.
They added a penalty function in the framework of the LDA to pro-
pose an optimization criterion given as:

max
bl2Rp

bT
l Rbbl � P1ðblÞ;

subject to bT
l

~Rwbl � 1;

bT
l

~Rwbs ¼ 0; 8 s < l

; (8)

where P1ðblÞ is a convex penalty on bj, such as the Lasso penalty,
and ~Rw is a positive estimate of Rw, such as Rw þ kX or a diagonal
estimate. We call this method PLDA in this work. Both FWOC and
PLDA are projection-based approaches, in that they both aim to
project the data onto a lower-dimensional discriminant subspace
and then apply the standard classification methods (such as LDA)
on the projected data to assign class memberships.

For each of the two datasets, we randomly split it into a training
set with 70% observations and a test set with 30% observations and
repeated the random split for 10 times. In each repetition, we pre-
screened the probes using the univariate ordinal logistic regression
model (Zhang et al., 2018) within the training set. Then, we applied
the four methods and evaluated the performance on the test set. The
number of probes pre-screened for GSE9782 and GSE68871 are
500 and 1000, respectively, for the probes in GSE68871 are about
twice many as GSE9782. In implementing FWOC, we used
Kendall’s s for the feature weights. For FWOC and PLDA, the di-
mension of the discriminant subspace is set to be two, considering
the ordinality of the classes.

3.1 Results
Table 2 reports the classification accuracy, Kendall’s s and weighted
cost between predicted and actual labels, and the number of selected
probes from the four methods, averaged over 10 repetitions. The
weighted cost is defined as:

P
jyi � f ðxiÞjm; where f ðxiÞ is the pre-

dicted class label and m is a positive integer. We use m ¼ 1 here.
Even though all four methods are supposed to be sparse methods,
the numbers of selected probes are wildly different. Both BhGLM
and PLDA use (almost) all variables for constructing a classifier
where PCRM selects the least number of probes. FWOC shows a
moderate degree of sparsity. Also its classification accuracy and
Kendall’s s are the highest for both data and its weighted cost is the
lowest or the second lowest. This implies that its drug response pre-
dictions are most accurate and at the same time consistent with the
hierarchy of the response levels.

We visualize the results with bar graphs in Figures 2 and 3. In
each gray-scale bar, the darker the gray color is, the nearer the pre-
dicted class is to the true one, with the overall length equal to the
observed counts of the class in the data. With these figures, we can
know the details about classification patterns of the methods,

Table 1. Summary of the two datasets with ordinally recorded drug

responses

Dataset GSE9782 GSE68871

Sample size 169 118

No. of probes 22 283 54 675

1 Complete response (CR) Complete response (CR)

(7:69%) (12:71%)

2 Partial response (PR) Near complete

response (NCR)

(35:50%) (11:86%)

Outcome 3 Minimal response (MR) Very good partial

response (VGPR)

(7:10%) (33:90%)

(Class-size) 4 No change (NC) Partial response (PR)

(25:44%) (35:59%)

5 Progressive disease (PD) Stable disease (SD)

(24:26%) (5:93%)

Table 2. Prediction results of drug responses of MM patients

Dataset Metric FWOC BhGLM PCRM PLDA

GSE9782 Classification accuracy 0.396 0.367 0.369 0.388

(0.015) (0.018) (0.018) (0.019)

Kendall’s s 0.300 0.240 0.218 0.257

(0.029) (0.027) (0.043) (0.035)

Weighted cost 1.056 1.135 1.250 1.121

(0.028) (0.035) (0.063) (0.048)

No. of selected probes 239.1 500 112.8 496.3

(14.601) (0) (2.670) (2.155)

GSE68871 Classification accuracy 0.444 0.388 0.374 0.344

(0.027) (0.027) (0.023) (0.013)

Kendall’s s 0.311 0.292 0.217 0.246

(0.015) (0.049) (0.035) (0.024)

Weighted cost 0.806 0.785 0.941 0.888

(0.024) (0.036) (0.049) (0.023)

No. of selected probes 162 1000 76 1000

(40.210) (0) (1.741) (0)

Note: Averages of classification accuracy, Kendall’s s, weighted cost between

predicted and actual outcomes and the number of selected probes are shown

with standard errors in parentheses.

Feature-weighted ordinal classification 3273

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3270/6273574 by guest on 24 April 2024



especially with regard to the challenges due to the unbalanced class
proportions. Figure 2 reveals that for GSE9782, PLDA, PCRM and
FWOC are best in exactly classifying Classes 2, 4 and 5 respectively.
If we consider the misclassification to neighboring classes as an ‘ac-
ceptable error’, we find that FWOC is clearly the best, which is also
implied by its highest Kendall’s s in Table 2. The results for
GSE68871 in Figure 3 show that FWOC achieved the most correct
classification for Classes 1, 2, 4 and 5 while BhGLM is better for
Class 3. It is noticeable that the three compared methods, BhGLM,

PCRM and PLDA, are particularly worse in the smaller classes. We
also observed that they tended to assign samples to larger classes,
which may create a bias when trained with unbalanced data.

As discussed in Section 2, both FWOC and PLDA estimate a dis-
criminant subspace, onto which we can project the data to see the
pattern of classes. The 2D projections obtained from FWOC and
PLDA are in Figures 4 and 5 for GSE9782 and GSE 68871, respect-
ively. The left panel in Figure 4 shows much better class separation
than the right one. More importantly, it reveals that the classes have
a non-linear ordinality and one dimension is not sufficient to separ-
ate the classes, which implies that assuming a strictly linear ordinal-
ity may not be appropriate. Furthermore, we see that Class 3 (MR)
and Class 4 (NC) are close to each other compared with the other
three classes, which indicates that the pathological difference be-
tween ‘no change’ and ‘minimum response’ to Bortezomib therapy
may be small, or that one cannot distinguish them well based on
gene expressions. The projections for GSE68871 data in Figure 5
show a similar pattern. We can see that Classes 1 and 2 are heavily
overlapped, which similarly implies that the pathological difference
between ‘complete response’ and ‘near complete response’ to the
VTD therapy may be negligible.

3.2 Gene-wise interpretation
In this section, we take a closer look at the probes selected by our
proposed method. Specifically, we chose the top 50 probes with the
largest L1 norm of B. Figure 6 shows the heatmap for the top 50
probes for GSE9782, with each row corresponding to a patient.
Note that, the probes in the x-axis are re-arranged so that similar
patterns are easy to be detected. Most of the top 50 probes are clear-
ly over-expressed for patients who did not respond well to the drug,
while other probes show the opposite pattern. Common molecular
functions from gene ontology (GO) of the top genes: protein bind-
ing, poly(A) RNA binding, RNA binding, structural constituent of
ribosome, nucleotide binding and ATP binding. Protein binding is
known to affect drug activity, either by changing the effective con-
centrations or by affecting the lasting time of the effective

Fig. 2. A detailed view on out-of-sample predictions for GSE9782 data. Each bar,

representing the observed counts of each class, is partitioned according to the prox-

imity of the predicted classes. The scales of gray color are determined by

1� ji� jj=5, where i and j are the label for the actual class and predicted class, re-

spectively. For instance, in the first bar plot for FWOC, we can see that there are 12

cases of Class 4 in the data, out of which about 3 cases (averaged from 10 repeated

trainings) are correctly classified to Class 4, 5 cases are classified to neighboring

classes (3 or 5), and 4 cases are classified to Class 2

Fig. 3. A detailed view on out-of-sample predictions for GSE68871 data

Fig. 4. Projections of GSE9782 data onto the 2D discriminant subspace obtained by

FWOC and PLDA

Fig. 5. Projections of GSE68871 data onto the 2D discriminant subspace obtained

by FWOC and PLDA
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concentrations (Keen, 1971). Further, many of the probes are from
the ribosomal protein gene family (RPL15, RPL10A, RPS5, RPL22,
RPL35A, RPL38, etc.), some genes are related with ATP synthase,
Hþ transporting (ATP5O, ATP5L, ATP5S, ATP5SL, ATP5G2) and
eukaryotic translation initiation factor 3 (EIF3D, EIF3K).
Ribosomal protein has been shown to be a novel oncogenic driver,
in which the defect of ribosomal may break the balance of protein
production. What is more, bortezomib, as a type of proteasome
inhibitors, is shown to be a promising treatment for ribosome-de-
fective cancer (Sulima and De Keersmaecker, 2017) and such thera-
pies may benefit patients with various ribosomal defect. Therefore,
ribosomal-related activities are sensitive to the treatment of bortezo-
mib. In addition, the translation initiation factors are also related
with treatment to MM (Zismanov et al., 2015).

From the heatmap for GSE68871 in Figure 7, it is clear that gene
expression levels of the selected probes also show a pattern that cor-
responds to the monotonic change of class labels. With regard to
GO, we have found that the top genes cover various functions that
are related with the development of mutliple myeloma, such as im-
munoglobulin heavy constant gamma (Bergsagel et al., 1996), fas
cell surface death receptor (Yu and Li, 2013), long intergenic non-
protein coding (Butova et al., 2019) and so on. What is more, the
most significant biological process found via gene set analysis is
positive regulation of peroxisome proliferator-activated receptor sig-
naling pathway, which has been shown to be related to the apoptosis
of MM cells (Garcia-Bates et al., 2008). Also, it is known that the
inhibition of drug-induced cell apoptosis is closely related with drug
resistance in myeloma (Vougas et al., 2019).

4 Conclusion

In this article, we proposed a novel FWOC method, which incorpo-
rates the feature weights into the framework of sparse LDA to

obtain an effective classifier that accounts for the ordinality. Unlike
traditional approaches that assume a certain ordinal structure, such
as linear, projection to FWOC subspace can visualize the learned
structure of ordinality. Our study on MM has revealed that the drug
response categories are indeed non-linear.

A motivation behind this work came from an empirical observa-
tion in many HDLSS sparse classification studies. We have found
that often a multiple number of classifiers would yield similarly
good classification accuracies even when there is hardly no overlap
in the sets of chosen features. When the labels are ordinal, we can re-
duce this ambiguity by making use of a key information in the data
that are often overlooked: ordinality of the labels. Clinicians are
more likely to prefer a drug response prediction model that reflects
the progressing nature of the response categories, biologically or
functionally, than a model built to only predict the exact level of re-
sponse without regard to their natural hierarchy in the labels. Thus,
when the classification accuracies are comparable, a classifier de-
pending more on the variables that are correlated with the ordinality
should be preferred.

For both MM studies, we used the dimension of the discriminant
subspace d ¼ 1. As the number of ordinal classes is K ¼ 5 for either
dataset, the range of the dimension d of the discriminant subspace is
½1;4	. We recommend 2 or 3 for a problem like this, as it balances
between a complete nominal case (d ¼ 4) and a strictly linear case
(d ¼ 1). Even though omitted in the manuscript, we did try both
dimensions found that they are similar in terms of prediction accur-
acy. As it is easier to graphically present the estimated subspace with
d ¼ 2 than d ¼ 3, we chose to present the result. One of the com-
pared methods, PLDA, actually tuned the dimension and in most of
the trainings, d was estimated to be 2 or 3.

Asked by reviewers, we conducted an extensive simulation study
with various ordinality structures and underlying covariance types.
We have found that the proposed approach is competitive in all set-
tings and particularly advantageous when the classes are non-linear-
ly ordered and variables are meaningfully correlated. The details on
this study are available in the Supplementary Material.

We note that, there are other ways to incorporate the feature
weighting into the LDA framework, which we will leave as an im-
mediate future work. First, one can use a different weight function.
For example, univariate isotropic regression can be used to deter-
mine which feature is significantly order-concordant. Second, one
can use an alternative LDA formulation, such as optimal scoring to
set up a regression-type optimization problem, which might open up
more ways to incorporate the feature weights.

Financial Support: none declared.

Conflict of Interest: none declared.

References

Ananth,C.V. and Kleinbaum,D.G. (1997) Regression models for ordinal

responses: a review of methods and applications. Int. J. Epidemiol., 26,

1323–1333.

Archer,K.J. et al. (2014) ordinalgmifs: an R package for ordinal regression in

high-dimensional data settings. Cancer Inform., 13, 187–195.

Bergsagel,P.L. et al. (1996) Promiscuous translocations into immunoglobulin

heavy chain switch regions in multiple myeloma. Proc. Natl. Acad. Sci.

USA, 93, 13931–13936.

BladÉ,J. et al.; On behalf of the Myeloma, Subcommittee of the EBMT,

(European Group for Blood, and Marrow Transplant), Chronic Leukaemia

Working, Party and the Myeloma, Working Committee of the, IBMTR

(International Bone, Marrow Transplant Registry), and ABMTR

(Autologous Blood, and Marrow Transplant Registry). (1998) Criteria for

evaluating disease response and progression in patients with multiple mye-

loma treated by high-dose therapy and haemopoietic stem cell transplant-

ation. Br. J. Haematol., 102, 1115–1123.

Butova,R. et al. (2019) Long non-coding RNAs in multiple myeloma. Non

Coding RNA, 5, 13.

Cardie,C. and Nowe,N. (1997) Improving minority class prediction using

case-specific feature weights. In: ICML ’97: Proceedings of the Fourteenth

Fig. 7. Heatmap for the top 50 probes selected by FWOC from GSE68871. Each

row represents a sample and each column represents a probe

Fig. 6. Heatmap for the top 50 probes selected by FWOC from GSE9782. Each row

represents a sample and each column represents a probe

Feature-weighted ordinal classification 3275

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3270/6273574 by guest on 24 April 2024



International Conference on Machine Learning. pp. 57–65. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Chu,W. and Keerthi,S.S. (2005) New approaches to support vector ordinal re-

gression. In: Proceedings of the 22nd International Conference on Machine

Learning, pp. 145–152. Bonn, Germany.

de La Torre,J. et al. (2018) Weighted kappa loss function for multi-class classi-

fication of ordinal data in deep learning. Pattern Recognit. Lett., 105,

144–154.

Duffy,M.J. and Crown,J. (2008) A personalized approach to cancer treatment:

how biomarkers can help. Clin. Chem., 54, 1770–1779.

Falgreen,S. et al. (2015) Predicting response to multidrug regimens in cancer

patients using cell line experiments and regularised regression models. BMC

Cancer, 15, 1–15.

Fisher,R.A. (1936) The use of multiple measurements in taxonomic problems.

Ann. Eugen., 7, 179–188.

Frank,E. and Hall,M. (2001) A simple approach to ordinal classification. In:

European Conference on Machine Learning. pp. 145–156. Springer,

Freiburg, Germany.

Friedman,J.H. (1989) Regularized discriminant analysis. J. Am. Stat. Assoc.,

84, 165–175.

Garcia-Bates,T.M. et al. (2008) Peroxisome proliferator-activated receptor c
overexpression suppresses growth and induces apoptosis in human multiple

myeloma cells. Clin. Cancer Res., 14, 6414–6425.

Geeleher,P. et al. (2014) Clinical drug response can be predicted using baseline

gene expression levels and in vitro drug sensitivity in cell lines. Genome

Biol., 15, R47.

Hastie,T. et al. (1995) Penalized discriminant analysis. Ann. Stat., 23, 73–102.

Herbrich,R. et al. (1999) Support vector learning for ordinal regression. In:

1999 Ninth International Conference on Artificial Neural Networks

ICANN 99. (Conf. Publ. No. 470), Vol. 1. pp. 97–102. Edinburgh, UK.

Jung,S. et al. (2019) Penalized orthogonal iteration for sparse estimation of

generalized eigenvalue problem. J. Comput. Graph. Stat., 28, 710–721.

Keen,P. (1971) Effect of binding to plasma proteins on the distribution, activ-

ity and elimination of drugs. In: Concepts in Biochemical Pharmacology.

Springer, Berlin, Heidelberg, pp. 213–233.

Kotsiantis,S.B. and Pintelas,P.E. (2004) A cost sensitive technique for ordinal

classification problems. In: Hellenic Conference on Artificial Intelligence.

pp. 220–229. Springer, Samos, Greece.

Leha,A. et al. (2013) Utilization of ordinal response structures in classification

with high-dimensional expression data. In: German Conference on

Bioinformatics 2013. Schloss Dagstuhl-Leibniz-Zentrum Fuer Informatik,

Göttingen, Germany.

Ma,Y. et al. (2006) Predicting cancer drug response by proteomic profiling.

Clin. Cancer Res., 12, 4583–4589.

McCullagh,P. (1980) Regression models for ordinal data. J. R. Stat. Soc. Series

B Stat. Methodol., 42, 109–127.

Mulligan,G. et al. (2007) Gene expression profiling and correlation with out-

come in clinical trials of the proteasome inhibitor bortezomib. Blood, 109,

3177–3188.

Piccarreta,R. (2001) A new measure of nominal-ordinal association. J. Appl.

Stat., 28, 107–120.

Qiao,X. (2017) Noncrossing ordinal classification. Stat. Interface, 10,

187–198.

Shashua,A. and Levin,A. (2003) Ranking with large margin principle: two

approaches. In: Advances in Neural Information Processing Systems.

Vancouver, BC, Canada, pp. 961–968.

Sulima,S.O. and De Keersmaecker,K. (2017) Ribosomal proteins: a novel class

of oncogenic drivers. Oncotarget, 8, 89427–89428.

Terragna,C. et al. (2016) The genetic and genomic background of multiple

myeloma patients achieving complete response after induction therapy with

bortezomib, thalidomide and dexamethasone (VTD). Oncotarget, 7,

9666–9679.

Vougas,K. et al. (2019) Machine learning and data mining frameworks for

predicting drug response in cancer: an overview and a novel in silico screen-

ing process based on association rule mining. Pharmacol. Ther., 203,

107395.

Witten,D.M. and Tibshirani,R. (2011) Penalized classification using fisher’s

linear discriminant. J. R. Stat. Soc. Series B Stat. Methodol., 73, 753–772.

Yu,J. and Li,Y. (2013) A new hope for patients suffering from multiple mye-

loma. Stem. Cell Res. Ther., 4, 144.

Yuan,M. and Lin,Y. (2006) Model selection and estimation in regression with

grouped variables. J. R. Stat. Soc. Series B Stat. Methodol., 68, 49–67.

Zhang,X. et al. (2018) Predicting multi-level drug response with gene expres-

sion profile in multiple myeloma using hierarchical ordinal regression. BMC

Cancer, 18, 551.

Zismanov,V. et al. (2015) Multiple myeloma proteostasis can be targeted via

translation initiation factor eif4e. Int. J. Oncol., 46, 860–870.

3276 Z.Ma and J.Ahn

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3270/6273574 by guest on 24 April 2024


	tblfn1

