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Abstract

Motivation: The emergence and subsequent pandemic of the SARS-CoV-2 virus raised urgent questions about its
origin and, particularly, its reservoir host. These types of questions are long-standing problems in the management
of emerging infectious diseases and are linked to virus discovery programs and the prediction of viruses that are
likely to become zoonotic. Conventional means to identify reservoir hosts have relied on surveillance, experimental
studies and phylogenetics. More recently, machine learning approaches have been applied to generate tools to
swiftly predict reservoir hosts from sequence data.

Results: Here, we extend a recent work that combined sequence alignment and a mixture of alignment-free
approaches using a gradient boosting machines machine learning model, which integrates genomic traits and
phylogenetic neighbourhood signatures to predict reservoir hosts. We add a more uniform approach by applying
Machine Learning with Digital Signal Processing-based structural patterns. The extended model was applied to an
existing virus/reservoir host dataset and to the SARS-CoV-2 and related viruses and generated an improvement in
prediction accuracy.

Availability and implementation: The source code used in this work is freely available at https://github.com/bill1167/
hostgbms.

Contact: dsmith@hku.hk or yguan@hku.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Prevention and management of emerging viral infections (e. g.
SARS, Ebola, MERS and Zika), require urgent identification of the
natural reservoir hosts that carry these viruses. This has been
emphasized by the emergence and current pandemic of the SARS-
CoV-2 virus and the questions surrounding its origin (Lu et al.,
2020). Common practice to identify reservoir hosts has used a com-
bination of methods such as field surveillance, laboratory experi-
ments and phylogenetic analyses, which are time consuming and
often inconclusive (Viana et al., 2014) and delays could lead to
more economic and health losses. As an alternative, a Gradient
Boosting Machines (GBMs)-based machine learning model was
developed to rapidly predict natural reservoir hosts of single-
stranded RNA (ssRNA) viruses (Babayan et al., 2018). It utilized
viral sequences that can now be generated at low cost, and inte-
grated selected genomic traits (GT) and phylogenetic neighbourhood
(PN) traits to make reservoir host predictions with high confidence
(Babayan et al., 2018), generating field testable hypotheses and

narrowing the gap between virus discovery and insights into virus
ecology and management.

The GBM machine learning model was trained on a curated set of
viruses and reservoir hosts established from literature sources
(Babayan et al., 2018). To compute PN traits, BLAST was used to
align a query sequence against a set of references, which were mainly
non-homologous. As BLAST-based alignment is designed to not select
non-homologous sequences, including those that might have the same
reservoir host, PN traits obtained in this way may avoid information
that could help classification and so limit the performance of the
model. Alignment-free approaches (Zielezinski et al., 2017) can by-
pass the requirement for homology or divergent evolution to poten-
tially identify related sequences. The alignment-free GT approach,
which selected the best 50 predictors from a set of over 4000 that was
based on nucleotide, codon and amino acid composition parameters,
was originally used to balance this (Babayan et al., 2018).

Here, we present an augmented machine learning model that
combines the GT and PN approaches (Babayan et al., 2018) with
Machine Learning with Digital Signal Processing (MLDSP)-based
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structural patterns (M-SP) of viral sequences (Randhawa et al.,
2019; 2020a). The MLDSP approach applies a one-dimensional,
consistent numeric recoding or the two-dimensional Chaos Game
Representation (CGR) (Almeida et al., 2001; Jeffrey, 1990;
Karamichalis et al., 2015), of the sequences in a signal processing
approach and was used to classify early SARS-CoV-2 sequences
within a large viral genomic sequence dataset (Randhawa et al.,
2020b). This more structured approach to an alignment-free method
than the GT approach might allow better detection of non-homolo-
gous viruses with the same reservoir host. MLDSP builds on align-
ment-free approaches that are widely used for sequence
comparisons and can overcome the sequence length constraints that
may hamper alignment based methods (Zielezinski et al., 2017;
2019) and a similar approach was used to compare genomic sequen-
ces (Lichtblau, 2019). In this work, the use of MLDSP methods
improved the prediction of reservoir hosts of ssRNA viruses.

We demonstrate how this consistent sequence structural infor-
mation, using the alignment-free MLDSP method, could properly
detect host predictors that were not seen by the alignment-based
(PN) approach and improve accuracy over the GT combination of
compositional parameters method. Through error analysis of the
previous model, we suggest two combinations of family categories,
into the order level, to achieve a higher confidence in host predic-
tions. The primary classification of a host at the order level allows
targeted investigations of subgroups and could provide insights into
outbreaks of viruses and their management.

The trained model was applied to the SARS-CoV-2 and related
viruses to identify their natural reservoir hosts. Our model suggested
a bat origin for SARS-CoV-2, consistent with field surveillance and
phylogenetic analysis (Latinne et al., 2020; Lau et al., 2020;
Vijaykrishna et al., 2007; Zhou et al., 2020). Further analysis using
a deep learning model indicated that the host subgroup
Pteropodiformes (Hutcheon and Kirsch, 2006) was more likely to
be the natural reservoir of the SARS-CoV-2 viruses.

2 Materials and methods

2.1 Datasets
From the earlier work predicting natural reservoir hosts (Babayan
et al., 2018), ssRNA viruses were further explored as they are the
major pathogen group responsible for emerging human diseases
(Olival et al., 2017; Woolhouse and Gaunt, 2007). 437 viral species
that cover 80% of the ssRNA virus families that contain human-
infecting species (Olival et al., 2017) as developed in Babayan et al.
(2018) were included. Each virus has been assigned a reservoir host
that belongs exclusively to one of nine host categories, Artiodactyl,
Bat, Bird, Carnivore, Fish, Insect, Plant, Primate and Rodent, that
are defined mainly at the class/order level. Other possible reservoir
host categories were excluded from the dataset as underrepresented
examples, where the number of known viral species was less than 15
(Babayan et al., 2018). The Bird and Bat categories were each div-
ided into two subgroups in Babayan et al. (2018), but were not in
this work as this resulted in significantly higher accuracy.

Two coronaviruses, SARS-CoV-2 isolate Wuhan-Hu-1, NCBI
accession NC_045512.2 (18) and hCoV-19/bat/Yunnan/RaTG13/
2013, aka RaBatCoV/4991, detected in Rhinolophus affinis from

Yunnan province, GISAID accession EPI_ISL_402131 (Ge et al.,
2016; Zhou et al., 2020), were used for detailed analysis. Another
seven SARS-related viruses (Lam et al., 2020) and ten SARS-CoV-2
virus strains, sequenced from January to June 2020 during the first
wave outbreak, were collected from the NCBI database for phylo-
genetic analysis. Coding sequence (CDS) information of these 17
viruses were retrieved for feature computation to predict their reser-
voir host using the GBM-based model. The GT and PN features
were used to train a subsequent deep-learning model (built using
Keras with default parameters) to subclassify bat host predictions.

2.2 Construction of features
Three layers of traits, as viral features, were used to represent a
pathogen’s association with its natural reservoir host. These were
selected genomic traits (GT) and phylogenetic neighbourhood traits
(PN) (as in Babayan et al., 2018), and MLDSP-based structural pat-
terns of viral sequences (M-SP). GT contained the codon pair score
(CPS), dinucleotide biases, codon biases and amino acid biases from
Babayan et al. (2018) and the 50 most important features from GT
as defined in Babayan et al. (2018) were used. PN traits were

Table 1. Accuracy of predictions of the virus’ host for different

traits

Model PN traits (%) MLDSP traits (%)

LinearDiscriminant 38.9 47.8

LinearSVM 44.4 36.6

QuadraticSVM 49.2 49.0

FineKNN 46.2 53.8

SubspaceDiscriminant 38.9 43.0

SubspaceKNN 46.0 54.9

AverageAccuracy 43.9 47.5

Fig. 1. Visualization of pattern-category associations revealed by the MLDSP

method using Multi-dimensional Scaling. (a) Associations between viral patterns

and host categories using the MLDSP method. (b) Associations between viral pat-

terns and virus categories using the MLDSP method. Each circle represents a virus

[a total of 437 and 139 examples in (a) and (b), respectively] with colour indicating

the corresponding category
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computed as in Babayan et al. (2018), except that only nine host cat-
egories were mapped here, with the top five BLAST hits retained, as
in Babayan et al. (2018).

The third set of traits was designed to capture association pat-
terns between a virus and its reservoir host that could have been
missed by the BLAST local alignment-based method in the PN traits
or the GT traits. The Machine Learning with Digital Signal
Processing (MLDSP) strategy (Randhawa et al., 2019; 2020a),
which was developed to make alignment-free comparisons among
sequences, was adopted. Sequences were recoded based on a one-di-
mensional purine/pyrimidine code [a two-dimensional Chaos Game
Representation Method with a k-tuple size of 7 (Karamichalis et al.,
2015; Randhawa et al., 2020b) was also examined, see
Supplementary Information], Fourier transformed (FT) and the
Pearson correlation coefficients among the FT sequences were
obtained (Randhawa et al., 2019; 2020a). A distance matrix was
computed from the input sequences, and the matrix of a virus was
associated with the host categories to gauge the weight of each host
group (create a weight vector) for the target virus.

The process was: (i) Use the MLDSP algorithm (details shown in
Supplementary Information) to compute a distance matrix of query
sequences against the whole viral dataset. (ii) The distance values for
each query sequence were inverted to give its weights against differ-
ent reference sequences. (iii) The top five weights, as with the PN
traits, were selected and mapped to the host categories. (iv) Weights
were normalized by taking the absolute value of subtraction be-
tween each adjacent weight pair to measure the distance. (v)
Weights pointing to the same host group were summed and all
weights were converted into a percentage over the nine host catego-
ries to give the final weight vector, or M-SP traits, representing the
association patterns between the query sequence and its potential
hosts.

The GT traits, PN traits and M-SP traits are concatenated as the
feature input of the model, so that the number of features considered
is 68 (GT ¼ 50, PN ¼ 9, M-SP ¼ 9).

2.3 Machine learning model
Prior to building the model, the strength of virus-host associations
between PN and M-SP traits was compared using the six methods in
Randhawa et al. (2019) (i.e. LinearDiscriminant, LinearSVM,
QuadraticSVM, FineKNN, SubspaceDiscriminant and
SubspaceKNN). The PN-host and M-SP-host pairs were used as two
sets of data for input to the six algorithms, as described in

Randhawa et al. (2019). The outcomes demonstrated the extent of
host identification achieved by the PN or M-SP traits alone.

For the main predictive model, the GBM framework from
Babayan et al. (2018) that performed best at host prediction was
adopted for host inference here. A random stratified split strategy
was used to divide the dataset into training (70%), optimization
(15%) and test (15%) sets. Five hundred and fifty rounds of train-
ing, as in Babayan et al. (2018) were conducted.

Performance for each of the 437 viruses was evaluated by two
methods. Firstly, as in Babayan et al. (2018), the overall top 25% of
the 550 trained models were selected. For an individual virus, the
bagged prediction accuracy was calculated by selecting from these
‘top 25%’ models all that had that virus in the test set. In the second
method, the performance of the models was defined by selecting the
top 25% of all models that had a specific virus in the test set and
bagging their predictions. Therefore, the host of every virus is pre-
dicted from exactly 25% of the models for which it was in the test
set.

As the GT and M-SP traits are calculated without alignment
against reference sequences, models with GT only versus GT and M-
SP combined (excluding PN traits) were compared to investigate the
benefit brought by the M-SP traits. The best 138 models from the
550 rounds of training (similar to the first method above) were
selected for comparison and were averaged (a bagging strategy) to
generate a final prediction. The performance between this (aver-
aged) model and the model of Babayan et al. (2018) were compared
based on identical configuration settings.

As bats are reservoir hosts of many recently emerging zoonoses
(Brierley et al., 2016; Luis et al., 2013; Zhou et al., 2016), a deep
learning (DL) model (Supplementary Table S1) was built to further
analyze the host subgroup of bat predictions. Of the 437 virus spe-
cies in the dataset, those from bats were extracted to train this model
(with 50 rounds of training) to predict between the Pteropodiformes
and Vespertilioniformes subgroups (Hutcheon and Kirsch, 2006).
Further taxonomic subdivision was not possible due to the limited
number of examples.

2.4 Implementation
The following computing environments were used: numpy and pan-
das in Python for data processing, MATLAB for M-SP feature gener-
ation, h2o in R and tensorflow with keras in Python for machine
learning, and matplotlib in Python for plotting and visualization.

Table 2. Reservoir host prediction by the PN and MLDSP methods

Virus Accession number Reservoir Method Artiodactyla Bat Bird Carnivore Fish Insect Plant Primate Rodent

Akabane virus NC_009896.1 Artiodactyl PN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

MLDSP 0.92 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.05

Malsoor virus KF186496.1 Bat PN 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

MLDSP 0.12 0.85 0.00 0.03 0.00 0.00 0.00 0.00 0.00

Newbury-1 virus NC_007916.1 Artiodactyl PN 0.28 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00

MLDSP 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Goose calicivirus NC_024078.1 Bird PN 0.00 0.25 0.25 0.00 0.00 0.00 0.00 0.50 0.00

MLDSP 0.00 0.00 0.40 0.19 0.00 0.00 0.00 0.41 0.00

Tyuleniy virus NC_023424.1 Bird PN 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.25 0.49

MLDSP 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.17 0.03

Chicken calicivirus KM254171.1 Bird PN 0.29 0.00 0.47 0.00 0.00 0.00 0.00 0.24 0.00

MLDSP 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.40 0.00

Kama virus NC_023439.1 Bird PN 0.25 0.00 0.26 0.00 0.00 0.00 0.00 0.25 0.25

MLDSP 0.00 0.00 0.97 0.00 0.00 0.00 0.00 0.03 0.00

Human- NC_003443.1 Primate PN 0.00 0.24 0.00 0.25 0.00 0.00 0.00 0.51 0.00

parainfluenza MLDSP 0.00 0.35 0.00 0.00 0.10 0.00 0.00 0.55 0.00

Junin arenavirus NC_005081.1 Rodent PN 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.75

MLDSP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Rabies virus JQ685970.1 Carnivore PN 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

MLDSP 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

aThe highest values by the PN- and MLDSP-based methods are marked in bold.
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2.5 Code and data availability
Source code is available at https://github.com/bill1167/hostgbms.
Training data were the curated virus-reservoir host dataset gener-
ated and published by Babayan et al. (2018).

3 Results

3.1 Missed association patterns captured by the MLDSP

method
The six models used for the MLDSP performance test in Randhawa
et al. (2019) were applied to the virus-host dataset and compared to
predictions from the PN traits-based approaches (Table 1). The
MLDSP-based predictions were better or comparable to those from
the PN-based methods for most cases, with SubspaceKNN and
FineKNN giving the best results at accuracies of 54.9% and 53.8%,
respectively, and clearly outperforming any method using PN traits.
The extent to which patterns captured by the MLDSP algorithm cor-
related with their reservoir host was visualized through Multi-di-
mensional Scaling (MDS), as shown in Figure 1a. Prediction
accuracies over 90% (Supplementary Table S2) were achieved when
MLDSP-based traits were used to predict the virus family (Fig. 1b).
Thus, this alignment-free method captures most of the information
in the phylogenetic classification, while finding patterns relating to
virus-host associations that were missed by the alignment-based PN
approach.

The PN and MLDSP methods were compared over the training
examples (Table 2). Both methods failed for the Goose calicivirus
(NC_024078.1), although the MLDSP method was a marginal fail-
ure. The PN method failed in a further three cases and gave less
strong predictions than MLDSP in the six remaining cases where
both methods were correct. Integrating MLDSP-based patterns into
the machine learning model should improve the accuracy of its
predictions.

3.2 Improved accuracy of predictions when the GT, PN

and M-SP traits were combined
The overall performance of the models was examined by taking the
best 25% of the 550 trained GBM models, with and without the M-
SP traits, and assessing their predictions on their test sets over the
host groups (Supplementary Table S3). Adding the MLDSP ap-
proach gave an average accuracy of 77.0% (Fig. 2a), against 75.1%
without it (Fig. 2b). Prediction accuracies for the Bat and Bird host
groups were approximately 10% higher than their component sub-
groups (Supplementary Fig. S1). For most of the host groups, predic-
tion accuracies were better for the model including M-SP traits.

The cumulative prediction accuracy for the bagged 138 models
is presented in Figure 2c and Supplementary Table S4. Bagging of
the models removed the accuracy distinction between the two
approaches for first rank predictions, but an improvement remained
for lower ranked predictions with M-SP traits.

Analysis of GT only versus GT and M-SP combined, without
PN, showed that the average of the best ten performances improved
by 2.6%, from 70.9% to 73.5% (Supplementary Table S5).

3.3 Prediction of bat origin for SARS-CoV-2 and related

viruses
As a test of the method, the predicted natural reservoir hosts for two
coronaviruses, Wuhan-Hu-1 [SARS-CoV2 isolate NC_045512.2
(Wu et al., 2020)] and hCoV-19/bat/Yunnan/RaTG13/2013
[EPI_ISL_402131.3 (Ge et al., 2016; Zhou et al., 2020)] are pre-
sented in Table 3, with individual models (the ten best of 50 trained
models) making correct predictions for both viruses. For the 17
SARS-related and SARS-CoV-2 test viruses (phylogeny shown in
Supplementary Fig. S2), the bagged predictions indicated that, as
expected, all these SARS-related coronaviruses were of bat origin
when the M-SP method was included (Table 4).

3.4 Pteropodiformes origin of SARS-CoV-2 by subgroup

analysis
Whether the SARS-CoV-2 virus was of Pteropodiformes or
Vespertilioniformes origin (Hutcheon and Kirsch, 2006) was investi-
gated with a deep learning model. A Pteropodiformes bat origin was
predicted for the Wuhan-Hu-1 isolate and the hCoV-19/bat/
Yunnan/RaTG13/2013 SARS-CoV-2 related virus (isolated from a
Pteropodiformes bat) with probabilities of 0.6231 and 0.6492, re-
spectively. All SARS-related and SARS-CoV-2 test strains (as given
in Supplementary Fig. S2) were predicted to be associated with the
Pteropodiformes host group [Pterobat(%), Table 4].

Fig. 2. Accuracy of the GBMs model using features captured by different algorithms.

(a) Accuracy of the GBMs model using GT þ PN þM-SP features. (b) Accuracy of

the GBMs model using GT þ PN features. Dark points and coloured lines are me-

dian and SD, respectively. (c) Cumulative bagged accuracy of models with GT þ PN

(blue) and GT þ PN þM-SP (red) on all 437 viruses from the first prediction to the

fifth ranked prediction
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4 Discussion

Convenient measures to rapidly identify the natural reservoir hosts
of emerging human infectious viruses are needed as the current prac-
tice of field surveillance, laboratory experiments and phylogenetics
is time consuming and often inconclusive (Viana et al., 2014). We
have proposed a strategy to improve an existing in silico model
(Babayan et al., 2018) for reservoir host prediction by capturing
additional host associations based on sequence structural patterns,
M-SP, derived from MLDSP (Randhawa et al., 2019, 2020a), that
can be determined without requiring alignments. These were added
as a consistent method for all sequences rather than the selection of
the best 50 parameters from a variety of over 4000 compositional
parameters, as in Babayan et al. (2018). This led to an improvement
in the accuracy of predictions. Application of the trained models to
a set of SARS-related viruses indicated that they are associated with

Pteropodiformes bats, consistent with prior knowledge. While the
overall performance of the proposed model was better than the one
without M-SP in testing on a total of 437 viruses, there were still in-
correct predictions. Other potentially informative host indicators at
the molecular or habitat level are yet to be explored thoroughly
(Brass et al., 2009; Roy et al., 2014; Woolhouse and Gowtage-
Sequeria, 2005), and the overall approach discussed here has been
extended to identify human-infecting viruses (Mollentze et al.,
2020). These ideas could help improve the accuracy of machine
learning models and future work will look to refining the taxonomic
level at which these predictions can be made. We acknowledge the
essential role of field surveillance, laboratory experimentation and
phylogenetics in providing the knowledge base for this and similar
works. We hope that our and related work will contribute to the re-
sponse to outbreaks and be useful for further field surveillance and
experimentation.

Table 3. Natural reservoir host of two coronaviruses predicted by the GT-PN-M-SP GBMs model

Virus Accession number Modelb Prediction Artiodactyl Bat Bird Carnivore Fish Insect Plant Primate Rodent

Wuhan- NC_045512.2 47 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Hu-1 39 Bat 0.103 0.234 0.092 0.093 0.094 0.089 0.087 0.119 0.089

40 Bat 0.004 0.996 0.000 0.000 0.000 0.000 0.000 0.000 0.000

45 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

50 Bat 0.007 0.993 0.000 0.000 0.000 0.000 0.000 0.000 0.000

12 Bat 0.003 0.996 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16 Bat 0.002 0.997 0.000 0.000 0.000 0.000 0.000 0.001 0.000

11 Bat 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

01 Bat 0.001 0.993 0.000 0.000 0.000 0.000 0.000 0.006 0.000

RaTG13a EPI_ISL_ 47 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

402131 39 Bat 0.094 0.243 0.094 0.092 0.099 0.092 0.090 0.103 0.092

40 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

45 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

50 Bat 0.005 0.994 0.000 0.000 0.000 0.000 0.000 0.001 0.000

12 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16 Bat 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.001 0.000

11 Bat 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 Bat 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

01 Bat 0.010 0.903 0.000 0.000 0.000 0.000 0.000 0.087 0.001

aRaTG13 is hCoV-19/bat/Yunnan/RaTG13/2013.
bThe best ten individual GBMs of the 50 trained models are shown.

Table 4. Natural reservoir host of SARS-related coronaviruses predicted by the GT-PN-M-SP GBMs model

Virus Accession

number

Bagged Model

47a

Model

39

Model

40

Model

45

Model

50

Model

12

Model

16

Model

11

Model

32

Model

01

Pterobat

(%)

TW11 AY502924.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 68.51

HKU3-6 GQ153541.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 67.94

HKU3-12 GQ153547.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 65.12

Cp/Yunnan2011 JX993988.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 68.40

YNLF_31C KP886808.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 63.70

JTMC15 KU182964.1 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 63.22

HKU-SZ-005b MN975262 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 65.34

USA-CA2 MN994468 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.89

nCoV-FIN-29-Jan MT020781 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.91

INMI1 MT066156 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.48

SP02 MT126808 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.93

VH198152683 MT359866 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.82

VIC1178 MT451786 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.48

GBRC144 MT560827 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.50

NRW-01 MT582499 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.48

SCPM-O-cDNA-02 MT635445 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 65.56

Tor2 NC_004718.3 Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat 62.48

aThe best ten individual GBMs of the 50 trained models are shown.
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