
Structural bioinformatics

Increasing the accuracy of single sequence prediction

methods using a deep semi-supervised learning

framework

Lewis Moffat 1,2,* and David T. Jones 1,2,*

1 Department of Computer Science, University College London, London WC1E 6BT, UK and 2Biomedical Data Science Laboratory,

The Francis Crick Institute, London NW1 1AT, UK

*To whom correspondence should be addressed.

Associate Editor: Jinbo Xu

Received on March 30, 2021; revised on June 8, 2021; editorial decision on June 21, 2021; accepted on June 30, 2021

Abstract

Motivation: Over the past 50 years, our ability to model protein sequences with evolutionary information has pro-
gressed in leaps and bounds. However, even with the latest deep learning methods, the modelling of a critically im-
portant class of proteins, single orphan sequences, remains unsolved.

Results: By taking a bioinformatics approach to semi-supervised machine learning, we develop Profile
Augmentation of Single Sequences (PASS), a simple but powerful framework for building accurate single-sequence
methods. To demonstrate the effectiveness of PASS we apply it to the mature field of secondary structure predic-
tion. In doing so we develop S4PRED, the successor to the open-source PSIPRED-Single method, which achieves an
unprecedented Q3 score of 75.3% on the standard CB513 test. PASS provides a blueprint for the development of a
new generation of predictive methods, advancing our ability to model individual protein sequences.

Availability and implementation: The S4PRED model is available as open source software on the PSIPRED GitHub
repository (https://github.com/psipred/s4pred), along with documentation. It will also be provided as a part of the
PSIPRED web service (http://bioinf.cs.ucl.ac.uk/psipred/).

Contact: d.t.jones@ucl.ac.uk or lewis.moffat@cs.ucl.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past two decades, sequence-based bioinformatics has made
leaps and bounds towards better understanding the intricacies of
DNA, RNA and proteins. Large sequence databases (UniProt-
Consortium, 2019) have facilitated especially powerful modelling
techniques that use homology information for a given query se-
quence to infer aspects of its function and structure (Kandathil et al.,
2019b). A keen example of this progress is in current methods for
protein structure prediction that utilize multiple sequence align-
ments (MSAs) and deep learning to accurately infer secondary and
tertiary structure (Greener et al., 2019; Jones, 2019; Senior et al.,
2020). Unfortunately, much of this progress has not extended to or-
phan sequences, a very important but very difficult to model class of
sequences which have few to no known homologous sequences
(Greener et al., 2019; Levitt, 2009; Perdig~ao et al., 2015). Also, even
when homologues are available, multiple sequence alignment is
often too slow to apply to the entirety of a large sequence data
bank, and so improved annotation tools which can work with just a

single input sequence are also vital in maintaining resources such as
InterPro (Blum et al., 2021).

Here, we present Profile Augmentation of Single Sequences
(PASS), a general framework for mapping multiple sequence infor-
mation to cases where rapid and accurate predictions are required
for orphan sequences. This simple but powerful framework draws
inspiration from Semi-Supervised Learning (SSL) to enable the cre-
ation of massive single-sequence datasets in a way that is biological-
ly intelligent and conceptually simple. SSL methods represent
powerful approaches for developing models that utilize both
labelled and unlabelled data. Where some recent works (Alley et al.,
2019; Heinzinger et al., 2019) have looked to take advantage of un-
labelled biological sequence data using unsupervised learning, bor-
rowing from techniques in natural language processing (Dai et al.,
2019; Devlin et al., 2019), we instead look to modern SSL methods
like FixMatch (Sohn et al., 2020) for inspiration. These methods
have demonstrated that pseudo-labelling, amongst other techniques,
can significantly improve model performance (Berthelot et al., 2019;
Lee, 2013; Sohn et al., 2020). Pseudo-labelling techniques use the
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model being trained to assign artificial labels to unlabelled data,
which is then incorporated into further training of the model itself
(Lee, 2013).

PASS uses a bioinformatics-based approach to pseudo-labelling
to develop a dataset for a given prediction task before training a pre-
dictive single-sequence model. First, a large database of sequences is
clustered into MSAs. Each MSA is then used as input to an accurate
homology-based predictor. The predictions are then treated as
pseudo-labels for a single sequence from the MSA. This allows a
large unlabelled set of single sequences to be converted into a train-
ing set with biologically plausible labels, that can be combined with
real labelled data, for training a deep learning-based predictor. As
an exemplar of the effectiveness of the PASS framework, we apply it
to the well explored field of single-sequence secondary structure pre-
diction resulting in Single-Sequence Secondary Structure PREDictor
(S4PRED), the next iteration of PSIPRED-Single, our current
method. S4PRED achieves a state-of-the-art Q3 score of 75.3% on
the standard CB513 test set (Cuff and Barton, 1999). This perform-
ance approaches the first version of the homology-based PSIPRED
(Jones, 1999) and represents a leap in performance for single-se-
quence-based methods in secondary structure prediction (Fig. 1).

Starting from a three class accuracy (Q3) of �76% (Jones, 1999)
in the late 1990s, our secondary structure prediction tool, PSIPRED,
has grown to a current state-of-the-art Q3 of 84.2%, and is used glo-
bally in both experimental and computational research (Buchan and
Jones, 2019). PSIPRED, along with other methods, is able to pro-
duce high accuracy predictions by leveraging valuable homology in-
formation found in MSAs (Yang et al., 2018). This approach is in
stark contrast to single-sequence methods, like PSIPRED-Single
(Buchan and Jones, 2019), that are designed to predict secondary
structure based only on a single query sequence, without relying
on homology information. Unfortunately, over the past decades,
single-sequence methods have been slow to improve relative to hom-
ology-based methods, as can be seen in Figure 1. Currently, the most
performant single-sequence methods achieve low Q3 scores of 71–
72% (Bidargaddi et al., 2009; Buchan and Jones, 2019; Heffernan
et al., 2018; Torrisi et al., 2019), where homology-based methods
are achieving scores of > 84% (Buchan and Jones, 2019; Hanson
et al., 2019; Torrisi et al., 2019) and are approaching a hypothesized
theoretical maximum of 88–90% (Rost, 2001).

Accurate single-sequence prediction enables the modelling of any
given sequence without the constraints of homology, which repre-
sents a valuable research prospect with a plethora of use cases. The
most apparent of these is being able to better model any part of the
known protein space, especially given that a quarter of sequenced
natural proteins are estimated to have no known homologues
(Levitt, 2009) and an even larger portion are inaccessible to hom-
ology modelling (Greener et al., 2019; Ovchinnikov et al., 2017;
Perdig~ao et al., 2015). For example, a particularly important area
where this is often the case is viral sequence analysis. The structures
of viral proteins are often attractive targets for the development of
antiviral drugs or the development of vaccines (Mokili et al., 2012),
however, viral sequences tend to be highly diverse and typically have
no detectable homologues, making structural modelling difficult
(Edwards and Rohwer, 2005; Mokili et al., 2012; Riesselman et al.,
2018). Another example is being able to better model the homology-
poor ‘dark proteome’ (Perdig~ao et al., 2015). The value of single-
sequence methods also extends outside of natural proteins to areas
like de novo protein design (Marcos and Silva, 2018), where novel
sequences and structures typically, by their very design, have no
homologues (Koga et al., 2012).

Even in the case of a sequence having known homologues,
single-sequence methods have many valuable uses. One clear ex-
ample is in variant effects (Riesselman et al., 2018), where methods
like PSIPRED that use MSAs are limited because their predictions
for a given sequence will be biased towards a family ‘average’
(Kandathil et al., 2019b). Single-sequence methods avoid this bias in
not utilizing any homology information and may have the potential
to better model the changes in secondary structure across a family
even for highly divergent members. This also extends to being able
to better model large single-species insertions that intrinsically have

no homology information. Being able to avoid the bias of homology
methods could also benefit protein engineering tasks (Yang et al.,
2019), where the aim may be to generate a sequence that is highly
divergent from its homologues.

2 Materials and methods

For S4PRED, we use the PASS framework to develop a pseudo-
labelling approach that is used to generate a large set of single
sequences with highly accurate artificial labels. The first step is tak-
ing a large set of unlabelled protein sequences clustered as align-
ments and then removing the clusters containing a small number of
sequences. The MSA-based PSIPRED V4 (Buchan and Jones, 2019)
is then used to generate secondary structure predictions for each
remaining cluster alignment. The representative sequence for each
cluster is used as the target sequence when predicting secondary
structure. The target sequence is then kept along with the three-class
predictions, and the alignment is discarded. In this way, each cluster
produces a single training example, constituting a single sequence
and its pseudo-labels.

This approach effectively utilizes a homology-based predictor to
provide accurate pseudo-labels for individual unlabelled sequences.
PSIPRED generates high accuracy predictions, so it can be inferred
that it is providing highly plausible secondary structure labels. These
labels are, therefore, able to provide valuable biological information
to the S4PRED model during training. Because each sequence is
sampled from a separate cluster, there is also the added benefit of di-
versity between individual sequences in the dataset.

Training sets are used by the machine learning model to learn
the predictive mapping of an amino acid sequence to secondary
structure sequence. During training the validation set is used as a
means of monitoring the performance of a model, but it does not
learn from this set. The test set is the final unseen benchmark set
that the trained model is tested against.

In this work, we use the Uniclust30 database (Mirdita et al.,
2017) to generate a pseudo-labelled training set, which, after a rigor-
ous process of benchmarking and cross-validation, contains 1.08M
sequences with pseudo-labels. To accompany the pseudo-labelled
sequences, we construct a labelled training set and a labelled valid-
ation set from protein structures in the PDB (Burley et al., 2019).
For proper cross-validation, sequences in both the labelled training
and labelled validation sets were removed if they were homologous
to any sequences in the CB513 test set, evaluated by CATH (Sillitoe

Fig. 1. Plot showing reported test Q3 scores for a range of published secondary

structure prediction methods over the previous three decades. This includes single-

sequence methods (Asai et al., 1993; Aydin et al., 2006; Bidargaddi et al., 2009;

Frishman and Argos, 1996; Heffernan et al., 2018; Schmidler et al., 2000) and hom-

ology methods (Cole et al., 2008; Cuff et al., 1998; Hanson et al., 2019; Jones,

1999; Li and Yu, 2016; Meiler and Baker, 2003; Mirabello and Pollastri, 2013;

Rost and Sander, 1993) separately to provide an illustrative view of how single-se-

quence methods have improved very slowly, compared to homology methods, over

time. We include this work, S4PRED, to demonstrate how it is a step upwards in ac-

curacy. In order to avoid conflation with Rosetta ab initio, we use the name Rosetta

þ Neural Network (RosettaþNN) in this figure to refer to the work of Meiler &

Baker (Meiler and Baker, 2003)
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et al., 2019) Superfamily-level classification. The final labelled train-
ing and validation sets contain 10143 and 534 sequences
respectively.

In summary, there is a labelled training set along with a labelled
validation set and labelled test set. There is also the pseudo-labelled
training set. The neural network model learns from both labelled and
pseudo-labelled training sets, and, during training in both cases, the
labelled validation set is used to measure overtraining and perform
early stopping. The final trained model that has learned from both
training sets is then tested against the labelled test set (CB513).

To train the S4PRED model using both sets of data we adapt the
‘fine-tuning’ approach from recent work of Devlin and collaborators
(Devlin et al., 2019). In the context of S4PRED, fine-tuning consists
of first training on the large pseudo-labelled training set (See
Supplementary Material S3), after which a small amount of add-
itional training is performed with the labelled dataset (See
Supplementary Material S4). Fine-tuning in this manner provides an
effective and regimented training scheme that incorporates both sets
of sequences. The S4PRED model itself uses a variant of the power-
ful AWD-LSTM (Merity et al., 2018) model, a recurrent neural net-
work model that uses a variety of regularization techniques. See
Supplementary Figure S2 for a diagram of the neural network model
during inference.

2.1 Labelled dataset construction
The first stage in our construction of a labelled dataset is generating
a non-redundant set of PDB chains using the PISCES server (Wang
and Dunbrack, 2003) with a maximum identity between structures
of 70% and a maximum resolution of 2.6 Å. This produces a list of
30630 chains, all with a length of 40 residues or more. At the cost of
introducing some noise but retaining more examples, we do not re-
move any chains with unlabelled residues.

From this list, we then remove any chains that share homology
with the test set. We use the standard test set for secondary structure
prediction, CB513. Homology is assessed and qualified as having
any overlapping CATH (Sillitoe et al., 2019) domains at the
Superfamily level with any of the sequences in the test set (Jones,
2019). This removes approximately 2/3 of the chains leaving a total
of 10677 from which to generate training and validation sets. This
approach ensures no test set data leakage in either the labelled train-
ing set or the labelled validation seT.

The remaining chains are clustered at 25% identity using
MMseqs2 (Steinegger and Söding, 2017). From the resulting 6369
clusters, a subset is randomly sampled such that the total sum of
their sequences makes up �5% of the 10677 chains. This is to create
a validation set that achieves a 95%/5% split between training and
validation sets, as well as keeping the validation and test sets similar-
ly sized. This leaves a final split of 10143/534/513 examples for the
training, validation and test sets respectively.

Secondary structures are specified using DSSP (Kabsch and
Sander, 1983). For each residue in each sequence, the eight states
(H, I, G, E, B, S, T, –) are converted to the standard 3 classes (Q3) of
strand for E & B, helix for H & G and loop (coil) for the remainder.
Protein sequences are represented as a sequence of amino acids,
where each residue is represented by one of 21 integers; twenty for
the canonical amino acids and one for ‘X’ corresponding to un-
known and non-canonical amino acids. Each integer represents an
index to a 128-dimensional embedding that is learned by the neural
network model during training (See Supplementary Materials S2
and S3 for further architecture details).

2.2 Pseudo-labelled dataset generation
To assemble a dataset of pseudo-labelled sequences we start with
Uniclust30 (January 2020 release) (Mirdita et al., 2017). This con-
sists of UniProtKB (UniProt-Consortium, 2019) sequences clustered
to 30% identity, making up 23.8M clusters. Each cluster is then
considered as a single potential example for the pseudo-labelled
training set. Any cluster can be converted into a target sequence and
alignment which can then be passed to PSIPRED to generate high
accuracy predictions of secondary structure. These secondary

structure predictions are then one-hot encoded and treated as
pseudo-labels with the target sequence providing a single example.

Clusters are filtered from the initial 23.8M Uniclust30 set by
removing clusters that are either too short or have too few sequence
members. If a cluster has a representative sequence with a length of
less than 20 residues or contains less than 10 non-redundant sequen-
ces in its alignment it is removed. Applying these restrictions leaves
a much smaller set of 1.41M clusters. These are the candidate clus-
ters for generating a training set from which homology with the val-
idation and test sets is to be removed.

2.3 Removal of test set homology from the pseudo-

labelled dataset
The S4PRED model is trained on labelled and pseudo-labelled data
and, as such, the pseudo-labelled set requires removal of sequences
homologous to the CB513 (Cuff and Barton, 1999) test set. When
S4PRED is training on the pseudo-labelled set it uses the real-labelled
validation set for early stopping. As such, we also seek to remove
sequences from the pseudo-labelled set that are clearly homologous
with the validation set.

For the vast majority of clusters, solved structures are not avail-
able. This leaves sequence-based approaches to identify and elimin-
ate clusters that share any homology with the test set. It is widely
known that using a simple percent identity (e.g. 30%) as a hom-
ology threshold between two sequences is inadequate and leads to
data leakage (Jones, 2019). As such we employ a rigorous and multi-
faceted approach to removing clusters that are homologous to the
test set.

The first step is performing HMM-HMM homology searching
for each member of CB513 with HHblits (Remmert et al., 2011)
using one iteration and an E-value of 10 against the remaining clus-
ters. An accurate means of homology detection, using a high E-value
also provides an aggressive sweep to capture any positive matches at
the expense of a small number of false hits. One iteration was per-
formed as this was broadly found to return more hits. For removing
test set homology, this step acts as a fast single pass to remove a
large number of potential homologues.

For the validation set, the same procedure is followed, however,
the default E-value (1� 10�3) is used with two iterations. We use
these more standard parameters for the validation set as the set is
only used for early stopping and not for benchmarking. As such it
does not require as aggressive and wide sweeping an approach to
removing homologous sequences as is done for the test set. All clus-
ters that are matches to the test and validation sets are then
removed.

The remaining clusters are copied and combined to create a sin-
gle large sequence database which is processed with pFilt (Jones and
Swindells, 2002) to mask regions of low amino acid complexity.
The test set alignments produced by HHblits are used to construct
HMMER (Eddy, 2011) HMMs which are then used to perform
HMM-sequence homology searches against the sequence database
using hmmsearch. The ‘–max’ flag is used to improve sensitivity and
the default e-value is used. All sequences that are positive hits to the
test set HMMs, along with their respective clusters, are removed
from the remaining pseudo-labelled sequence set.

A secondary and overlapping procedure is also performed. Each
member of the test set is mapped to one or more Pfam (El-Gebali
et al., 2019) families by pre-existing annotations. These are found
by a combination of SIFTS (Dana et al., 2019) and manual search-
ing. From the test set, 17 structures were not found to belong to any
Pfam family. For each Pfam family linked to the remaining members
of the test set, a list of UniProt sequence IDs is generated. This is
extracted from the family’s current UniProt-based Pfam alignment
(01-2020) and is used to remove clusters following the same proced-
ure as positive hits from the HMM-sequence search.

In total, these methods remove approximately a quarter of the
initial 1.41M clusters, leaving a final 1.08M clusters to construct the
final pseudo-labelled training set. While the fear of data leakage
remains ever present, we believe that in the absence of structures
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this process constitutes a rigorous and exhaustive approach to hom-
ology removal.

2.4 Generating pseudo-labels with PSIPRED
A given cluster can provide a sequence with pseudo-labels by first
taking its representative sequence as the target sequence and split-
ting off the remainder of the cluster alignment. This is treated as if it
was the target sequence alignment. Both sequence and alignment are
then processed using the standard PSIPRED procedure. The three-
class secondary structure labels predicted by PSIPRED V4 (Buchan
and Jones, 2019) are then kept along with the target sequence as a
single example for the training set. The version of PSIPRED used to
generate labels is trained on a set of sequences that are structurally
non-homologous with the CB513 test set. This ensures that the
pseudo-labels contain no information derived from the test set impli-
citly through PSIPRED. This procedure is repeated to generate a
training set of 1.08M sequences each paired with a sequence of
pseudo-labels.

3 Results

3.1 The prediction of secondary structure from a single

sequence
The final model achieves an average test set Q3 score of 75.3%.
This improves the Q3 of PSIPRED-Single by almost 5% (Fig. 2A),
currently being 70.6%. This is clearly seen in Figure 3A, which
shows how the distribution of test set Q3 scores for S4PRED has
improved as a whole from PSIPRED-Single scores. In some cases,
this has led to a large improvement in prediction accuracy, an ex-
ample of which is visualized in Figure 3B. Although this represents a
significant improvement it is not necessarily a fair comparison as
PSIPRED-Single uses a much simpler multi-layer perceptron model
(Buchan and Jones, 2019; Jones, 1999).

The most comparable method to date is SPIDER3-Single
(Heffernan et al., 2018) which uses a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) trained in a supervised man-
ner. This method predicts secondary structure and other sequence
information, like solvent accessibility and torsion angles, from a sin-
gle sequence. SPIDER3-Single uses one model to make preliminary
predictions, which are then concatenated with the original input se-
quence, to be used as input to a second model that produces the final
predictions. It reports a Q3 score of 72.5%, however, this is on a
non-standard test set based on a less stringent definition of hom-
ology (Jones, 2019).

To establish an equivalent and informative comparison we pro-
vide a second benchmark by training a similar supervised model to
SPIDER3-Single which predicts only secondary structure in a stand-
ard supervised manner, without a secondary network. This uses the
same network architecture as our SSL method but only trains on the
labelled sequence dataset. This achieves a Q3 score of 71.6% on
CB513. This is a similar result to that achieved in a recent work
(Torrisi et al., 2019), which reported a single-sequence Q3 score of
69.9% and 71.3% on a validation set with a perceptron model and

an LSTM-based model respectively. Although the second bench-
mark used here does not utilize a secondary prediction network like
SPIDER3-Single, it is < 1% less performant than SPIDER3-Single’s
reported test set performance. Importantly, it provides a direct com-
parison to S4PRED by using the same model and test set. We use the
name AWD-GRU, after the AWD-LSTM variant (Merity et al.,
2018) used herein, to refer to this benchmark model. Although they
use the same architecture, S4PRED still exceeds the performance of
the AWD-GRU benchmark by a difference in Q3 of almost 4%. Not
only is this a large improvement for single-sequence prediction, it
directly demonstrates the benefit of the SSL approach.

To more precisely determine the benefit that fine-tuning contrib-
utes to this performance gain, we tested a model trained on only
pseudo-labelled sequences. This achieves a test Q3 score of 74.4%.
As is expected, this demonstrates that fine-tuning is a functional ap-
proach to combining both datasets that markedly improves predic-
tion by �1%. Aside from the obvious benefit of learning from real
labelled data, we speculate that part of the fine-tuning improvement
derives from a softening of class decision boundaries. The model
trained on only pseudo-labels has a prediction entropy of 0.325,
averaged across classes, residues and sequences. The final model
shows a notably higher entropy of 0.548 suggesting that fine-tuning
is possibly softening classification probabilities and improving pre-
dictions for cases that sit on those boundaries. One clear aspect of
S4PRED that should be a focus of future improvement is b-strand
prediction. Of the three classes, it has the lowest F1 score by a rea-
sonable margin, 0.66 compared to 0.78 and 0.76 for loop and helix
respectively (Fig. 2B). This is likely due to a combination of being
the least represented class in the training set and the most difficult
class to predict.

As a tool, S4PRED is capable of being run on either a CPU or a
GPU. Predicting the secondary structure of a single sequence on a
single Threadripper 2950X 3.5 GHz core takes an average of 10.9 s
and a median of 9.9 s, for 100 randomly selected sequences from the
pseudo-labelled training set. Using a single RTX 2080 Ti GPU the
average prediction time is 1.51 s and the median is 1.47 s. If a large
number of predictions needs to be made these can be run rapidly in
batches. For example, 128 randomly generated sequences of length
500 can be predicted for as a batch in an average of 4.19 s total and
a median of 4.22 s, on a GPU.

3.2 Predictive performance in the wild
We stress that the testing performed here against CB513 is exactly
equivalent to having tested on a set of unseen orphan proteins.
When the model predicts the secondary structure for each test se-
quence, to the model, these sequences are orphans. The model has
not been exposed to the test set sequences or their homologues, and
in the process of testing only predicts from the individual sequences.

This taken into account we wished to provide a secondary and
confirmatory test of model performance on orphan proteins that dir-
ectly compares against SPIDER3-Single. To do so, we create and test
on two further test sets. First, we derived a test set of 23 recently
published de novo designed proteins (See Supplementary Material
S1.1). On this test set S4PRED achieves a Q3 score of 90.7% and
SPIDER3-Single achieves 89.4% (See Table 1). These high Q3 are

Fig. 2. (A) Table showing the difference in final accuracy (Q3 score) between the improved S4PRED, the AWD-GRU benchmark, and the current version of PSIPRED-Single

on the CB513 test set. (B) Table of classification metrics for the S4PRED model test set predictions. These are shown for each of the three predicted class; a-helix, b-sheet and

loop (or coil). The support is normalized across classes to 100 for clarity—there are a total of 84484 residue predictions in the test set. (C) Confusion matrix for the three

classes in the S4PRED model test set predictions
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unsurprising given de novo designed proteins are often designed to
have well predicted secondary structure (Marcos and Silva, 2018).
However, it is still very encouraging and a sign of generality for
S4PRED to have achieved such a high score.

We derived a second test set of 45 recently published orphan pro-
teins (See Supplementary Material S1.2). On this test set S4PRED
achieves a Q3 score of 75.3% and SPIDER3-Single achieves 73.3%
(See Table 1). This further confirms that S4PRED is able to accur-
ately predict the secondary structure of orphans and represents a sig-
nificant improvement in performance.

3.3 Data efficiency using the semi-supervised learning

approach
Another aspect we wished to investigate was the data efficiency of
the SSL approach. We trained the AWD-GRU benchmark model on
training sets of different sizes, randomly sampling from the 10 143-
sequence real-labelled training set (See Supplementary Material S5).
To a good degree, the test set accuracy linearly increases with the
logarithm of the real-labelled training set size (R2 ¼ 0:92), as can be
seen in Supplementary Figure S1. This trend suggests that the SSL
approach simulates having trained on a real sequence dataset that is

~�7.6 larger. Under the loose assumption that the ratio of PDB
structures to labelled training set size stays the same, there would
need to be greater than 1.2M structures in the PDB (as compared to
the 162 816 entries available as of 04-2020) to achieve the same per-
formance as S4PRED using only real data.

We also looked to estimate the number of sequences that would
be required in UniProt (Swiss-Prot and TrEMBL) and other metage-
nomic sequence resources (Carradec et al., 2018; Mitchell et al.,
2020) for a PASS-based model to achieve the current performance
of the state-of-the-art homology-based PSIPRED. For each single-
sequence method in Figure 1, published since the inception of
CATH (Orengo et al., 1997), we find the number of CATH S35 se-
quence families available the year the method was published. This
number serves as a proxy for the number of redundancy-reduced
PDB chains that would have been available for generating a dataset.

We perform exponential regression between the Q3 scores and the
number of CATH S35 sequence families. The S4PRED result is
included however 1.08M is used for the number of families. The
resulting regression suggests that 25B non-redundant PDBs or se-
quence clusters would be required for an S4PRED-like model to
reach 84%. We then use the average UniClust30 (2016) sequence
cluster depth as a multiplicative factor to estimate the number of
raw sequences needed. This provides a soft estimate of a minimum
of 160 Billion sequences needed for a method based on PASS, like
S4PRED, to achieve similar results to current homology-based
models.

3.4 Single-sequence prediction in context
In this work we consider single-sequence prediction in the strictest
sense. This is a model that, for a single example, provides predic-
tions without using information derived from related sequences or
evolutionary information. This is an important distinction because
using even a small number of homologous sequences improves pre-
diction by several percentage points (Aydin et al., 2006).

The recently published SPOT-1D (Hanson et al., 2019) provides
a clear example of this phenomenon. Hanson and collaborators
(Hanson et al., 2019) show Q3 scores of several homology-based
models when predicting with low diversity alignments. The criterion
for this low diversity is having Neff < 2, a measure of alignment di-
versity, as provided by HHblits (Remmert et al., 2011). This is
reported as Neff ¼ 1, however, all values are rounded down to the
nearest integer. This is clearly not a single-sequence approach. It is
also further evidenced in the reported Q3 scores. Of the methods
reported, Porter 5 (Torrisi et al., 2018, 2019) achieves the highest
Q3 with 78%, followed by SPOT-1D at 77%. Separate to these
results, Porter 5 reports a validation set Q3 of 71.3% when trained
on only single sequences without profiles (Torrisi et al., 2019).
Ignoring the further potential training set and test set overlap for
the values reported in SPOT-1D, this difference in Q3 clearly
demonstrates that using even low diversity alignments is enough to
significantly improve predictive performance, over a purely single-
sequence approach.

Information from homologous sequences can also improve
results by being present in the bias of a trained model. A subtle ex-
ample of this is in the recent DeepSeqVec model (Heinzinger et al.,
2019), which trained an unsupervised neural network to produce
learned representations of individual sequences from UniRef50
(Suzek et al., 2015). The unsupervised model is subsequently used to
generate features which are used to train a second model that pre-
dicts secondary structure. This second model achieves a Q3 score of
76.9% on CB513 (Heinzinger et al., 2019). Although this two
model approach is providing secondary structure predictions for in-
dividual sequences, it is not a single-sequence method because the
unsupervised model has access to implicit evolutionary information
for both the training set and test set sequences. This is partly due to
being improperly validated, a split was not performed between the
training and test sets. With no split the model is able to learn

Fig. 3. (A) Histogram of Q3 scores on the CB513 test set showing the improved results of S4PRED over PSIPRED-Single (PSIPRED-S). (B) Example of S4PRED and PSIPRED-

Single secondary structure predictions relative to the true structure for the C terminal domain of pyruvate oxidase and decarboxylase (PDB ID 1POW)

Table 1. Showing the Q3 scores and micro-averaged F1 scores

achieved by S4PRED, SPIDER3-Single and PSIPRED-Single on two

test sets; a test set of de novo designed proteins (labelled

‘Designed’) and a test set of orphan proteins (labelled ‘Orphans’)

Q3 F1

Orphans Designed Orphans Designed

S4PRED 75.3% 90.7% 0.754 0.910

SPIDER3-Single 73.3% 89.4% 0.733 0.890

PSIPRED-Single 71.1% 86.6% 0.718 0.868

Note: Results in bold show the superior performance of S4PRED.
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relationships between test set and training set sequences. It is also
due to the training objective of the underlying ELMo language
model (Peters et al., 2018). The model is able to learn relationships
between homologous sequences in a shared latent space, especially
given that residue representations are optimized by trying to predict
what residue is likely to be found at each position in a given input
sequence.

Even if the model uses a small amount of evolutionary informa-
tion, it still precludes it from being a single-sequence method. The
predictions from such a model still benefit from evolutionary infor-
mation. This not only highlights the difficulty in developing accurate
methods that are strictly single-sequence, it also highlights how
achieving a Q3 score of 75.3% with S4PRED represents a step up in
performance for single-sequence methods.

4 Discussion

Secondary structure prediction from the typical homology-based
perspective has improved year-on-year and published Q3 scores are
beginning to rise above 85%. It is non-trivial to disentangle the
exact relationship between the amount of data available and model
performance but the different versions of PSIPRED provide a valu-
able insight. From an architecture and training perspective, the cur-
rent version (Buchan and Jones, 2019) (V4) remains mostly similar
to the original first published model (Jones, 1999), yet the current
version is a state-of-the-art model under strict testing criteria
(Buchan and Jones, 2019). The primary difference between versions
is the much larger available pool of training examples. This suggests
strongly that the primary bottleneck on performance has been data
availability.

Looking to single-sequence prediction, it stands to reason that
methods have improved relatively little over time. Data availability,
or more generally the amount of information available to a classi-
fier, appears to be a driving force in performance, and by their very
nature single-sequence methods have much less available informa-
tion. This is likely applicable across many orphan sequence model-
ling tasks, not just secondary structure prediction (Greener et al.,
2019; Perdig~ao et al., 2015). In this work, we developed and applied
the PASS framework to directly tackle this issue of data availability.
This led to the development of S4PRED which, in achieving a leap
in single-sequence performance, stands as an exemplar to the
effectiveness of the PASS approach. PASS, and S4PRED, leverages a
semi-supervised approach to provide a neural network classifier
with information from over a million sequences. Not only is this
successful, it is also a conceptually simple approach. A homology-
based method (in this case PSIPRED) is used to generate accurate
labels for unlabelled examples. The new example and label pairs are
then combined with real-labelled data and used to train a single-se-
quence-based predictor.

S4PRED has achieved significant progress in improving single-
sequence secondary structure prediction, but there is still much
work to be done. There remains an 8–9% performance gap between
S4PRED and current state-of-the-art homology-based methods
(Yang et al., 2018). Given the importance of data availability, an im-
mediate question that arises is whether the best approach to closing
the gap is to simply wait for larger sequence databases to be avail-
able in the near future. To an extent, this appears to be a feasible ap-
proach. The number of entries in UniProt grows every year
(UniProt-Consortium, 2019) and a massive amount of data is avail-
able from clustered metagenomic sequences in databases like the
BFD (Steinegger et al., 2019; Steinegger and Söding, 2018).

It is likely that increasing the training set every year will improve
performance but to what extent is unknown and the computational
cost will correspondingly increase. An increase in training set size
will also be dictated by an increase in the number of new families in
a database (a sequence cluster being a proxy for a family) and not
the number of new sequences. Our estimations suggest that 160
Billion sequences would be required to match homology levels of
performance with a PASS method. Given the speed at which se-
quence databases are growing (Steinegger et al., 2019; UniProt-
Consortium, 2019) this is not unreasonable, but unlikely to be

within reach in the near future. Instead, a focus on methodological
improvements stands to yield the best results.

Looking forward, it is always difficult to speculate what specific
methods will result in further improvements. Continuing from the
perspective of secondary structure prediction, the field has, in recent
years, focused on developing larger and more complex neural net-
works (Yang et al., 2018). There is certainly a benefit to this ap-
proach. Prototyping tends to be quick so any improvements found
can be shared with the scientific community quickly. Unfortunately,
there is limited novelty in this overall approach and, most import-
antly, the results of applying the PASS framework suggest that there
are only small gains to be had. Waiting for databases to grow in
size, and for the development of more complex network architec-
tures, is unlikely to be the answer. Instead, focusing on developing
methods that provide pre-existing models with more prediction-
relevant information will likely result in the most significant
progress.

The most obvious approach to this kind of development is to ex-
plore further techniques from semi-supervised learning. Methods
like data augmentation, that have shown success with image data
(Berthelot et al., 2019; Sohn et al., 2020), would be ideal in getting
the most out of the data that is available. Unfortunately, it is non-
trivial to augment biological sequences even when the structure or
function is known which makes data augmentation a difficult ap-
proach to pursue (Kandathil et al., 2019a). That being said, homo-
logues of a given sequence in the training set can loosely be viewed
as biologically valid augmentations of the original target sequence.
From this perspective, including multiple pseudo-labelled sequences
from each cluster as separate examples, instead of the current
method which only includes a single target sequence from each clus-
ter, could be viewed as a proxy for data augmentation. Another ap-
proach to improving results may be to train models like S4PRED to
predict the class probabilities outputted by the label-providing hom-
ology model, instead of predicting the hard class assignments, in a
manner similar to Knowledge Distillation (Hinton et al., 2015).
Alternatively, S4PRED could be limited to learning only labels pre-
dicted by PSIPRED with a high degree of confidence. A more general
method like MixUp (Zhang et al., 2018), that is application domain
agnostic, might also improve classification by improving the classi-
fiers overall generalizability. Suffice it to say, the semi-supervised
approach of PASS brings with it a variety of potential ways to im-
prove performance by directly providing more information to the
classifier.

Given the success of S4PRED, PASS provides a simple blueprint
from which further methods can be developed for modelling orphan
sequences. An obvious first step with protein sequences is looking to
predict other residue level labels like torsion angle prediction
(Heffernan et al., 2018), or even extending to the difficult task of
protein contact prediction (Kandathil et al., 2019b). PASS could
also be applied to other biological sequences, such as in the predic-
tion of RNA annotations (Hanumanthappa et al., 2021). Extending
PASS to other prediction tasks in the future will also likely be aided
by recent efforts to consolidate databases of sequences with pre-
calculated predictions of various attributes from a range of tools.
One such example being the residue-level predictions provided in
DescribePROT (Zhao et al., 2021). As more of the protein universe
is discovered the need for methods that are independent of hom-
ology only grows. Methods like S4PRED will hopefully come to rep-
resent a growing response to this need, the PASS framework
providing a path forward. With this in mind we provide S4PRED as
an open source tool and as an option on the PSIPRED web service.
We also make the 1.08M example pseudo-labelled training set pub-
licly available from our web service as a flat file for further research
and investigation.
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