
Structural bioinformatics

SAMPDI-3D: predicting the effects of protein and DNA

mutations on protein–DNA interactions

Gen Li, Shailesh Kumar Panday, Yunhui Peng and Emil Alexov *

Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA

*To whom correspondence should be addressed.

Associate Editor: Teresa Przytycka

Received on April 12, 2021; revised on June 28, 2021; editorial decision on July 29, 2021; accepted on July 31, 2021

Abstract

Motivation: Mutations that alter protein–DNA interactions may be pathogenic and cause diseases. Therefore, it is
extremely important to quantify the effect of mutations on protein–DNA binding free energy to reveal the molecular
origin of diseases and to assist the development of treatments. Although several methods that predict the change of
protein–DNA binding affinity upon mutations in the binding protein were developed, the effect of DNA mutations
was not considered yet.

Results: Here, we report a new version of SAMPDI, the SAMPDI-3D, which is a gradient boosting decision tree ma-
chine learning method to predict the change of the protein–DNA binding free energy caused by mutations in both
the binding protein and the bases of the corresponding DNA. The method is shown to achieve Pearson correlation
coefficient of 0.76 and 0.80 in a benchmarking test against experimentally determined change of the binding free en-
ergy caused by mutations in the binding protein or DNA, respectively. Furthermore, three datasets collected from lit-
erature were used to do blind benchmark for SAMPDI-3D and it is shown that it outperforms all existing state-of-the-
art methods. The method is very fast allowing for genome-scale investigations.

Availabilityand implementation: It is available as a web server and a stand-code at http://compbio.clemson.edu/
SAMPDI-3D/.

Contact: ealexov@clemson.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–DNA interactions (PDIs) mediate many vital biological
processes, such as transcription, replication and repair. Mutations in
the binding protein or cognate DNA may affect PDIs and interaction
networks by altering binding specificity and affinity. Such altera-
tions of the wild-type PDI are frequently the causality of various dis-
eases, including autism spectrum disorder, cancer and Alzheimer’s
disease (Jiao et al., 2020; Wells et al., 2019). Furthermore, under-
standing the effect of mutations on PDIs is not only important for
classifying mutations into pathogenic or benign (Livingstone et al.,
2017; Williamson et al., 2020) but also vital for developing thera-
peutic solutions (Chan et al., 2008) and revealing the reasons of
drug resistance (Stiewe and Haran, 2018). Quantifying these effects
on PDIs requires evaluating the changes of binding free energy
(DDG) induced by mutations. While there are numerous reports of
high-throughput experimental studies of effects of mutations on
PDIs, they provide only the ranking of the affinity changes, but for
DDG, still rely on traditional experiments(Katsamba et al., 2002;
Ryder et al., 2008; Stockley, 2009; Velazquez-Campoy et al., 2004;
Vivian and Callis, 2001).

For protein mutations, there are several widely used experimen-
tal methods evaluating the effect of mutations on the PDIs. For ex-
ample, electrophoretic mobility shift assay (EMSA) estimates the Kd

value to examine the binding affinity between protein and DNA that
based on the different electrophoretic mobility of protein–DNA
complex and free DNA. Isothermal titration calorimetry (ITC) pro-
vides thermodynamic parameters related to the PDIs but requires a
large amount of protein and DNA samples (Yang et al., 2016).
Surface plasmon resonance (SPR) and fluorescence methods can ob-
tain the kinetics of the PDI at high concentrations of samples (Liang
et al., 2021). Besides the above methods, there are high-throughput
methods for studying the effect of DNA mutations on PDIs. Protein
binding microarrays (PBMs) and related methods utilize fluorescent
antibodies against proteins to determine the binding to transcription
factors (Berger et al., 2006). High-throughput systematic evolution
of ligands by exponential enrichment (HT-SELEX) is a method of
enriching small populations of bound DNAs from a random se-
quence pool through polymerase chain reaction amplification (Riley
et al., 2014). Recently BEMSER method was reported that estimates
transcription factors (TF) specificity by using the universal PBM
data (Zhao et al., 2012). More recently, the relative affinity of TF
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was evaluated by combining EMSA and HT-SELEX methods
(Dantas Machado et al., 2020). Both above mentioned works pro-
vide valuable insights for protein–DNA binding, but their predic-
tions are still based on PBM or HT-SELEX data, and thus do not
result in predicting DDG. Because of that, one still uses the tradition-
al experimental methods to measure binding affinity but they are
time-consuming and costly for high-throughput studies.

Such a pressing needs for methods of predicting protein–DNA
DDG caused by protein mutations have resulted in development of
several computational methods, including mCSM-NA (Pires and
Ascher, 2017), SAMPDI (Peng et al., 2018) and PremPDI (Zhang
et al., 2018). The mCSM-NA (Pires and Ascher, 2017) method is
based on graph-based structural signatures to predict the DDG
caused by mutations in proteins bound to DNA/RNA. Our previous
SAMPDI method is based on modified molecular mechanics
Poisson-Boltzmann surface area (MM/PBSA) method enriched with
knowledge-based terms to predict the DDG of protein–DNA upon
single-protein mutation. The PremPDI (Zhang et al., 2018), which
was developed recently, is a method based on energy minimization
and side-chain optimization algorithms to predict the DDG upon sin-
gle protein mutation. However, none of the abovementioned meth-
ods attempted to explore the effect of DNA nucleotide mutations on
protein–DNA DDG.

Broadly speaking, the computational methods for predicting pro-
tein–DNA DDG can be grouped into three classes: first principle-
based (including MM/PBSA), machine learning (ML) and empirical.
In the recent years, ML approaches became very popular because of
their advantage to utilize a variety of features (structural, sequential,
energetical and other features) to predict DDG, and thus allowing
for more extensive ‘parametrization’, which in turn improves the
predictions. However, the intrinsic data-driven nature of the ML
method relies on a large and high-quality experimental dataset. The
training set of the previous methods was derived from the ProNIT
database (Kumar et al., 2006), which is no longer updated after
2013 and it only included hundreds available experimental data
points. Thus, ML protocol applied on such small dataset, compared
with ML protocol trained on thousands experimental data points,
may not be able to find existing patterns, which result in a protocol
that is overfitted. Perhaps this was the reason why ML approaches
were not extensively applied to predict protein–DNA DDG.
However, with the progress on experimental works, the pool of data
points increases and many new mutations with high-quality experi-
mental DDGs have been published in recent years (Afek et al., 2020;
Wang et al., 2020; Yang et al., 2016).

The above mentioned methods for predicting protein–DNA
DDGs, mCSM-NA (Pires and Ascher, 2017), SAMPDI (Peng et al.,
2018) and PremPDI (Zhang et al., 2018), suffer of three main defi-
ciencies: (i) the training set used in the developments was too small;
(ii) the benchmarking did not include a blind set to test model’s per-
formance and overfitting; and (iii) the existing methods model only
evaluate the effect of protein’s mutations on DDG. The last one is
particularly important in terms of understanding molecular effect of
DNA mutations affecting protein–DNA affinity and resulting in ser-
ious diseases, such as genetic disorder (Yoshiura et al., 2006) and
cancers (Guo et al., 2018).

Here, we report a new development of protein–DNA DDG pre-
dictor, SAMPDI-3D. The SAMPDI-3D is ML approach and uses a
gradient boosting decision tree ML algorithm with features as physi-
cochemical (PC) properties, structural properties of mutation site
and protein–DNA interactions to predict the change of binding free
energy resulting from either single point protein’s mutation or
DNA’s mutation. The method achieves a Pearson correlation coeffi-
cient (PCC) of 0.76 [and mean square error (MSE) ¼ 0.53 kcal/mol]
and 0.80 (MSE ¼ 0.39 kcal/mol) for mutations in protein or DNA
as benchmarked against 419 protein and 463 DNA experimental
DDGs taken from the ProNIT (Kumar et al., 2006) database and lit-
erature. The SAMPDI-3D uses a much larger training set than previ-
ously reported approaches to avoid the risk of overfitting and it is
shown to outperform existing state-of-the-art methods on the blind
datasets. In addition, the performance of SAMPDI-3D on distin-
guishing disruptive mutations is much better than other existing

methods. The online web server and standalone code of SAMPDI-
3D are freely available at http://compbio.clemson.edu/SAMPDI-3D/
, which combined with the high computational speed makes the
method excellent tool for genome-scale investigations.

2 Materials and methods

2.1 Dataset preparation
There are two databases: ProNIT (Kumar et al., 2006) and
dbAMEPNI (Liu et al., 2018), which document experimentally
determined values of changes of protein–DNA binding free energies
(DDG) upon mutations, derived from the published literature for
protein-nucleic acid complexes with available experimental 3D
structures. However, ProNIT is no longer updated and dbAMEPNI
only focuses on single alanine-scanning mutations. In view of the
above mentioned reasons, we respectively constructed two datasets
containing cases of the single mutations in protein or DNA with
available DDGs and 3D structures. Meanwhile, three blind sets were
compiled to test SAMPDI-3D performance and to compare it with
other methods. The number of disruptive and non-disruptive muta-
tions in each dataset could be found in Supplementary Table S2.
Training and blind datasets are available at http://compbio.clemson.
edu/SAMPDI-3D/.

2.1.1 Training set for predicting DDGs caused by mutations in the

binding protein

For the mutations in protein, we combined the training set con-
structed by Zhang et al. (2018) with the latest mutations collected
from the literature as our training set. Zhang’s study used 219 single
mutations (called S219) for training and testing, which were col-
lected from ProNIT and dbAMEPNI. To prevent overfitting, we
collected additional 200 single mutations (called S200) with experi-
mental DDGs and wild-type 3D structures from the literature pub-
lished in recent years that are not included in the ProNIT database.
Then, we merged S219 and S200 datasets resulting in 419 single
mutations in 96 proteins for training and testing (S419 dataset). It
should be mentioned that our training set is almost twice larger that
dataset used for development and testing in mCSM-NA and
PremPDI.

2.1.2 Training set for predicting DDGs caused by mutations in

DNA

For the mutations in DNA, our training set combined the ProNIT
database and data from recent literature. It comprises 245 single
mismatches and 218 single base-pair substitutions, a total of 463
mutations in 30 proteins with quantitatively characterized DDGs,
among them 123 were taken from ProNIT database. This dataset is
termed D463.

2.1.3 ‘Blind’ set for comparing existing methods performance

As mentioned in the introduction, mCSM-NA used 222 single muta-
tion cases (called S222) for training and testing. PremPDI used S219
dataset, which is taken from mCSM-NA training set and
dbAMEPNI. To compare SAMPDI-3D with them, we also trained
SAMPDI-3D of the same dataset (S219), and used the newly created
S200 as a blind test. This is done to avoid dependence of the training
set and set up SAMPDI-3D on the same footage as the other meth-
ods assuring fair comparison.

2.1.4 Blind set for benchmarking SAMPDI-3D prediction for

DNA mutations

To test the performance of SAMPDI-3D model, a blind set of rela-
tive binding affinity changes upon single base pair substitution in
the PDIs have been constructed by using recent experimental data
(Jolma et al., 2013; Yang et al., 2017). The blind set includes 227
DNA single base pair substitution from 18 TFs, termed T227 data-
set. The only software capable of modeling DDGs in such cases is
FoldX. Therefore, SAMPDI-3D and FoldX performance was
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compared on T227 dataset by using the PCC between relative bind-
ing affinity changes (DDM) and predicted DDG. Complete details of
the dataset and DDM could be found in Supplementary Material.

2.1.5 Blind set for distinguishing disruptive from non-disruptive

protein mutations

We constructed a new blind dataset, which contains 101 single ala-
nine mutations in 28 proteins obtained from dbAMEPNI (Liu et al.,
2018). Since this dataset is without experimental DDGs and only
includes descriptions of the impact of mutations on affinity or activ-
ity, we classified these mutations into disruptive and non-disruptive
based on the provided description (dataset is termed D101). The
specific classification conditions could be found in Supplementary
Material.

2.2 SAMPDI-3D feature design
2.2.1 SAMPDI-3D features for predicting DDGs caused by

protein’s mutation

(1) PC properties feature

We have used a set of nine amino acid properties, which have been
previously compiled in our published works (Li et al., 2020; Pahari
et al., 2020) to predict the changes in protein–DNA binding free
energies upon point mutations.

(2) Protein secondary structure element (SSE) propensity

The SSE propensity for an entire protein is given by:

Pss ið Þ ¼ ni

N
(1)

where ni is the number of secondary structure of type i, N is the total
number of different types of secondary structure in the protein,
i ¼ H (a-helix), B (residue in isolated b-bridge), E (extended strand,
participates in b ladder), G (3-helix), T (hydrogen bonded turn), S
(bend). The secondary structure of the protein is obtained by DSSP
(Kabsch and Sander, 1983).

(3) Amino acid properties

We selected four structural features: secondary structure, solvent
accessibility and IUPAC peptide backbone torsion angles (PSI, PHI).
All of them were obtained by DSSP (Kabsch and Sander, 1983).

(4) Protein–DNA interactions

To reflect the interactions between protein and DNA, we use
DSSR (Lu, 2020) to recognize and output contacts, hydrogen bonds
and stacking interactions.

(5) Experimental condition

Due to different experimental conditions, we also used pH as a
feature.

2.2.2 SAMPDI-3D features for predicting DDGs caused by DNA’s

mutations

In addition to protein SSE propensity and PDIs features described
above, the following new features were considered:

(1) knowledge-based terms

We labeled each different type of DNA mutation. For example,
AT to AA is labeled 1, AT to AC is labeled 2 and AT to GC is 3 and
so on. We also used binary 0 and 1 to represent whether it is a mis-
match and whether it is an AT base pair.

(2) Structural feature of mutation site

We used 18 base parameters to describe the structural character-
istics of the mutation site, which includes base-pair parameters,
base-pair step parameters and base-pair helical parameters. More
detailed definition can be found in DSSR software (Lu, 2020).

2.3 Regression model development
The SAMPDI-3D model was built and trained using gradient
boosted decision trees algorithm, which was implemented by the
XGBoost python version (Chen and Guestrin, 2016). It is known to
have the advantage to overcome the overfitting effect compared
with many other ML methods (Lv et al., 2020) and also works bet-
ter on unbalanced datasets (Friedman, 2001). For predicting DDG
upon a given mutation, we developed a regression model by using
knowledge-based features, structural information and PDI as
described above. We trained our model against 80% of the training
set present in our compiled dataset and tested it against the remain-
ing 20% data. We also analyzed the importance of each feature by
using XGBoost. While we tested many different features, above we
outline only features that were shown by XGBoost to have high im-
pact on the performance. All other tested features were removed
from the model.

3 Results

3.1 SAMPDI-3D training and testing
Overfitting is one of our chief concerns while getting more training
data is the best option to avoid it. Here, we trained SAMPDI-3D on
the two largest available datasets (S419 and D463, respectively and
defined in Methods and Materials) containing experimental DDGs
for protein or DNA mutations in protein–DNA complex, which
were taken from ProNIT (Kumar et al., 2006) and literature. Our
models show the PCCs of predicted with expected/experimental val-
ues is 0.76 (with MSE 0.53 kcal/mol) and 0.80 (with MSE of
0.39 kcal/mol) for mutations in protein or DNA when tested on
20% of the dataset. Figure 1a and b depicts the regression plots be-
tween experimental and predicted DDGs.

3.2 Feature importance analysis
The SAMPDI-3D is based on descriptors extracted from the pro-
tein–DNA 3D structure and sequence. Although we tried numerous
features, the goal was to minimize the number of features without
compromising the accuracy, so to avoid overfitting. Finally, four
types of features are used to develop the model to predict DDGs
caused by a single point mutation in the protein: (i) PC properties
feature (Li et al., 2020; Pahari et al., 2020); (ii) protein secondary
structure; (iii) interactions between protein and DNA; (iv) experi-
mental pH. The numbers of features in each type are included in

Fig. 1. Plot of SAMPDI-3D predicted DDGs against experimental DDGs in case of

20% of cases in: (a) S419 dataset of DDGs caused by mutations in the corresponding

protein and (b) D463 dataset of DDGs caused by mutations in DNA. The import-

ance level of each feature selected for predicting DDGs in case protein mutation (c)

and DNA mutations (d). MSE are given in kcal/mol
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Supplementary Table S3. In the model of predicting DDGs caused by
a mutation in DNA, besides the above features, DNA structure at
the mutations site is also considered. To get further insights into the
relative contributions of features, we used the decision tree algo-
rithm implemented in the XGBoost (Chen and Guestrin, 2016) to
train our model, and gradient boosting to calculate the importance
of the features(Chen and Guestrin, 2016). It can be seen in Figure 1c
and d that PC properties is the most important feature to predict
DDGs caused by mutations in the protein. This finding reflects previ-
ous observations that the type of amino acid substitution is one of
the most informative metrics identifying disease-causing SNPs
(David and Sternberg, 2015; Vitkup et al., 2003). SSE propensity is
the second highest and the highest important feature for predicting
DDGs caused by protein and DNA mutations, respectively. This
finding is along the lines of previous investigations indicating that
protein structure is an essential factor in protein–DNA recognition
(Rohs et al., 2010). The third highest contributing feature is the
interaction between protein and DNA, which means hydrogen
bonds, contacts and base-pair stacking also play important roles in
the process of protein -DNA binding (Kool, 2001; Rohs et al., 2009;
Rutledge et al., 2007). It should be emphasized that in both models,
the number of features were kept as few as possible and this was in-
deed achieved without compromising the accuracy.

3.3 Evaluating the performance on the blind datasets
3.3.1 Performance for the mutations in protein

To compare the SAMPDI-3D with other existing state-of-the-art
methods, including SAMPDI, PremPDI, mCSM-NA and FoldX, we
used S219 as a training set. Among the above mentioned methods,
PremPDI and mCSM-NA are ML methods and were trained on
S222 or S219. Thus, the new set S200 that we developed can serve
as a blind test. To assure fair comparison, we re-trained SAMPDI-
3D on the same dataset, the S219 set. Results are shown in Table 1.
One can see (Table 1) that SAMPDI-3D PCC of five-fold cross-vali-
dations can still reach 0.73 with only a slight increase in MSE, com-
paring with training on the S419. It is noted that SAMPDI possesses
the lowest MSE because only 105 interfacial mutations are included
in its training set. Table 1 summarizes the results and shows that
SAMPDI-3D outperforms other approaches, some by a large mar-
gin, especially on blind dataset. Furthermore, we evaluated the dif-
ference between SAMPDI-3D predictions and other methods
prediction and obtained P-values indicate that SAMPDI-3D is quite
different from the rest (Table 1). Also, our model keeps similar per-
formance on interfacial and non-interfacial blind sets
(Supplementary Table S4).

3.3.2 Performance for the mutations in DNA

Since we used all the collected data to train our SAMPDI-3D for pre-
dicting the DNA mutations, we further built a blind test set, which
consisted of 227 DNA single base pair substitution from 17 TFs
(T227 dataset). For this blind test set, the relative binding affinity
(DDM) was constructed by using the recent experimental data. Due
to the lack of comparable ML methods, we compared our method

with FoldX. The results are shown in Table 2 and it is shown that
SAMPDI-3D performs much better that FoldX achieving a correl-
ation coefficient of 0.42, compared with a correlation coefficient of
0.17 for FoldX (Table 2). It is also indicated that SAMPDI-3D pre-
dictions are distinctively different from FoldX resulting in low P-
value (Table 2). The results on interfacial and non-interfacial blind
sets also show that the performance of SAMPDI-3D is better than
FoldX (Supplementary Table S5).

3.4 The ability of SAMPDI-3D to identify disruptive and

non-disruptive mutations
3.4.1 SAMPDI-3D to identify disruptive and non-disruptive muta-

tions in protein and DNA

It is almost certain that disruptive mutations are disease-causing,
while non-disruptive may or may not be benign. Thus, mutations
may not completely abolish the formation of complexes, and they
will be classified as non-disruptive, but may change binding affinity
or specificity to an extent to cause disease. To further evaluate the
performance of our method, we performed Receiver Operating
Characteristics (ROC) analysis to classify mutations into disruptive
and non-disruptive based on binding free energy changes. Here, we
classify the disruptive mutations as jDDGj>1 kcal/mol and non-
disruptive as jDDGj<1 kcal/mol. This threshold is also successfully
employed in SAMPDI (Peng et al., 2018) and PremPDI (Zhang
et al., 2018). Figure 2a shows the ROC of SAMPDI-3D for 419 pro-
tein mutations (S419 dataset) and 463 DNA mutations (D463 data-
set) which are classified into disruptive and non-disruptive based on
above threshold. The resulting area under the curve (AUC) is 0.91
and 0.93, respectively, indicating the excellent capability of
SAMPDI-3D to distinguish disruptive from non-disruptive
mutations.

3.4.2 Comparison of SAMPDI-3D with other methods

We also compared the performance on several existing state-of-the-
art ML methods, but none of their training sets were the same as
ours. To fairly compare the performance of SAMPDI-3D with other
methods in distinguishing disruptive and non-disruptive protein
mutations, we chose the 35 overlapped protein mutations from the
training set used for developing SAMPDI, mCSM-NA and PremPDI.
Results are shown in Figure 2b.

Figure 2b indicates the excellent performance of SAMPDI-3D in
predicting disruptive and non-disruptive protein mutations compar-
ing with other methods. It achieves Matthews correlation coefficient
(MCC) of 0.84 and AUC of 0.96 with an accuracy and precision of
0.94 and 0.88 respectively (Supplementary Table S1). All other
methods perform much worse.

Table 1. Comparison of different methods on S200 datasets

Method Cross-validation Blind test(S200)

PCC MSE PCC MSE P-value

FoldX NA NA 0.07 7.12 1.00e-4

mCSM-NA 0.54 NA 0.28 2.13 4.36e-2

PremPDI 0.71 0.74 0.30 1.38 6.94e-2

SAMPDI 0.58 0.29 0.15 1.12 1.20e-3

SAMPDI-3D 0.73 0.72 0.43 0.90

MSE of DDG prediction in kcal/mol.

‘NA’ indicates data are unavailable.

P-value was obtained by using the Fisher r-to-z transformation to assess

the significance of the difference between two correlation coefficients.

Table 2. Comparative performance of SAMPDI-3D on T227 blind

dataset

Method Blind test(T227)

PCC P-value

SAMPDI-3D 0.42

FoldX 0.17 2.10e-3

Fig. 2. ROC Curves for (a) predicting mutations disrupting PDIs using SAMPDI-

3D, (b) predicting protein mutations disrupting PDIs using different methods and

(c) SAMPDI-3D with other methods applied on blind dataset
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3.4.3 Comparison of SAMPDI-3D with other methods on the

blind dataset

We also constructed a blind dataset to distinguish between disrup-
tive and non-disruptive mutations. The blind dataset contains 101
single alanine mutations in 28 proteins obtained from dbAMEPNI
(Liu et al., 2018) and is classified into disruptive and non-disruptive
based on the impact over affinity (D101 dataset). ROC curves are
shown in Figure 2c and AUC, accuracy and MCC values are pre-
sented in Table 3, it demonstrates that the performance of SAMPDI-
3D is notable in estimating protein mutation effects (disruptive) for
blind dataset and it is better than other methods.

3.5 Computational time
One of the important advantages of ML algorithms is that they are
quite fast, and thus suitable for high-throughput predictions. Here,
we compare the computational time of SAMPDI-3D with other
existing methods to predict single mutations for a given protein–
DNA complex (PDBID: 5E24). The results are averaged over 10 in-
dependent runs. Since the stand code is not provided in some meth-
ods, calculating time is affected by the computing resources and
network. The actual time consuming is based on the statistics from
submitting the task to obtaining the result. Table 4 shows a rough
estimation of the execution time. One can see from Table 4 that
SAMPDI-3D is the fastest method which only takes 1.5 s for DDG
prediction caused by a single mutation when tested on the one core
of Intel 6148 CPU.

3.6 SAMPDI-3D webserver implementation
Our SAMPDI-3D provides a user-friendly web server, which con-
sists of user interface, the local server and the job backend. The web
server is freely accessible at http://compbio.clemson.edu/SAMPDI-
3D/. It is hosted on a light-duty computer server. Three alternatives
are available: (i) predict the effect of one single mutation in protein
or DNA specified via the users in the given boxes. Users need to pro-
vide the structure of the protein–DNA complex by uploading the file
in the PDB format. In this way, users can submit a single job. (ii)
Predict the effect of single mutations in protein or DNA specified by
a list file, user needs to upload the protein in PDB format and muta-
tions list file as well. For the multiple job option, the predicted
DDGs are summarized in a downloadable text file with the same
order as in the input ‘List_Mutations.txt’ file. (iii) Users can also dir-
ectly download the SAMPDI-3D stand-alone code from our web-
page. Detailed descriptions are included in the readme file that helps
user to use the stand-alone code.

4 Discussion

In the last decades, the rapid development of whole-genome technol-
ogy had significantly reduced the cost of gene sequencing, leading to
the widely available genome data (Stefl et al., 2013). However, re-
vealing the effect of genetic variants with experimental approaches
is time-consuming and expensive. Hence, computational prediction
tools and algorithms are being widely and increasingly utilized in
biology and medical research (Li et al., 2020, 2021). Among them,
predicting changes of protein–DNA affinity caused by the variants
through ML is one of the most popular strategies. However, the
existing ML methods are trained on limited datasets, not capable of

dealing with DNA mutations, not tested on blind datasets and not
fast enough to be applied on genome-scale investigations.

Here, we report a new ML approach, the SAMPDI-3D, which
predicts the change of protein–DNA binding free energy caused by
mutations utilizing PC properties, structure of mutation site and
protein–DNA interactions. Important distinction of SAMPDI-3D
and other methods is that SAMPDI-3D uses much larger training set
and thus avoids overfitting. SAMPDI-3D outperforms all existing
methods on various benchmarking tests, including test of discrimi-
nating disruptive versus non-disruptive mutations. In addition,
SAMPDI is the only ML method that allows for predicting DDGs
caused by DNA mutations. Lastly, SAMPDI-3D is very fast making
it applicable for genome-wide studies to assess the effect of amino
acid and DNA mutations on protein–DNA binding.
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