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Abstract

Motivation: The early detection of cancer through accessible blood tests can foster early patient interventions.
Although there are developments in cancer detection from cell-free DNA (cfDNA), its accuracy remains speculative.
Given its central importance with broad impacts, we aspire to address the challenge.

Method: A bagging Ensemble Meta Classifier (CancerEMC) is proposed for early cancer detection based on circulat-
ing protein biomarkers and mutations in cfDNA from blood. CancerEMC is generally designed for both binary cancer
detection and multi-class cancer type localization. It can address the class imbalance problem in multi-analyte blood
test data based on robust oversampling and adaptive synthesis techniques.

Results: Based on the clinical blood test data, we observe that the proposed CancerEMC has outperformed other
algorithms and state-of-the-arts studies (including CancerSEEK) for cancer detection. The results reveal that our pro-
posed method (i.e. CancerEMC) can achieve the best performance result for both binary cancer classification with
99.17% accuracy (AUC¼ 0.999) and localized multiple cancer detection with 74.12% accuracy (AUC¼ 0.938).
Addressing the data imbalance issue with oversampling techniques, the accuracy can be increased to 91.50%
(AUC¼ 0.992), where the state-of-the-art method can only be estimated at 69.64% (AUC¼ 0.921). Similar results can
also be observed on independent and isolated testing data.

Availability: https://github.com/saifurcubd/Cancer-Detection

Contact: kc.w@cityu.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genetic modifications often cause cancers through evolutionary diver-
sity and selections with uncontrolled growth of cells (Colaprico, 2020;
Nowell, 1976; Tao et al., 2019). It is one of the leading causes of death
for both men and women worldwide (Torre et al., 2015). It has 18.1
million new cases, with 9.6 million deaths in 2018 (Bray et al., 2018;
Hassan and De Rosa, 2020). Early cancer detection can inform early
medical interventions that reducing the patient mortality rate. It was
found that late cancer detection can reduce patient survival rates
(Hiom, 2015). Early cancer detection is accessible and can be performed
in various ways. Recently, liquid biopsy through blood test is a standard
procedure for early cancer detection from molecular biomarkers, genetic
variants, and mutations in circulating cell-free DNA (cfDNA).

A molecular biomarker can indicate the disease prognosis in a
patient. It can be defined based on a specific protein, a fragment of
the protein, DNA mutation, or even an RNA strand (Kumar, 2006;
Hanash et al., 2008). In particular, protein biomarkers are specific
and sensitive to clinical cancer detection, management, and monitor-
ing (Hüttenhain et al., 2019). Blood plasma is commonly adopted as
the protein biomarker source with minimal invasive damages to-
ward patients (Surinova et al., 2011). Recently, many biomarkers
are introduced to detect different cancer types at early and late
stages. In particular, four protein analytes are discovered in the early
detection of ovarian cancer in 2005 (Mor et al., 2005). Since then, it
has triggered our interest in cancer protein biomarkers for cancer de-
tection (Stoeva et al., 2006). Later on, many protein biomarkers are
proposed and identified from blood test analytes for cancer
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detection at the early stages (Cohen et al., 2018; Visintin et al.,
2008; Wang et al., 2020; Wong et al., 2019) and for different types
of cancers such as colorectal cancer (Karl et al., 2008; Pei et al.,
2007), breast cancer (Whitwell et al., 2020; Harbeck et al., 2014),
liver cancer (Bertino et al., 2012), lung cancer (Buszewski et al.,
2012), pancreatic cancer (Takadate et al., 2013), esophageal cancer
(Napier et al., 2014), and gastric cancer (Rugge et al., 2015).

Cell-free DNA (cfDNA) based liquid biopsy is an appealing clin-
ical application for early cancer detection (Shuo Li et al., 2020).
Examining cfDNA through blood can give a non-invasive medical
test for cancer patient detection (Cristiano et al., 2019). Currently,
the blood test is widely used for early cancer detection. The early
prostate cancer detection studies based on prostate-specific antigen
assessment are still debated (Pinsky et al., 2017). Many other
researchers are working on the sequencing of cancer-based somatic
variations in circulating cfDNA for early cancer detection (Cohen
et al., 2018; Cristiano et al., 2019; Phallen et al., 2017; Razavi et al.,
2019), gastric cancers (Kim et al., 2019), colorectal cancer (Osumi
et al., 2019), lung cancer (Gandara et al., 2018), breast cancer
(Cristina, 2019; O’Leary et al., 2018; Garcia-Murillas et al., 2015),
lung cancer in early-stage (Abbosh et al., 2017) and late-stage
human malignancies (Bettegowda et al., 2014). ABEMUS (Casiraghi
et al., 2020) is developed to detect the somatic single-nucleotide var-
iants in cfDNA for cancer detection and recurrent cancer growth de-
tection from sequencing data (Caravagna et al., 2018). However,
cfDNA-based blood tests (liquid biopsies) have limitations in cancer
localizations (Bettegowda et al., 2014). Therefore, several studies
recommend the direction in which both cfDNA mutations and pro-
tein biomarkers should be combined (Cohen et al., 2017).

The somatic variants in cfDNA, circulating tumor DNA
(ctDNA) and different protein biomarkers of blood plasma analytes
can enhance the cancer detection performance using machine learn-
ing tools and techniques at early stages (Wong et al., 2019).
Through machine learning, cancer detection can be achieved based
on different data types such as pathological data, clinical data, li-
quid biopsies data, and cfDNA mutations data.

In this article, protein biomarker concentrations and identified
mutations in plasma cfDNA/ctDNA data collected from cancer
patients and healthy controls (Cohen et al., 2018) are adopted to de-
tect cancers at different stages (i.e. stages I to III) according to the
American Joint Commission on Cancer (AJCC) as well as the local-
ization of surgically resectable eight cancer types such as lung, liver,
colorectum, ovary, esophagus, stomach, breast, and pancreas. In
particular, breast and ovarian cancer are common cancers in
women. Ovarian cancer has caused 152 000 deaths annually world-
wide (Whitwell et al., 2020).

Researchers are working on cancer detection using machine
learning algorithms; for instance, network-based multi-task learning
model (Wang et al., 2020), deep-learning (Chen et al., 2019; Wong
et al., 2019), and conjunctive Bayesian networks for cancer predict-
ability pathways (Hosseni et al., 2019). Recent research in early can-
cer detection from mutations in cfDNA and different protein
biomarkers data through blood test analytes are CancerA1DE, Deep
Learning, Decision tree, Naı̈ve Bayes, Random Forest, and
CancerSEEK (Cohen et al., 2018; Wong et al., 2019). CancerA1DE
relies on Average One-Dependence Estimators (AODE) (Webb
et al., 2005). AODE is a semi-naı̈ve Bayesian machine learning esti-
mator that can can classify through aggregating many one-depend-
ence classifications. Deep Learning used deep feed-forwardneural
networks with one,two, and three hidden layer/s with other default
set-tings in weka tools (Hall et al., 2009). CancerSEEK uses logistic
regression for frontline binary cancer classification as Cancer or
Normal class and random forest (RF) for cancer type localization.
However, the existing CancerA1DE method has achieved satisfac-
tory prediction performance for binary cancer classification.
Nevertheless, it does not give satisfactory results for cancer localiza-
tion to the class imbalance problem. The class imbalance problem
for cancer localization detection data is still challenging. The exist-
ing methods are limited to insufficient accuracy in cancer detection
due to the data uncertainty from cfDNA mutation scores and pro-
tein biomarker data from multianalyte blood test. Those methods

are hardly realistic, along with high standard deviations and class
imbalance in cancer localization data. Therefore, we need to pro-
pose other machine learning techniques that can handle the uncer-
tainties and limitations.

In this article, an ensemble meta classifier (CancerEMC) with
average one-dependent estimators (AODE) is proposed for cancer
detection. It can be implemented for both binary cancer detection as
‘Cancer’ or ‘Normal’ and cancer localization types detection. For
CancerEMC, different attribute selection methods are used to select
the best protein biomarker attribute set for both binary and local-
ized cancer detection. Moreover, ADAptive SYNthetic (ADASYN)
(He et al., 2008) and Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al., 2002) are found beneficial toward
CancerEMC for oversampling of unbalanced cancer localization data
that increase the performance accuracy of localized cancer detection.

The remaining of this article is organized as follows: Section 2
briefly presents the methods and materials for cancer detection from
cfDNA mutation score and protein biomarker levels in blood test
analytes; Section 3 provides the experimental setup, results, per-
formance analysis, and comparison with exiting other methods of
cancer localization detection through blood test analytes.

2 Materials and methods

2.1 Datasets
In this study, we have collected the multi-analyte blood test data
(mutations of cfDNA/ctDNA and the assayed protein biomarker
levels in blood plasma samples) and clinical characteristics of cancer
detection from Cohen et al. (2018), as shown in Figure 1. It consists
of two datasets collected from cancer patients and healthy controls
by the blood test (liquid biopsy) as a non-invasive medical test. The
first dataset has 1817 patients’ blood test sample data, where 1005
cancer patients are diagnosed at the median age of 64 (range 22–93)
with different AJCC stages I to III. These cancers are identified at
eight different organs such as breast, lung, colorectum, liver, ovary,
stomach, pancreas, and esophagus. The others are 812 healthy con-
trol individuals at the average age of 55 (28–65) without a cancer
history. The mentioned dataset consists of thirty-nine protein bio-
marker concentrations in plasma samples and omega score calcu-
lated from the detected mutations in cfDNA samples of the same
patient and their clinical characteristics [age, sex, race (ethnicity)
and histopathology]. In particular, Cohen et al. (2018) used nine
selected features (Omega score and eight protein biomarkers
selected by a straightforward optimization) from the first dataset for
binary cancer detection. The second dataset consists of 626 cancer
patient data samples with forty-one features (Omega score, thirty-
nine protein biomarkers and age) for cancer type localization.

Fig. 1. Methodology overview for early cancer detection
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We have processed the multi-analyte blood test dataset into four
sub-datasets (shown in Figure 1) to evaluate the proposed
CancerEMC method in different aspects. Those four sub-datasets
are denoted as subdataset1 (SD1) for binary cancer detection as
same as the first dataset of Cohen et al. (2018) for binary cancer de-
tection; subdataset2 (SD2) for binary and localized cancer detection
with all features except histopathology; subdataset3 (SD3) which
consists of only 1005 cancer patient data for localized cancer detec-
tion and finally; subdataset4 (SD4) with only 626 samples with
forty-one features as same as the second dataset of Cohen et al.
(2018).

2.2 Features analysis and selection
In total, we have 1817 patient samples with one feature (Omega
score) related to the cfDNA mutations, thirty-nine features of pro-
tein biomarkers (PBMs) concentrations in blood plasma, and four
clinical features (age, sex, ethnicity and histopathology). Omega
score denotes the cfDNA mutation score calculated from the mutant
allele frequency (MAF) in four wells of unique identifier sequences
(UIDs) of cfDNA in plasma samples using the following equation (1)
(Cohen et al., 2018).

Omegascore Xð Þ ¼
XW

i¼1

wi�ln
pC

i

pN
i

(1)

where, W is the number of wells in cfDNA, wi is the ratio of the
number UIDs in ith well and the total number of UIDs
(UIDsi=UIDs) , pC

i is the P-value of Cancer in MAF distribution of
ith well and finally, pN

i is the P-value of Normal in MAF distribution
of ith well.

All clinical features are collected from cancer patients and
healthy controls except histopathology. The histopathology feature
describes the microscopical characteristics of cancer cells/tissues to
identify different cancer types. Therefore, it is not included in the in-
put features of the CancerEMC method for cancer detection.
Moreover, the ‘sex’ feature is used in CancerEMC. It is found less
important than the other features for binary cancer detection.
However, it has remarkable impacts on cancer localization because
some cancer types such as breast cancer and ovary cancer are dis-
criminative in female patients. The ethnicity feature represents the
individual’s genetic invariant and physical traits that also impact
binary cancer detection.

We have conducted statistical analysis with visualization tools
such as correlation heatmap, data scattering histogram, cluster heat-
map, parallel coordinate plot, and feature histogram for feature ana-
lysis. Supplementary Figure S1 visualized the Pearson correlational
heatmap of thirty-nine protein biomarker features on SD2, where
most of the protein biomarkers exhibit low correlation values.
Supplementary Figure S2 visualizes the parallel coordinate plot for
all features for both binary and localized cancer detection. It has
illustrated that all features, including protein biomarkers, are not
equally crucial for both binary and localized cancer detection from
multianalyte blood test data. Supplementary Figures S3 and S4 show
the correlational cluster heatmap on SD1 for binary cancer detection
and SD4 for localized cancer detection. From Supplementary
Figures S1, S3 and S4, we observed that most protein biomarkers
have low correlational values (-0.2 to less than 0.4).

We have applied different feature selection (FS) methods to select
vital protein biomarker features for the binary and localized cancer
detection, such as Random Forest Feature Selection (RFFS) algo-
rithm, Information Gain Ratio (InfoGainRatio), Recursive Feature
Elimination (RFE) using logistic regression, random forest, extra
tree classifier and Extreme Gradient Boosting tree (XGBoost) (Chen
and Guestrin, 2016). To consider the unbiased cancer prediction, we
have adopted 10-folds cross-validation (CV) with and without fea-
ture selection method and obtained median accuracies, AUCs in
ROC space, f-Scores, along with CV error estimations as shown in
Supplementary Table S1. We used the Root mean squared error
(RMSE) and Mean absolute error (MAE) for error estimation in 10-
folds CV (Varma and Simon, 2006; Ambroise and McLachlan,
2002). It is observed that feature selection before the CV gives better
results when considering error estimation and other evaluation met-
rics. In the CancerEMC, the FS process of all feature selection meth-
ods used the 10-fold CV and other FS criteria to select significant
protein biomarkers for cancer detection. Therefore, we have con-
ducted a feature selection procedure before the CV and resampling
techniques. RFFS algorithm, RFE and XGBoost methods are imple-
mented in Python 3.0 sklearn package. The InfoGainRatio features
selection method is implemented in Weka 3.4 tools with default
parameters. XGBoost is an ensemble boosting machine learning al-
gorithm for both data classification and feature selection. In this art-
icle, the RFFS algorithm, XGBoost, RFE and InfoGainRatio
selection methods are compared for significant protein biomarker
feature selection from thirty-nine protein biomarkers for both binary
and localized cancer detection. XGBoost protein biomarker import-
ance bar with their average gains across all splits is visualized in
Supplementary Figure S5 for binary cancer detection and
Supplementary Figure S6 for localizing cancer detection. Protein
biomarkers feature selection using the RFFS algorithm with their im-
portance values are depicted in Supplementary Figure S8 and S9 and
for binary and localized cancer detection, respectively. RFFS algo-
rithm used the Gini importance calculated by averaging the decrease
in impurity all over the random forest trees for features importance.

Supplementary Figure S8 and S9 illustrate that the fifteen protein
biomarker features (From IL-8 to Thrombospondin-2 in
Supplementary Fig. S8) significant for binary cancer detection and
19 protein biomarker features (From IL-6 to sFas in Fig. S9) for
localized cancer detection, respectively. On the other hand, Cohen
et al. (2018) selected only eight protein biomarkers (PBMs) with a
strightforward optimization techniques in SD1. The scatter histo-
gram of binary cancer detection features with green color for cancer
patients and orange color for healthy patients is shown in
Supplementary Figure S7. The details are tabulated in Table 1.

Table 1 illustrates that the RFFS algorithm has the best accuracy
to select the minimum number of protein biomarker features for bin-
ary and localized cancer detection.

After analyzing all PBM, clinical and cfDNA features for cancer
detection, we have reached the following observations: (1) Different
PBMs have different impacts on cancer detection. (2) PBM features
are not suitable to perform cancer detection alone (Bettegowda
et al., 2014). (3) The cfDNA mutation score (omega score) and
PBMs data can increase cancer detection performance (Cohen et al.,
2017). (4) Finally, the clinical features such as sex also have impacts
on cancer localization.

Table 1. Protein biomarker (PBM) features selection with maximal classification accuracy based on CancerEMC

Rank Method Binary (no. of selected PBM) [accuracy] Cancer types (no. of selected PBM) [accuracy]

1 RFFS Algorithm 15 [99.17%] (Supplementary Fig. S8) 19 [73.1629 %] (Supplementary Fig. S9)

2 XGBoost 14 [99.1194%] (Supplementary Fig. S5) 25 [72.4042%] (Supplementary Fig. S6)

3 RFE with Logistic Regression 25 [98.8993 %] 25 [70.4473 %]

4 RFE using Random Forest 6 [98.8442 %] 13 [70.2875 %]

5 RFE using Extra Tree 17 [98.90%] 30 [71.5655 %]

6 Info Gain Ratio 39 [99.00%] 34 [72.6837 %]

Cancer detection from blood 3321
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We have used the additional features: age, ethnicity, and sex
with previously mentioned omega scores of cfDNA and selected fif-
teen significant protein biomarker features from SD2 for binary can-
cer detection. To localize cancer detection, we selected nineteen
protein biomarker features by the RFFS algorithm along with omega
score and sex attributes for cost-effective blood test. We have found
that these nineteen PBMs are already used to detect previously men-
tioned cancer types. Therefore, CA 15-3, CA19-9, sHER2, sEGFR2,
sErbB2, IL-6, IL-8, Midkine, Prolactin, GDF 15, CD44, Leptin,
sFas, and TIMP-2 PBMs are used for breast cancer; AFP and OPN
are used for liver cancer; EGFR2, NSE, CEA, Midkine,
Thrombospondin-2, GDF-15, HGF, TGFa, and Leptin are used for
lung cancer; CA 19-9, HGF, OPN, Thrombospondin-2, sHER2,
TGFa, and TIMP-2 are used for pancreas cancer; CA-125, sHER2,
and GDF-15 are used for ovary cancer; CEA, IL-6, GDF 15, CD44,
TIMP-2, Leptin, and sHER2/sEGFR2/sErbB2 are used for colorec-
tum cancer; and finally CA19-9, sHER2, OPN, HGF, and TGFa are
used for Upper GI (upper gastr-ointestinal) cancer (Sung and Cho
2008; Borrebaeck, 2017; cancer.gov, 2020; Cao et al., 2012;
Filippou et al., 2020; Hassan et al., 2009; Jiang et al. 2019; Kim
et al., 2017; Matsumoto et al. 2017; Spanopoulou and Gkretsi,
2020). Moreover, the state-of-the-art methods (CancerSEEK and
CancerA1DE) (Cohen et al., 2018; Wong et al., 2019) are compared
based on all thirty-nine protein biomarker features for localized can-
cer detection along with sex attribute. However, those methods can-
not give better cancer detection compared to the proposed
CancerEMC methods with a smaller number of protein biomarkers.
Therefore, the CancerEMC method is more cost-effective than the
existing method due to the minimal protein biomarkers needed.

2.3 Oversampling techniques for data imbalance
Data imbalance is one of the most critical problems for data classifi-
cation. Generally, the number of samples in real dataset is usually
not equally distributed to classes, leading to majority class and mi-
nority class (also known as class imbalance issue). It can create pit-
falls in data science such as model overfitting or underfitting. In
particular, the imbalanced data classification problems can bias the
classification result in favor of the majority class. In machine learn-
ing techniques, class imbalance problems are handled in two
approaches (Chawla et al., 2002). The first one is to assign cost
functions to training samples (Pazzani et al., 1994). Another one is
the original dataset’s resampling obtained by either undersampling
to mitigate the majority classes or oversampling to reduce the minor-
ity classes (Kubat and Matwin, 1997).

In this article, the localized cancer detection data has the data
imbalance problem since each cancer type is not equally distributed.
In particular, we observe that colorectum cancer is significant with
the highest patient count in SD4, as shown in Supplementary Figure
S10. It illustrates the red bar for colorectum class as the majority
class and blue bars for liver and ovary classes, which are minority
classes. The localized cancer detection performance has been biased
toward the colorectum majority class. Hence, we need to solve this
data imbalance problem through resampling techniques.

Considering such a phenomenon, we apply different under-
sampling techniques (ClusterCentroids, RandomUnderSampler,
NearMiss, InstanceHardnessThreshold, CondensedNearestNeighbour,
OneSidedSelection and EditedNearestNeighbours) to minimize the data
imbalance issue of SD4. The InstanceHardnessThreshold method gives
better results in both ROC space and accuracy than others. However, it
has generated small numbers of data instances (308) for the
CancerEMC method. Its accuracy is not good enough, as shown in
Supplementary Table S2. We apply different oversampling methods
(SMOTE, ADASYN, SMOTETomek, SVMSMOTE and
RandomOverSampler) in the same SD4 data. The SMOTE method
gives the highest AUC values as shown in Supplementary Table S2.
According to the SMOTE reference article, we also applied SMOTE
oversampling to the minority classes combined with
InstanceHardnessThreshold under-sampling to the majority class in
SD4 and obtained the 82.64% median accuracy with the AUC of 0.976
as shown in Supplementary Table S2. From Supplementary Table S2,
we observed that the SMOTE oversampling technique is better than

other oversampling/undersampling techniques in accuracy for cancer
detection using CancerEMC. Therefore, SMOTE oversampling techni-
ques are employed to the CancerEMC method for addressing the data
imbalance problems in cancer localization. In this article, the Adaptive
Synthetic Sampling Method (ADASYN) also recommends mitigating
the data imbalance.

SMOTE is an oversampling method (Chawla et al., 2002) that
solves the class imbalance problem in a real dataset. It relies on k-
nearest neighbor (KNN) for oversampling in imbalanced datasets.
For SD4, we have applied the SMOTE method using the imbalance-
learn python package. It 260% oversampled to breast cancer class,
486.05% for liver cancer class, 313.5% for lung cancer class,
375.47% for ovary cancer class, 276.12% for pancreas cancer class
and finally 215.5% for upper GI cancer class, resulting in the equal
number of patient data instances for each cancer type. The updated
instance number of each class of SD4 is shown in Supplementary
Figure S11.

Finally, after applying oversampling techniques the patient data
have been balanced for localized cancer detection. The balanced
data instance statistics after using the oversampling technique to
SD4 are shown in Supplementary Figure S11. We have adopted the
balanced data of oversampling techniques to the proposed
CancerEMC method and observed that the SOMTE techniques
could mitigate the data imbalance problem. The effects of oversam-
pling will be discussed in the results section.

2.4 CancerEMC
Ensemble classifier is a fundamental approach that can use more
than one base classifier learning algorithm for training to achieve ro-
bust classification results (Zhang and Ma, 2012). It is an attractive
approach that can enhance the weak learner classification perform-
ance by increasing the classification accuracy. Ensemble learning
aims at finding a set of learning algorithm models, providing better
performance than individual learning algorithms. It is a supervised
algorithm that combines the other supervised learning algorithms to
ensemble different training models to achieve an overall excellent
classification performance. It has many ensemble techniques, such
as Boosting, Bagging, Stacking, Grading, and Voting (LeDell, 2015).

For performance comparisons, several machine learning
approaches are selected for cancer detection such as support vector
machine (SVM), naı̈ve Bayes, random forest, decision tree, DNTB,
Bayesian network, the multi-objective evolutionary fuzzy classifier
(MEOFuzzyC), neural network, knowledge-based classifier, deep
learning, KNN, average one dependence estimators (AODE), and lo-
gistic regression. Although some approaches have achieved satisfac-
tory performance in binary cancer classification, those are still not
sufficient for cancer type localization due to the data imbalance
problem. Decision tree, logistic regression, naı̈ve Bayes, random for-
est, and deep learning have already been employed in previous re-
search with the same dataset (Cohen et al., 2018; Wong et al.,
2019). The remaining methods are implemented using machine
learning tools (Weka). However, those methods and the existing
methods are limited to insufficient accuracy in localized cancer de-
tection due to the data uncertainty from cfDNA mutation scores
and protein biomarker data in the blood test. Those methods are
hardly realistic due to the very low correlation coefficient, high var-
iances, and class imbalance in cancer localization data. Therefore,
this cancer detection system needs other machine learning techni-
ques to handle the uncertainties and mentioned limitations. In this
study, we proposed to adopt the combination of individual machine
learners through an ensemble method for cancer detection, such as
cancer ensemble meta classifier (CancerEMC). CancerEMC
employed bootstrap aggregating (Bagging) with average one-
dependence estimators (AODE) as base learner. The bagging
method combines the bootstrapped replica of the base training
model learner. AODE learner is a variant of the naı̈ve Bayes model.
A detailed description of the Bagging and AODE method can be
found in Supplementary Document. The overview of CancerEMC
method is shown in Figure 2.

The CancerEMC method framework consists of five essential
components in a sequential manner: (i) Collecting multianalyte
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blood test data. (ii) Features analysis and selection. (iii) Over-
sampling/under-sampling for imbalanced data. (iv) Two independ-
ent evaluation procedures to evaluate the model. Firstly, dataset
stratification for nested cross-validation (NCV). Secondly, random
training and testing data separation for isolated testing evaluation.
(v) Ensemble meta classifier (EMC) methodology. The detailed de-
scription of CancerEMC is described in the following steps:

Step1: Collect the multianalyte blood test data with cfDNA muta-

tions and protein biomarker (PBM) concentration levels from can-

cer patients and healthy control patients.

Step2: Organize the collected data into four sub-datasets as SD1 to

SD4, where SD1 is for binary cancer detection (cancer or normal)

only while SD2 is adopted for binary cancer detection and cancer

type localization. In contrast, SD3 and SD4 are created only for

additional localized cancer detection performance benchmarks as

previously mentioned.

Step3: Select the significant protein biomarker (PBM) features by

using an effective feature selection method. Here, the RFFS algo-

rithm is used to select the significant PBM features illustrated in

Section 2.2.

Step4: Check for the data imbalance problem. If any data imbalance

is found, then oversampling and/or under-sampling techniques

apply to mitigate data imbalance; otherwise, skip to the next step

5. Here, the SMOTE oversampling technique is used for the data

imbalance problem of synthetic resamples to remove data imbal-

ance problems. The SMOTE method is described in Section 2.3.

Step5: Partition the full dataset to training data and test data. For k-

fold nested cross-validations, the full dataset is divided into k

folds, where the kth fold is used as the validation data. The

remaining k-1 folds are used as the training data with rotations for

k iterations. We proposed another inner loop within the training

data with 5-folds cross-validation to select each model parameter

for each of the k iterations. The k-fold nested cross-validation

(NCV) is used to validate the performance of CancerEMC under

different data folds. We used the 10-fold NCV (with the 5-folds

inner-loop cross-validation) for cancer detection to validate the

CancerEMC method. Secondly, we randomly separated the full

dataset into 70% training data and 30% independent test data.

Specifically, 70% of data are used to train each model, and the

remaining 30% of data are reserved for testing the trained models.

Step6: Apply the Ensemble Meta Classifier (EMC) framework and

follow the two aforementioned evaluation procedures for the can-

cer detection performance benchmark. To build the EMC, we em-

ploy the bagging learning method with AODE as a base learner.

We used Weka 3.8.4 API in Java to implement the CancerEMC

meta classifier with the base classifier AODE. Number of iterations

is set 50–200, bagPercent is set to 100, batchSize is set to 100, and

random seed is set to 1.

Step7: Generate the evaluation matrices from the classification

results of Step6 for cancer detection. We generated two independ-

ent evaluation metrics respectively.

Step8: Generate and visualize the accuracy (ACC), sensitivity (SN),

Area Under Curve (AUC), F-measures, micro-average (PRmicro),

and macro-average precision (PRmacro) for cancer detection results

from multianalyte blood test using the below equations (2) to (7)

for two evaluation procedures as mentioned in step 5.

Step8: Compute the evaluation scores of the CancerEMC method

2.5 Performance evaluation
For the performance evaluations of the proposed CancerEMC along
with other methods, we have computed the evaluation metrics that
are Accuracy (ACC), Sensitivity (SN), AUC and F-measures.

ACC ¼ TPþ TN

TPþ TN þ FPþ FN
¼ TPþ TNð Þ=n (2)

SN ¼ TP=ðTPþ FNÞ (3)

PR ¼ TP=ðTPþ FPÞ (4)

F �measure ¼ 2� SN � PR

SN þ PR
(5)

PRmicro ¼
P

c TPcP
c TPc þ

P
c FPc

(6)

PRmacro ¼
P

c PRc

C
(7)

where PRmicro is micro-average precision, PRmacro is macro-average
precision, c is the class index and C is the total number of classes.

For the benchmark, we have used the k-fold cross-validation
(CV) test with k¼10 and 7:3 training-test data splitting ratios for
CancerEMC along with other methods. We also used the receiver-
operating characteristic (ROC) curves to compute for AUC and
visualize the proposed CancerEMC method’s comparisons with
other existing and typical machine learning classifiers. The micro-
average AUC and macro average AUC are also computed to evalu-
ate different cancer types. Besides, the convex hull of the ROC
curve, nested CV and 30% independent test data before resampling
are also used to validate CancerEMC method.

3 Results and discussion

In this cancer detection study, CancerEMC is proposed to detect
cancer from multianalyte blood test data that include the omega
score and different protein biomarker concentrations with clinical
history. To build this CancerEMC method, we followed the step by
step procedure of the CancerEMC method (Figure 2) as mentioned
in Section 2.4. We employed the RFFS algorithm to select the vital
protein biomarker features and the bagging ensemble meta classifier
with AODE as the internal base learner. We have used the python
machine learning packages along with Weka 3.8.4 (Hall et al.,
2009) tools and API to build the CancerEMC method. RFFS

Fig. 2. Overview of CancerEMC for cancer detection

Cancer detection from blood 3323

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3319/6124279 by guest on 10 April 2024



algorithm is implemented using the sklearn python package.
Bagging ensemble meta classifier and its base learner AODE are
implemented using weka tools and API. Oversampling methods to
solve the data imbalance problem are implemented using the
imbalance-learn python package.

To generate the cancer detection result, we have used the avail-
able multianalyte blood test dataset from previous studies, as
described in Section 2.1. After that, we reorganize the collected data
into four sub datasets, SD1 to SD4. SD1 is the same data as the first
dataset of Cohen et al. for binary cancer detection; SD2 is full blood
test data with all feature attributes for both binary and localized
cancer detection; SD3 is for cancer localization with 1005 cancer
patients at the 99% specificity level. Finally, SD4 is for localized
cancer detection with 626 cancer patient data (Figure 1). We have
analyzed and found the significant protein biomarkers for
CancerEMC by applying the RFFS algorithm through recursive fea-
ture elimination with different classification learners and other
methods (Section 2.2). Different oversampling techniques are used
to produce a new balanced dataset for solving the data imbalance
problems. SMOTE and ADASYN oversampling techniques are
applied to find out balanced data for cancer detection. Finally, the
bagging ensemble meta classifier with the AODE base learner
method is implemented for cancer detection.

Overfitting is one of the most common and concerning problems
in machine learning classification and prediction (Claeskens et al.,
2008). It occurs to a model that closely fits for limited data and not
reasonably fit for future unseen data. It can affect data classification
and prediction results. Data overfitting can be prevented using
cross-validation (CV), ensemble, resampling, removing irrelevant
features, model regularization, and early stopping through loss func-
tion. In this study, overfitting can occur due to data imbalance, re-
dundant features, and insufficient data. Hence, we need to handle
the data overfitting problem for the proposed CancerEMC method.
Therefore, feature selection methods, different resampling techni-
ques, 10-folds nested CV for parameter regularization, and random
independent test data separation are used to handle the CancerEMC
method overfitting and validation. Independent test data are ran-
domly separated through splitting the original dataset into a training
dataset and an independent test dataset (i.e. not used to train the
model). We discuss and present the proposed CancerEMC method
results for the sub-datasets SD1–SD4, respectively.

For SD1, it has 1817 patient instances with twelve features and a
binary class label for cancer detection from multianalyte blood test
data. We have applied the proposed CancerEMC method for binary
cancer detection as ‘Cancer’ or ‘Normal’. We have also used the
clinical characteristics (age, sex, and ethnicity) and nine features
mentioned in previous studies to enhance binary cancer detection ac-
curacy. Finally, we observe that CancerEMC can achieve the classi-
fication accuracy of 97.91% and the AUC of the ROC curve is
0.9979, as shown in Figure 3, Table 2, and Suplementary Table S5.
Subsequently, we have also applied supervised machine learning
classifiers with the Weka default parameter values on SD1 for com-
parisons with CancerEMC results in Table 2 and Figure 3. We also
applied 70% data for training and 30% data for testing on SD1, as
shown in Table 2. Again, CancerEMC with SMOTE has applied to
SD1 and obtained the accuracy value 97.51%, which slightly
decreased as shown in Suplementary Table S5.

For SD2, it also has 1817 data instances of multianalyte blood
test data with omega score, protein biomarkers, and clinical charac-
teristics. We have applied the RFFS algorithm through recursive fea-
ture elimination (described in Section 2.2) to select the significant
protein biomarkers for binary classification with omega score of
cfDNA and clinical characteristics such as age, sex, and ethnicity.
Based on 10-fold CV, CancerEMC obtained the highest accuracy
value ACC¼99.17% with AUC ¼ 0.999. CancerEMC is also tested
on 30% independent test data randomly separated from SD2 for
binary cancer detection with ACC¼99.08% and AUC¼0.999
(shown in Table 2). Again, CancerEMC with SMOTE was applied
to SD2 and obtained the accuracy value of 99.05% as shown in
Suplementary Table S5.

For binary cancer detection, SD1 and SD2 sub datasets are used
to the proposed CancerEMC method and existing and other ma-
chine learning methods to generate and evaluate the binary cancer
detection from the multianalyte blood test. We observe that the pro-
posed CancerEMC method performed better than CancerA1DE,
CancerSEEK methods, and other supervised learning methods in
terms of both the 10-folds CV method and 30% independent test
data for binary cancer detection. It achieved a better accuracy value
of 99.174% than existing methods (Cohen et al., 2018; Wong et al.,
2019) for binary cancer classification.

Again, CancerEMC has been applied to SD2 for localized cancer
type detection under the 10-fold CV. It obtained the classification
accuracy ACC¼ 83.4893% and AUC¼ 0.980 with median
sensitivity¼83.50% as shown in Suplementary Table S5.
CancerEMC method was also tested on the 30% independent test
data of SD2 for localized cancer detection and obtained the median
accuracy of 86.9725% with median AUC ¼ 0.984. CancerEMC
with SMOTE has been applied to SD2 for localized cancer detection
and obtained the accuracy value 95.977%, which has been dramat-
ically increased, as shown in Suplementary Table S5 with a massive
number of instances due to the 812 healthy controls.

For SD3, it has only 1005 cancer patient instances of multi-
analyte blood test data with omega score, sex, and protein bio-
markers for localized cancer detection at the 99% specificity level.
We adopted the proposed CancerEMC method to SD3 for cancer lo-
calization at the 99% specificity level under 10-fold CV. This
method has given an accuracy value ACC¼ 74.289% (Shown in
Supplementary Table S5) that is also better than the previous studies
(i.e. CancerSEEK and CancerAIDE). After handling the data imbal-
ance problem, the proposed CamcerEMC method with SMOTE has
increased the median accuracy to 93.98% using the 10-folds CV
shown in Supplementary Table S5.

Finally, for the SD4 sub-dataset with the same features as used in
(Wong et al., 2019) at the 99% specificity level, we applied different
supervised machine learning methods [i.e. BayesNet, Logistic, SVM,
K-NN, AdaboolstM1, Random Forest, J48, Decision Tree with
Naı̈ve Bayes (DTNB). MultiObjective EviluatinaryFuzzyClasifier]
with the proposed CancerEMC method. All mentioned methods are
implemented in Weka 3.8.4 API tools (Hall et al., 2009) with the
same features and default Weka parameter values. We have used
SD4 without oversampling and PBM features selection in all meth-
ods and obtained the ACC and AUC in Table 3 as visualized in
Supplementary Figure S12. For CancerEMC, localized cancer detec-
tion results from SD4 are presented in three steps: (i) Apply SD4
without any change (the same as previous studies). (ii) Apply SD4
with protein biomarker features selection. (iii) Apply SD4 with both
protein biomarker feature selection and oversampling techniques.

In the first step, we have applied only ensemble meta classifier
(EMC) of CancerEMC without feature selection and oversampling
by considering 10-fold CV and 30% independent test data. We
obtained the median cancer detection accuracy under 10-folds CV
as 72.8435% and 66.4894% for 30% independent test data. The
ROC curves with AUCs from 10-fold CV for all localized cancer
types are shown in Supplementary Figure S13.

In the second step, the RFFS algorithm was applied to the
CancerEMC method to select the significant protein biomarkers

Fig. 3. ROC curve comparisons for binary cancer detection
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features (described in Section 2.2) for the cost-effective blood test in
cancer detection. According to the descending feature importance
order, 19 protein biomarkers with omega score and sex are selected
for the CancerEMC method (Suplementary Figure S9). After applying
CancerEMC, we obtained the median localized cancer detection ac-
curacy as increased to 74.1214% with AUC ¼ 0.938 in 10-fold CV
(the highest accuracy) before oversampling with only 19 protein bio-
markers. We also applied the CancerEMC method with 70% training
data and 30% independent test data from SD4 and obtained the me-
dian accuracy value of 67.5532% for localized cancer type detection.
The ROC curves with different cancer types with average micro and
macro ROC from the 10-fold CV are shown in Suplementary Figure
S16 and Suplementary Table S5. It illustrates that the localized cancer
detection on SD4 using the proposed CancerEMC method gives the
AUC values with micro-average AUC¼0.960 and macro-average
AUC¼0.951.

In the third step, we used two different oversampling techni-
ques (ADSYN and SMOTE) to mitigate the data imbalance prob-
lem (describe in Section 2.3) in SD4 with the selected 19 protein
biomarkers, omega score, and sex for localized cancer type
detection.

For ADASYN, SD4 has the data imbalance issue with six minor-
ity classes and one majority class. Hence, it has to apply six over-
sampling runs for the six minority classes and obtained a balanced

dataset (1799 data instances). Ensemble meta classifier of the pro-
posed CancerEMC was applied with 10-fold CV on the newly bal-
anced dataset and obtained the accuracy ACC¼90.7727%. The
ROC curve with the AUC of each cancer type (i.e. average micro
and macro ROC) are shown in Supplementary Figure S14. The indi-
vidual ROC curves with AUC values and micro and macro average
ROC curves are shown in Supplementary Figure S15.

For CancerEMC with SMOTE oversampling technique, the
SMOTE method has been applied to handle data imbalance in SD4
with the selected 19 protein biomarkers, omega score, and sex for
localized cancer type detection. It has oversampled 215% to
486.05% for six minority classes and generated 1764 data instances
with an equal number of instances for each cancer type (i.e. 252).
CancerEMC method is applied to the newly generated balanced
dataset with 10-folds CV and obtained the median accuracy of
91.4966% with AUC¼0.992, as shown in Table 3 and
Supplementary Table S5. The ROC curves with AUCs of cancer
types along with micro and macro average ROC curves are shown
in Suplementary Figures S17 and S18.

We independently tested the CancerEMC method with 70%
training data and 30% independent test data separation before over-
sampling/under-sampling (not used in the training process) in the
same dataset. We obtained the accuracy ACC ¼ 92.4386% with
AUC ¼ 0.992 (as shown in Table 3). The sensitivity of cancer type

Table 2. Numerical comparisons for binary cancer detection

Methods 10-Fold cross-validation (CV) 30% of independent test data

Accuracy AUC Accuracy AUC

CancerSEEK (Cohen et al., 2018) 77.71% 0.930 86.6055 % 0.947

CancerA1DE (Wong et al., 2019) 96.64% 0.991 96.1468 % 0.994

Deep Learning (Wong et al., 2019) 82.05% 0.916 83.35 % 0.919

Naı̈ve Bayes (Wong et al., 2019) 77.10% 0.889 78.3486 % 0.931

SVM 80.18% 0.814 77.4312 % 0.756

k-NN 76.82% 0.762 80.5505 % 0.805

AdaboostM1 94.55% 0.982 88.6239 % 0.949

Random Forest 91.90% 0.913 92.844 % 0.980

J48 (Wong et al., 2019) 89.21% 0.913 88.2569 % 0.902

DTNB 95.54% 0.990 95.9633 % 0.996

MultiObj-Evilu.FuzzyC 76.49% 0.767 77.6147 % 0.776

CancerEMC (for SD1) 97.91% 0.9989 97.9817 % 0.998

CancerEMC (for SD2) 99.17% 0.999 99.0826 % 0.999

The proposed method is highlighted in bold.

Table 3. Comparisons of median accuracy and AUC for cancer localization on SD4

Methods 10-Folds cross Validation (After oversampling) 30% independent test data separation before

Oversampling/under sampling

Accuracy AUC Accuracy AUC

CancerSEEK (Cohen et al., 2018) 62.32% 0.91 Not used

CancerA1DE (Wong et al., 2019) 69.64% 0.921 Not used

DeepLearning (Wong et al., 2019) 63.73% 0.873 Not used

Naı̈veBayes (Wong et al., 2019) 46.48% 0.794 59.1133 % 0.872

Logistic 62.93% 0.853 65.0246 % 0.890

SVM 55.59% 0.766 62.3974 % 0.876

k-NN 49.36% 0.666 55.8292 % 0.742

AdaboostM1 69.96% 0.882 77.6683 % 0.963

RandomForest 67.57% 0.919 51.2315 % 0.727

J48 56.38% 0.734 74.5484 % 0.950

DTNB 65.17% 0.898 30.5419 % 0.595

MultiObj.Evilu.FuzzyC 41.05% 0.518 72.9064 % 0.955

CancerEMC 91.4966% 0.992 79.6388% 0.966

The proposed method is highlighted in bold.
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detection is ranged from 71% to 100%. We observe that the per-
formance of CancerEMC with the SMOTE method is sufficiently
increased over the state-of-the-art methods, CancerA1DE and
CancerSEEK.

Figure S17, Figure S18, Table 3 and Supplementary Table S5 illus-
trate that the proposed CancerEMC method has outperformed exist-
ing cancer detection methods: CancerA1DE (Wong et al., 2019),
CancerSEEK (Cohen et al., 2018), and other standard machine learn-
ing classifiers while even not considering the class imbalance issue
through SMOTE method. For this cancer tissue localization, the
omega score and sex features are used along with PBM features for
their relevance to cancer tissue localization. The ‘sex’ feature is essen-
tial because some cancer types such as breast cancer and ovary cancer
are prevalent in female patients. We have employed the CancerEMC
method to SD4 without the sex feature for breast cancer, resulting in
the AUC value of 0.990. After including the sex feature, the AUC
value is increased to 0.995.

Finally, we compared the localized cancer detection results of the
proposed CancerEMC method with other existing CancerSEEK
(Cohen et al., 2018) and CancerA1DE (Wong et al., 2019) method
with and without considering the data imbalance problem in SD4.
Supplementary Table S5 represents the ACCs of all sub-datasets
(SD2, SD3 and SD4) for localized cancer detection for the bench-
mark comparison among CancerSEEK, CancerA1DE, and the pro-
posed CancerEMC with/without oversampling SMOTE.

For the CancerEMC performance benchmark, we have adopted
extensive evaluation procedures, resulting in several possible views
on performance differences among different methods (Varma and
Simon, 2006; Ambroise and McLachlan, 2002). (i) Original datasets
are subsided into four sub-datasets to evaluate the method in differ-
ent dataset representation. (ii) The results under the 10-folds cross-
validation are shown in the second and third columns of Table 3.
(iii) The results on the 30% independent test data (before oversam-
pling/under sampling) are shown in the fourth and fifth columns of
Table 3. (iv) The results with 10-folds nested cross-validation (5-
folds inner loop for parameters regularization) are shown in the se-
cond and third columns of Supplementary Table S3. (v) The results
on 30% independent test data (after oversampling/under sampling)
to avoid test-train data contamination by observing synthetic data
effect are shown in the fourth and fifth columns of Supplementary
Table S3. (vi) Finally, the results of the 10-folds cross-validation
with the same oversampling data are shown in the sixth and seventh
columns of Supplementary Table S3. From Tables 3, Supplementary
Table S5 and Supplementary Table S3, we found that the proposed
CancerEMC method outperformed the other common machine
learning algorithm and state-of-the-arts studies for cancer detection
from multianalyte blood test data.

Supplementary Table S5 illustrates that the SD1 and SD2 with
1005:812 binary cancer and normal class distribution do not incur
any serious data imbalance problem. Hence, the oversampling has
slightly decreased the binary cancer detection. Therefore, we have
included a decision block for deciding on resampling after feature se-
lection or not. According to this block, If a cancer detection dataset
with any data imbalance issue, then oversampling and/or under-
sampling will be applied. We have also applied the feature selection
(FS) in 10-folds CV after oversampling/undersampling for unbiased
cancer detection and obtained the median accuracy and AUC for all
sub-datasets as shown in Supplementary Table S4.

From Tables 2, 3, Supplementary Tables S3, S4 and S5, we have
found that the proposed CancerEMC method outperforms the other
machine learning algorithms and state-of-the-art studies (including
CancerSEEK published in Science, 2018) in aspects of validation for
cancer detection from multi-analyte blood test data.

4. Conclusion

In this study, we have proposed CancerEMC for cancer detection
from blood test. It has used ensemble learning with feature selection
methods and oversampling techniques to mitigate the data imbal-
ance problem. It has achieved better performance than the state-of-
the-art studies for early cancer detection. We believe that such

intelligent methods can contribute to cancer research advances with
broad impacts. In the future, we plan to apply the ensemble of
knowledge and data-driven learning approaches for cancer detection
to enhance the frontline cancer screening performance.
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