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Abstract

Motivation: Protein model quality assessment (QA) is an essential component in protein structure prediction, which
aims to estimate the quality of a structure model and/or select the most accurate model out from a pool of structure
models, without knowing the native structure. QA remains a challenging task in protein structure prediction.

Results: Based on the inter-residue distance predicted by the recent deep learning-based structure prediction algo-
rithm trRosetta, we developed QDistance, a new approach to the estimation of both global and local qualities.
QDistance works for both single- and multi-models inputs. We designed several distance-based features to assess
the agreement between the predicted and model-derived inter-residue distances. Together with a few widely used
features, they are fed into a simple yet powerful linear regression model to infer the global QA scores. The local QA
scores for each structure model are predicted based on a comparative analysis with a set of selected reference mod-
els. For multi-models input, the reference models are selected from the input based on the predicted global QA
scores. For single-model input, the reference models are predicted by trRosetta. With the informative distance-
based features, QDistance can predict the global quality with satisfactory accuracy. Benchmark tests on the CASP13
and the CAMEO structure models suggested that QDistance was competitive with other methods. Blind tests in the
CASP14 experiments showed that QDistance was robust and ranked among the top predictors. Especially,
QDistance was the top 3 local QA method and made the most accurate local QA prediction for unreliable local re-
gion. Analysis showed that this superior performance can be attributed to the inclusion of the predicted inter-
residue distance.

Availability and implementation: http://yanglab.nankai.edu.cn/QDistance.

Contact: yangjy@nankai.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Quality assessment (QA) of protein structure models is an essential
component in protein structure prediction (Uziela et al., 2017; Won
et al., 2019) and refinement (Hiranuma et al., 2021). Due to its im-
portance, QA has been one of the prediction categories in the
Critical Assessment of Techniques for Protein Structure Prediction
(CASP) since 2006 (Cozzetto et al., 2007, 2009; Kryshtafovych
et al., 2011, 2014, 2016, 2018). There are two kinds of QA: global
QA and local QA. Global QA aims to estimate the quality of a struc-
ture model or select the most accurate model out from a pool of
structure models. Local QA is to predict the residue-specific distance
deviation in a structure model. Significant progress has been made
in the field of protein structure prediction, mostly due to the rapid

development of deep learning, such as in RaptorX-Contact (Xu,
2019), AlphaFold1(Senior et al., 2020), trRosetta (Yang et al.,
2020) and AlphaFold2 (Callaway, 2020). In contrast, though many
QA methods have been developed, the progress is less significant
and more efforts are required (Won et al., 2019).

Current QA methods can be divided into two groups depending
on the input number of models: single-model-based or clustering-
based methods. The single-model-based methods require only one
model as input, such as the ProQ series (Uziela et al., 2016, 2017;
Uziela and Wallner, 2016; Wallner and Elofsson, 2003), VoroMQA
(Olechnovic and Venclovas, 2017), QAcon (Cao et al., 2017),
SVMQA (Manavalan and Lee, 2017), Qprob (Cao and Cheng,
2016), DeepQA (Cao et al., 2016), CNNQA (Hou, 2019), Ornate
(Pages et al., 2019), GraphQA (Baldassarre et al., 2021) and so on.
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The main differences between these methods are in two folds: differ-
ent feature representations (e.g. potential-based features and model
geometry-based features) and prediction engines (e.g. support-vector
machines and deep learning). In addition, there are also a few quasi
single-model methods that support single-model input, but using ref-
erence models created by other tools (Maghrabi and McGuffin,
2017). Clustering-based methods take a set of models as input, such
as Pcons (Lundstrom et al., 2001), APOLLO (Wang et al., 2011),
ModFOLDclust (McGuffin, 2008) and ResQ (Yang et al., 2016),
etc. In general, these methods require that there should be a subset
of models with apparent pairwise similarity, which largely limits
their application in reality. By contrast, the single-model-based
methods do not have such limitation but their accuracy is relatively
low in general.

In recent years, de novo protein structure prediction becomes
much more accurate than before, mostly due to the accurate inter-
residue contact/distance prediction by deep learning (Greener et al.,
2019; Senior et al., 2020; Xu, 2019; Yang et al., 2020). It is thus of
great interest to test if the predicted inter-residue contact/distance
can be used to improve QA. In fact, a few papers were published in
the course of this work. The first was QDeep (Shuvo et al., 2020),
which performed dynamic programing to calculate the alignment
score of the predicted and the model’s distance histogram as a part
of the network’s input features. The second was ResNetQA (Jing
and Xu, 2020), in which model-derived distance map and predicted
distance potential were fed into a 2D residual neural network to
make global and local QA prediction simultaneously. Recently, pre-
dicted local quality score (plDDT) is provided along with the pre-
dicted structure model by the amazing system AlphaFold2 (Jumper
et al., 2021).

In this work, we introduce QDistance, a new global and local
QA prediction method using predicted inter-residue distance.
Benchmark tests on the CASP13 and the CAMEO datasets suggested
that QDistance had competitive accuracy with other methods. Blind
tests in the CASP14 experiments indicated that QDistance was one
of the top performers.

2 Materials and methods

2.1 Overview of the proposed method
The flowchart of QDistance is shown in Figure 1. The input to
QDistance can be either single model (Fig. 1A) or a set of models
(Fig. 1B) for a target protein. For a target, a multiple sequence align-
ment (MSA) is generated by searching the query sequence against
the sequence database Uniclust30 (Version 2018_08) by the soft-
ware HHblits (Version 3.0.3) with an e-value cutoff 0.001.
trRosetta is used to predict inter-residue distance and structure mod-
els for a query target. To predict the global QA score for each
model, three groups of features are designed, including features
based on: 2D distance matrix comparison, potential scores and
other single QA methods and 1D structural feature comparison
(Fig. 1C). These features are fed into a simple yet powerful linear re-
gression model to predict the GDT_TS score (Zemla, 2003). For
multi-models input, an additional step of comparative analysis [i.e.
Equation (5)] with the top-scoring models (ranked based on the lin-
ear regression score) is performed to improve the global QA predic-
tion. To make local QA prediction for multi-models input, the top
models (according to the predicted GDT_TS score) are first col-
lected. A consensus analysis is then used to infer the local QA score
for each model [with Equation (6)]. We can see that the multi-mod-
els local QA prediction procedure can be applied to inputs with mul-
tiple models only. For single-model input, to make local QA
prediction with a similar idea, we apply trRosetta to generate five
reference models.

2.2 Feature design
2.2.1 Features based on 2D distance matrix comparison

The inter-residue distance prediction becomes more and more accur-
ate due to the rapid development and application of deep learning
algorithms. In this work, the distance matrix for a target protein is

predicted by trRosetta (Yang et al., 2020), one of the state-of-the-art
methods for protein structure prediction. The distance predicted by
trRosetta is a histogram represented by a 3D matrix of size
L�L�37, where L is the length of the target protein and 37 repre-
sents the 37 distance bins. Thus, the distance for each residue pair is
represented by a probability distribution. Contact- and distance-
based features are designed from this distribution detailed below.

Three ways are used to define a contact matrix [denote by CT ¼
(ctij)] for the target protein, starting from the prediction by
trRosetta. The first is based on the summed probability of the dis-
tance bins between 0 and 8 Å. A pair of residues are defined to be in
contact if the probability is higher than 0.5. The second way is
defined based on probability weighted sum of the distances in all
bins, which results into a distance matrix [denote by DT ¼ (dtij)]. A
pair of residues is defined to be in contact if the distance is <8 Å.
The third way is similar to the second one but with a different dis-
tance matrix; i.e. the distance corresponds to the bin with the max-
imum probability.

For each structure model, based on the coordinates of its C-b (C-
a for glycine) atoms, a distance matrix can be obtained [denote by
DM ¼ (dmij)]. Two residues are in contact if the distance dmij is
<8 Å, resulting into a contact matrix [denote by CM ¼ (cmij)].

For each definition of CT, two contact-based features are defined
as the number of common contact pairs in CT and CM, divided by
the total number of contact pairs in CT and CM, respectively. Thus,
a total of six contact-based features are obtained.

For each of the two predicted distance matrices (i.e. from
weighted sum and maximum probability), four distance-based fea-
tures are defined to measure the agreement between the predicted
and model-derived distance matrices. The first is defined by the fol-
lowing equation.

S1 ¼
1

4L

X
t2f1;2;4;8g

XL

i¼1

P
j;ji�jj�12;dtij � 20 Iðjdtij � dmijj � tÞP

j;ji�jj�12;dtij � 20 1
; (1)

where I() is an indicator function which equals to 1 if the condition
is satisfied and 0 otherwise. The remaining three are defined as
follows:

S2 ¼ 1� j
P

dtij � dmijjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

dt2
ijÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

dm2
ijÞ

q ; (2)

S3 ¼ 1�
P

i;jðdtij � dmijÞ2

maxð
P

i;j dt2
ij;
P

i;j dm2
ijÞ
; (3)

S4 ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jðdtij � dmijÞ2

q

maxð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j dt2
ij

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j dm2
ij

q
Þ
: (4)

In summary, for each structure model, 14 features can be
obtained from the above calculations (6 from contact and 8 from
distance comparisons).

2.2.2 Features based on potentials scores and other single QA

methods

A total of 15 features are designed, including 12 potential scores and
predictions from 3 single QA methods. The potential scores include
Dope (Shen and Sali, 2006), OPUS (Wu et al., 2007), RWplus
(Zhang and Zhang, 2010), RF_CB_SRS_OD (Rykunov and Fiser,
2007), DFIRE2 (Zhou and Zhou, 2002) and 7 Rosetta’s energy
terms used in ProQ3 (Uziela et al., 2016): radius of gyration (rg),
statistical potentials for secondary structure information (hs_pair,
ss_pair, sheet, rsigma), contact order (co) and centroid hydrogen
bonding (cen_hb). Similar to the procedure adopted in ProQ3, side-
chain rebuilding and energy minimization were performed before
evaluating the Rosetta energy on each structure model. The single
QA methods include DeepQA (Cao et al., 2016), ModelEvaluator
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(Wang et al., 2009) and Qprob (Cao and Cheng, 2016). All scores

are converted into the range of [0, 1] using the logistic function.

2.2.3 Features based on 1D structural feature comparison

Similar to other QA methods, we generate seven features based on 1D
structural feature comparison as in the DeepQA (Cao et al., 2016). The
considered 1D structural features include surface area, secondary struc-

ture, exposed mass, exposed surface, solvent accessibility and Euclidean
compact. The hypothesis is that the 1D structural features derived from a

good structure model should match well with sequence-based 1D struc-
tural feature prediction, given that the sequence-based prediction is very
accurate nowadays. More details about these features are available in the

Supplementary Table S1.

2.3 Global and local QA prediction
To predict the global QA score for each model, the features gener-
ated above are fed into a linear regression model. The linear regres-
sion scores for the input with multiple models are then refined by a

comparative analysis with the following equation. For single-model
input, no refinement is performed.

Gi ¼

PN1

j¼1

GDT � TSji � Lj

PN1

j¼1

Lj

; i ¼ 1; . . . ;T; (5)

where Gi is the predicted GDT_TS score for the ith model, T is the
total number of input models, Lj is the linear regression score for the
jth reference model, GDT_TSji is the GDT_TS score between the ith

and the jth reference model and N1 is the number of top models
ranked based on the linear regression score. In this work, it is set to
20% of the total number of input models.

The local QA prediction for input with multiple models is based
on a similar idea of comparative analysis. The top 10% models
(ranked by the predicted GDT_TS score) are selected as reference
models. The local scores for each model are then predicted based on
comparison with the reference models.

dik ¼

PN2

j¼1;j 6¼i

dijk �Gj

PN2

j¼1;j6¼i

Gj

; i ¼ 1; . . . ;T; k ¼ 1; . . . ;L; (6)

where dik is the predicted distance deviation for the kth residue in
the ith model, dijk is the distance deviation between the ith model
and the jth reference model for the kth residue after superimpos-
ition, Gj is the same as in Equation (5), N2 is the number of top
models ranked based on Gj and L is length of the target.

To predict the local QA scores for single-model input, we use the
models generated by trRosetta as reference models. The local QA
scores are then predicted with the following formula.

dk ¼
1

5

X5

j¼1

djk; k ¼ 1; . . . ;L; (7)

where dk is the predicted distance deviation for the kth residue in
the input model, djk is the distance deviation between the input
model and the jth reference model for the kth residue after
superimposition.

Fig. 1. Flowchart of the proposed method QDistance. The supported input includes single model and multiple models. (A) Single-model QA prediction procedure. A linear re-

gression model is used for global QA prediction. And for local QA prediction, we used the structure models generated by trRosetta as the reference models to infer the local

quality scores using Equation (7). (B) Multi-models QA prediction procedure. For global QA, an additional refinement step based on consensus analysis [i.e. Equation (5)] is

performed after linear regression. Local QA prediction for each structure model is based on consensus analysis through comparison [i.e. Equation (6)] with a set of reference

models, selected based on the global QA scores. (C) Three groups of features are designed to encode each structure model

3754 L.Ye et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/21/3752/6362874 by guest on 09 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab632#supplementary-data


2.4 Performance evaluation
In CASP, a few major metrics are used to evaluate the global QA
prediction: Loss, Pearson’s correlation coefficient (PCC) (denote by
Pearson) and Best_difference (denote by Diff).

Loss ¼ 100�
XN
i¼1

jxi � yij; (8)

Diff ¼ 100� jypred � y0j; (9)

where xi and yi are the predicted and real GDT_TS score of the ith
model, respectively; ypred is the real GDT_TS score of the model
with the highest predicted score, y0 is the real GDT_TS score of the
best model. From the definition, we can see that lower values of the
Loss and Best_difference, and higher value of Pearson reflect more
accurate global QA prediction. Note that the global quality
GDT_TS is superimposition-dependent and thus domain orienta-
tions may affect the evaluation results. In contrast, the lDDT score
is superimposition-independent and thus it is also considered in our
evaluation. By default, GDT_TS is adopted unless declared in the
remaining of this article.

For local QA evaluation, two metrics are used to evaluate the
performance. The first is ASE:

ASE ¼ 100� ð1� 1

L

XL

i¼1

jSðeiÞ � SðriÞjÞ; (10)

where L is the length of the target; ei and ri are the estimated and
real distance deviation of the model’s ith residue, respectively; S(d)
¼ 1/(1þ(d/d0)2) is a S-function; the value of d0 is set to 5 Å in the
CASP official evaluation (Won et al., 2019). However, this cutoff
might be too high. The average ASE over four lower distance thresh-
olds of 0.5, 1, 2 and 4 Å is calculated as well, inspired by the cutoffs
used in GDT_TS (Zemla, 2003). The average ASE over all models
for all targets in a dataset is calculated for comparison. The closer
ASE is to 100, the more accurate the local quality prediction is. In
the remaining of this article, d0 is set to 5 Å for ASE by default unless
declared. The second measure is the PCC between the predicted
local scores and the ground truth.

3 Results and discussion

We trained our method on the protein structure models from
CASP8–12 and tested it on the structure models from CASP13 and
CAMEO (3 months between June 19, 2020 and September 12,
2020). The models were downloaded from the respective official
websites. Besides these benchmark tests, we also participated in the
blind tests in the QA category of the CASP14 experiment.

3.1 Contribution of different features
As shown in Figure 1C, the features used by QDistance are divided
into three groups: A, B and C. Table 1 lists the performance of
QDistance with individual feature groups and combinations to in-
vestigate their contributions. In order to check the contribution dir-
ectly, no refinement was performed [i.e. with Equation (5)]. The
global QA scores were from linear regression directly. Among the
three feature groups, distance-based features (A) lead to the most ac-
curate prediction for all three metrics. The combined feature group
(i.e. BþC) outperforms each individual feature group (B) and (C) in
terms of Loss and Best_difference but with lower PCC. Additional
inclusion of the distance-based features significantly improves this
measure from 0.585 to 0.763. The ability in selecting the best model
and reproducing GDT_TS is also enhanced. For example, the
Best_difference improves from 8.36 to 6.322, and the Loss improves
from 11.839 to 9.13.

In addition, the contribution of the features is quantitatively
measured by the average weight of the linear regression coefficients.
Supplementary Figure S1A suggests that distance-based features
contribute the most to the prediction. The distance-based features

are further divided into five sub-groups: contact-based features (6)
and S1–S4 [i.e. Equations (1)–(4)]. Supplementary Figure S1B sug-

gests that the contact-based features have lower contribution than
other features. This is probably because the distance contains much

richer information than the binary contact.

3.2 Performance on the CASP13 dataset
There are two stages in the CASP13 QA experiments. The main pur-
pose of Stage 1 is to decide if a QA predictor is a single- or multi-
models method. Thus, we only present the results on the Stage 2

models, which are summarized in Table 2.
Table 2 presents the results of our method and the top-

performing QA groups in CASP13 (Won et al., 2019). Our single-
model-based method is more accurate than the single-model meth-

ods ModFoLD7_rank, ProQ3D and FaeNNz, with lower Diff and
Loss and higher Pearson. However, it is less accurate than the top-
performing groups MULTICOM_CLUSTER, UOSHAN and

ModFOLDclust2, which are multi-models-based methods. After the
refinement based on comparisons with the reference models using

Equation (5), a significant improvement was achieved in QDistance,
which outperforms all other methods. For example, QDistance’s
Best_difference and Loss are 5.324 and 4.875, respectively, which

are all lower than MULTICOM_CLUSTER (5.406 and 7.676). The
PCC by multi-models-based QDistance is 0.906, also higher than

the best method UOSHAN (0.895).
When the ground truth is replaced by the lDDT score (Mariani

et al., 2013), our method has similar accuracy with UOSHAN but is

less accurate than MULTICOM_CLUSTER (Supplementary Table
S2). This may be because our method was trained to reproduce the

GDT_TS score rather than the lDDT score.

Table 1. The performance of QDistance on the 73 targets of

CASP13’s dataset with different features

Feature Diff Loss Pearson

A 8.362 11.457 0.729

B 11.27 12.008 0.612

C 11.615 12.805 0.588

BþC 8.36 11.839 0.585

AþBþC 6.322 9.13 0.763

Note: The feature groups A–C are the same as those in Figure 1. A: dis-

tance-based features, B: potential scores and single QA methods and C: fea-

tures based on 1D structural feature comparison. Note that the global QA

scores were from linear regression directly without refinement in Equation (5)

to quantify the contribution of different features directly.

Table 2. Comparison with other top global QA methods on models

from CASP13

Method Diff Loss Pearson

QDistanceb 5.324 4.875 0.906

MULTICOM_CLUSTER 5.406 7.676 0.86

UOSHAN 5.523 5.5 0.895

ModFOLDclust2 6.688 7.414 0.852

QDistancea 6.322 9.13 0.763

ModFoLD7_rank 6.612 11.883 0.761

ProQ3D 8.306 10.632 0.65

FaeNNz 8.773 11.277 0.698

Note: The global accuracy is measured based on GDT_TS. The multi-mod-

els-based prediction by QDistance was based on the refinement with Equation

(5). Evaluation on the common submission results of the above methods,

including 73 CASP13 targets.
aSingle model-based (the same as AþBþC in Table 1).
bMulti-models-based.
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For input with multiple models, the top models (ranked based on
the predicted global QA scores) are selected as reference models to
predict the local QA scores for each input model. A detailed relation
between ASE and the number of used reference models is available
in Supplementary Figure S2, which suggests that 15 seems to be an
optimal number. The local QA for each model is then obtained
based on pairwise comparisons with the reference models with
Equation (6). For input with a single model, the predicted structure
models by trRosetta are used as reference models to infer the local
QA scores for the input model using Equation (7).

The PCC and ASE of the predicted local quality on the CASP13
models by QDistance and other top-performing groups in CASP13
are shown in Figure 2. Both versions of QDistance outperform other
groups according to PCC (Fig. 2A). The multi-models-based version
of QDistance achieves a PCC above 0.7, higher than the quasi sin-
gle-model-based version of QDistance. When it comes to ASE, the
results depend on the value of d0. When it is set to 5 Å as done in
CASP, the multi-models-based QDistance has the highest ASE
(87.883) (Fig. 2B); while the quasi single-model-based QDistance
has comparable ASE with the method UOSHAN. When lower cutoff
values of d0 are used, the ASEs for all methods increased (see
Supplementary Table S3). For example, the ASE for QDistance
(with multiple models) increases from 87.646 to 92.116 when the
cutoff decreases from 4 to 0.5 Å. The control method UOSHAN
seems to be more sensitive at a lower cutoff, which achieves the
highest ASE (94.134) when d0 is 0.5 Å. This is probably because this
method sets a maximum cutoff of 15 Å for predicted distance devi-
ation. Averaging the ASEs over the four cutoffs leads to the highest
ASE by UOSHAN, followed by QDistance (Fig. 2C). Note that
when d0 is 0.5 or 1 Å, all other methods do not have distinguishable
ASE values, suggesting that these cutoffs may be too stringent to be
used for local QA assessment.

Since our multi-models-based local QA relies on a set of refer-
ence models, we investigate on the performance difference on the
reference models and other models (see Supplementary Fig. S3). As
expected, the average GDT_TS score of the selected reference mod-
els is higher than the remaining models (0.542 versus 0.39,
Supplementary Fig. S3A). When measured by PCC and ASE
(d0¼5 Å), there is no notable difference between the reference mod-
els and other models (Supplementary Fig. S3B and C). However,
when measured by the average ASE at four distance cutoffs
(d0¼0.5, 1, 2 and 4 Å), the reference models show less accurate
ASE than other models (84.781 versus 89.519, Supplementary Fig.
S3D). This might be because the reference models are similar to each
other, making the predicted local distance deviation artificially
small. The S-function difference for the predicted and the real local
distance deviation may be further enlarged at a more stringent cutoff
(i.e. d0¼0.5 or 1 Å), making the ASE values become smaller for the
reference models.

3.3 Performance on the CAMEO dataset
To further validate the performance of QDistance (quasi single-
model-based), we collected �2000 models from CAMEO (12 weeks
between June 19, 2020 and September 12, 2020). CAMEO is a
weekly assessment of protein structure prediction methods (Haas
et al., 2018), in which only local QA is evaluated. Given that the
participating groups in CAMEO only have access to single model
during the prediction period, we present the results for the quasi sin-
gle-model-based QDistance. The raw structure models and the QA
predictions by other methods were downloaded directly from the
CAMEO official website. There are 182 targets for this dataset and
about 10 models on average for each target. QDistance’s local pre-
diction is similar to the previously described procedure, but with the
pairwise local score being lDDT (Mariani et al., 2013) rather than
distance deviation.

There are a few differences between the CAMEO and the
CASP’s local QA assessment. First, the predicted score in CAMEO
is the local lDDT rather than distance deviation. Second, the evalu-
ation in CAMEO is based on AUC rather than the ASE. Three dif-
ferent ways can be used to calculate the AUC scores: residue-based
(AUCr), model-based (AUCm) and target-based (AUCt). In the
residue-based calculation, a single AUC is calculated by comparing
the predicted lDDT scores for all residues from all models and tar-
gets with the native ones. While in the model-based version, an AUC
is calculated for each model and the average AUC over all models is
used as the final AUC. For the target-based evaluation, the AUC for
all residues from all models of the same target is first computed and
the average AUC over all targets is calculated.

Figure 3 presents the comparison between QDistance and other
QA methods on the CAMEO dataset. The official evaluation in
CAMEO is based on AUCr (Fig. 3A). QDistance’s AUCr is 0.883,
lower than the top method QMEANDisco 3 (0.937) but with similar
to other methods. Note that the AUCr may not reflect the exact per-
formance of a QA method because the residues from all models and
targets are treated equally, though the length and difficulty of differ-
ent targets are usually different. To partly address this issue, the
other two metrics, AUCm and AUCt are introduced above, which
are presented in Figure 3B and C, respectively. The absolute values
of AUCm and AUCt become lower than AUCr for almost all meth-
ods, suggesting that the evaluation based on AUCr may over-
estimate the performance of QA methods. The AUCm and AUCt val-
ues for our method are 0.834 and 0.887, respectively, both higher
than the method QMEANDisco 3 (0.833 and 0.884).

Similar to AUC, we also calculate three forms of PCCs: PCCr,
PCCm and PCCt. Supplementary Table S4 shows that our method is
less accurate than QMEANDisco 3, probably because our method
has been trained to predict local distance deviation rather than local
lDDT. Nevertheless, QDistance outperforms or is competitive with
other methods.

Fig. 2. Comparison of QDistance with other local QA methods on the models for 72 CASP13 targets. (a) Quasi single-model-based; (b) multi-models-based. (A) PCC. (B) ASE

at d0¼ 5 Å. (C) Average ASE at d0¼0.5, 1, 2, 4 Å
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3.4 Blind tests in the CASP14 experiment
We participated in the QA category in the bind tests of the CASP14
experiment with two groups Yang_TBM and Yang-Server. Both
groups were built based on the QDistance algorithm but with differ-
ent ways of selecting the top reference models [i.e. in Equation (5)].
The former is based on predicted global QA score (the same as
QDistance) while the latter is based on the average pairwise TM-
score (Zhang and Skolnick, 2004) to other models.

Figure 4 shows the results of the global and local QA prediction for
�10 000 models (Stage 2) of 68 CASP14 targets. The Best_difference,
Loss and ASE were directly from the official website while the PCC for
each group was the average of the individual coefficients over all 68 tar-
gets. A total of 72 groups participated in the global QA prediction but
four groups were excluded as they submitted predictions for only a few
targets. Figure 4(A–C) shows the Loss, Best_difference and Pearson, re-
spectively. For global QA prediction, our group, Yang_TBM (highlighted
as filled bars), ranks at the 7th, 12th and 10th according to Loss
(Fig. 4A), Best_difference (Fig. 4B) and Pearson (Fig. 4C), respectively. In
fact, it is difficult to maintain a top position for all metrics. For example,
the group MULTICOM-CONSTRUCT is the top predictor according to
Best_difference; however, it is ranked at the 11th and 12th by Pearson
and Loss, respectively.

There are 39 groups participating in the local QA prediction.
Figure 4D shows that Yang_TBM ranks at the third with very similar
ASE (�85) to the top two groups (DAVIS-EMAconsensus and
ModFOLDclust2). In addition, according to the official assessment in the
CASP14 meeting, Yang_TBM’s local QA prediction had the highest ac-
curacy for unreliable local regions, which are defined as regions of sequen-
tial residues with distance deviation >3.8 Å. The top method in
CAMEO, QMEANDisCo, also participated in the test. Table 3 shows
the rankings of our method and other selected methods of interest. It
shows that QMEANDisCo were ranked lower compared with our
method. This might be because different metrics are used in CAMEO and
CASP for evaluating the performance.

As mentioned in Section 1, two recently published QA methods,
QDeep and ResNetQA, also made use of predicted distance.
According to the description in the CASP14 abstracts, these two
methods also participated in the CASP14 experiments with group
names Bhattacharya-QDeep and RaptorX-QA, respectively. The
rankings of these two groups and QDistance-based Yang_TBM are
summarized in Table 3. Though predicted distance is employed in
all three methods, the table shows that Yang_TBM has much higher
ranking than these two methods. This difference may be attributed
to three aspects. The first is different methods are used to predict the
distance: DMPfold in Bhattacharya-QDeep, RaptorX-Contact in
RaptorX-QA and trRosetta in Yang_TBM. The second is different
ways of using predicted distance. In Yang_TBM, a set of 14 features

are carefully designed to reflect difference between the model-
derived distance and the predicted distance. For Bhattacharya-
QDeep, it used a few distance map similarity scores based on dy-
namic programing alignments as input features. And for RaptorX-
QA, deep residual neural networks were applied with direct input of
distance matrices. The third is these two methods do not make use
of reference models.

In addition, the QA prediction by the group BAKER-
ROSETTASERVER in CASP14 was based on the method
DeepAccNet-MSA, which made use of the trRosetta output as input
to its network (Hiranuma et al., 2021). For global QA, Table 3
shows that BAKER-ROSETTASERVER’s ranking is slightly higher
than Yang_TBM based on Diff (7 versus 12), but lower than
Yang_TBM based on the metrics Loss and Pearson. For local QA,
BAKER-ROSETTASERVER has a lower ranking than Yang_TBM
probably because it is a single-model-based method while
Yang_TBM is based on multiple models.

3.5 Comparison with other methods with the same

MSA
As Bhattacharya-QDeep (QDeep in brief), ResNetQA (used by
RaptorX-QA) and our method rely on MSA, it is necessary to com-
pare their performance with an identical set of input MSAs. We try
to run both methods locally with the same MSAs used by
QDistance. QDeep was downloaded and ran locally with default
options. ResNetQA was also ran locally but its input was obtained
by submitting the MSAs to the RaptorX-Contact server. As both
QDeep and ResNetQA are single-model-based method, we ran
QDistance based on single model (or quasi-single model for local
QA) for a fair comparison.

Table 4 shows that when the same set of MSAs is used, QDistance
outperforms both methods, for both global and local QA predictions. We
noticed that both methods provided their raw predictions for 20 CASP13
targets at Github, which are also included in Table 4. It suggests that the
downloaded predictions are more accurate than those obtained by run-
ning the respective methods locally. It might be because different MSAs
were used. For ResNetQA, another possible reason is the RaptorX-
Contact server was not updated and incompatible with ResNetQA (pri-
vate communication).

3.6 Strength and weaknesses of QDistance
QDistance has been shown to be competitive with other QA meth-
ods in the above benchmark and blind tests. QDistance relies on the
comparisons with a set of selected reference models. Thus, it per-
forms well when multiple accurate models are successfully identified
from the assessed set of models. One of the known weaknesses of

Fig. 3. Comparison of QDistance with other methods on the CAMEO dataset. The dataset consists of 158 targets that all assessed methods have prediction results. (A–C) are

the residue-based, model-based and target-based AUCs, respectively
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the consensus-based method is that it cannot identify an outstanding
but minority model. This issue has been partly addressed by intro-
ducing the new distance-based features. When the predicted distance
is accurate, such model is possible to be recognized with the newly
designed distance features [Equations (1)–(4)]. However, QDistance
may not work well when the predicted distance is not accurate.
Because the accuracy of the predicted distance depends on the avail-
ability of enough homologous sequences in the MSA, we check the

relationship between the MSA depth and the QA accuracy.

Supplementary Table S5 shows that QDistance is on average more
accurate when the MSA is deeper.

4 Conclusions

In this work, by introducing predicted inter-residue distance-based
features, we developed QDistance, a new protein model QA

Fig. 4. The performance of QDistance-based method Yang_TBM in CASP14’s blind test. The x-axis is the ranking of the participating groups in CASP14. (A–C) are for global

QA prediction and (D) is for local QA prediction. Yang_TBM is highlighted as black bar while other groups are shown as white bars

Table 3. Ranking of the QDistance-based Yang_TBM and other

selected methods of interest

Group Loss Diff Pearson ASE

Yang_TBM 7 12 10 3

BAKER-ROSETTASERVER 20 7 18 11

Bhattacharya-QDeep 39 41 53 16

RaptorX-QA 17 62 51 30

QMEANDisCo 28 49 42 39

Note: Bhattacharya-QDeep and RaptorX-QA used predicted distance.

QMEANDisCo was the top method according to the CAMEO experiment.

BAKER-ROSETTASERVER used trRosetta outputs as input features.

Table 4. Comparison of QDistance with QDeep and ResNetQA

based on an identical set of MSAs

Method Diff Loss Pearson PCC ASE

QDistance 4.438 8.865 0.793 0.661 85.328

QDeepa 10.334 15.284 0.563 N/A N/A

QDeepb 8.88 10.123 0.751 N/A N/A

ResNetQAa 9.521 14.569 0.667 0.384 66.646

ResNetQAb 8.57 7.89 0.823 0.54 84.5

Note: The data are on 20 CASP13 targets that were used by both methods.
aThe raw predictions were obtained by running the methods locally.
bThe raw predictions were downloaded from Github.

3758 L.Ye et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/21/3752/6362874 by guest on 09 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab632#supplementary-data


method. Both single-model- and multi-models-based inputs are sup-
ported in QDistance. Even with simple linear regression, QDistance
showed competitive performance with other state-of-the-art meth-
ods, as benchmarked on the CASP13 and the CAMEO datasets. In
addition, blind test in CASP14 indicated that QDistance was robust
and ranked as one of the top performers. The outstanding perform-
ance of QDistance can be attributed to the utilization of the distance
predicted by deep learning.
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