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Abstract

Motivation: Protein structure modeling can be improved by the use of distance constraints between amino acid resi-
dues, provided such data reflects—at least partially—the native tertiary structure of the target system. In fact, only a
small subset of the native contact map is necessary to successfully drive the model conformational search, so one
important goal is to obtain the set of constraints with the highest true-positive rate, lowest redundancy and greatest
amount of information. In this work, we introduce a constraint evaluation and selection method based on the point-
biserial correlation coefficient, which utilizes structural information from an ensemble of models to indirectly meas-
ure the power of each constraint in biasing the conformational search toward consensus structures.

Results: Residue contact maps obtained by direct coupling analysis are systematically improved by means of dis-
criminant analysis, reaching in some cases accuracies often seen only in modern deep-learning-based approaches.
When combined with an iterative modeling workflow, the proposed constraint classification optimizes the selection
of the constraint set and maximizes the probability of obtaining successful models. The use of discriminant analysis
for the valorization of the information of constraint datasets is a general concept with possible applications to other
constraint types and modeling problems.

Availability and implementation: MSA for the targets in this work is available on https://github.com/m3g/
2021_Bottino_Biserial. Modeling data supporting the findings of this study was generated at the Center for
Computing in Engineering and Sciences, and is available from the corresponding author LM on request.

Contact: lmartine@unicamp.br

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Dealing with noisy and incomplete datasets is a central problem for
the field of biomolecular modeling, especially in the case of protein
structure determination. The most successful strategies developed
over the last decades in this field share a common paradigm of utiliz-
ing target-specific constraints to customize energy functions and re-
strain the conformational search, improving modeling output results
(Abriata et al., 2019; Kinch et al., 2016; Schaarschmidt et al., 2018;
Taylor et al., 2014). It is reasonable to say, therefore, that the extent
of those strategies’ success depends not only on obtaining or predict-
ing good constraints, but also from sorting or selecting the best con-
straints from every knowledge source, the accuracy and availability
of which can be heterogeneous and hard to estimate.

State-of-art protocols for constraint map estimation rely heavily
on data obtained from amino acid coevolution analysis. This ap-
proach has evolved greatly over the last decades from a simple

computation of correlated substitutions (Göbel et al., 1994) on mul-
tiple sequence alignments to a myriad of different methods (de Juan
et al., 2013) accompanied by a history of successful employment evi-
dence (Huang et al., 2016; Ovchinnikov et al., 2015, 2017).

Among those evolutionary methods, the most successful ones to
date rely on applying Machine Learning techniques (Kandathil
et al., 2019b). Some of them predict continuous pairwise distance
distributions, to which is attributed part of the leap of progress in
template-free modeling witnessed on recent CASP competitions
(Kryshtafovych et al., 2019; Service and Service, 2020). More re-
cently, the prediction of continuous values for other structural fea-
tures like backbone torsion angles or inter-residue orientations has
also been explored by these cutting edge methods (Billings et al.,
2019; Senior et al., 2020; Wang et al., 2017; Yang et al., 2020).

Many of the popular protocols rely on the prediction of binary
contact maps (Adhikari, 2020; Adhikari et al., 2018; Dos Santos
et al., 2019, 2018; Hopf et al., 2019; Jones et al., 2012; Kaján et al.,
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2014; Kandathil et al., 2019a; Marks et al., 2011; Morcos et al.,
2011; Ovchinnikov et al., 2014; Seemayer et al., 2014), from which
bounded restraining potentials are derived. Predicted maps some-
times lack completeness and may contain a significative number of
incorrect contacts, leading to inaccurate sampling of the conform-
ational space, as illustrated in CASP13 contact predictions, where
roughly 1/3 of groups achieved over 0.5 precision, with a maximum
around 0.7 (Shrestha et al., 2019). Since it is widely recognized that
only a small portion of the true contact map of a protein is necessary
for a successful modeling (Kim et al., 2014; Mandalaparthy et al.,
2018; Skolnick et al., 1997), protein structural modeling from this
kind of data can be thought as the problem of adequately selecting
the best constraint subset from the estimated map.

Combinatorial variable or feature selection techniques are wide-
ly spread amid fields employing multivariate data analysis, but this
kind of approach is prohibitive for biomolecular modeling due to
the computational cost of evaluating multiple subsets. Hence, a
guided selection criterion, in the shape of a feature score tailored to
utilize information pertinent to the modeling output itself, might be
the solution to this limitation.

Constraint selection strategies specific to protein modeling are
not entirely new, but have historically pertained to the field of
NMR-assisted modeling, particularly for the purpose of dealing
with ambiguous constraints during the conformational search
(Brünger et al., 1998; Nilges, 1995; Rieping et al., 2005, 2007).
Here, we develop a flexible approach to constraint selection, agnos-
tic to the type and origin of the constraints, and which can easily be
coupled with different modeling workflows.

We propose a constraint scoring strategy for binary contacts
based on the ability of each constraint to discriminate model quality
as assessed by consensus modeling scores or other quality measures.
Instead of a simple variance measure, however, the proposed
score—point-biserial correlation coefficient—incorporates a struc-
ture as reference, causing the selected constraint subset to indirectly
bias the sampled conformational space toward the vicinity of such
reference.

In summary, we adopt an iterative modeling strategy, based on
the steered stepwise valorization of a preliminary constraint set.
After each iteration of model generation, a reference structure is
selected by a quality assessment method and, for each possible con-
straint, we compute its ability to differentiate between models simi-
lar or dissimilar to such reference. The constraints positively
correlated with model quality are selected for a subsequent round of
structure modeling. Given the reference model has adequate fold ac-
curacy, this strategy leads to higher constraint true-positive rates
and better model ensembles. Even though this work is focused on
the rescoring of Direct Coupling Analysis constraints through an in-
cremental fragment-based modeling strategy, the principle of struc-
tural discrimination is rather universal and may find application in
other biomolecular modeling protocols.

2 Approach

Strategies to predict amino acid residue contacts of proteins com-
monly provide a list of predicted contacts and some score reflecting
the accuracy of the estimate. These scores are often employed to
rank the constraints to be employed on modeling. This decision cri-
terion is not optimal for protein structure modeling: The set of con-
tacts which provide the best modeling is not necessarily that which
is predicted with greater accuracy, even assuming that the con-
straints are correct. In particular, amino acids that are close in the
primary sequence will very likely be close in the tertiary structure
and display large prediction scores. Second, short primary range are
under-performant (in a modeling sense) when compared to medium
and long range contacts (Mandalaparthy et al., 2018), especially be-
cause they only encode local structural information (Censoni and
Martı́nez, 2018).

To circumvent this issue, many contact estimation methods will
employ some kind of cutoff for the separation between residues in
the primary sequence, as an attempt to filter out trivial constraints a
priori. Although this is generally a good enough solution, we

understand that this arbitrary triviality should be re-evaluated after
every model generation step in order to respect the particularities of
each modeling strategy and incorporate structural features derived
from the very models generated. This conceptual approach is valid
not only for contacts within residues close in the primary sequence,
but also in general: Given a particular protein and modeling strat-
egy, some contacts might be useful constraints for conformational
search, and others might not. Incorrect contact predictions of course
must be avoided. Furthermore, some correct constraints might be
detrimental for conformational search by frustrating the energy sur-
face too early given the search protocol of choice. The optimal con-
straint set for energy minimization and conformational search is,
thus, specific for each structure and modeling protocol.

In particular, the structurally trivial—to be avoided—constraints
are those that often combine the following characteristics: they are
obeyed with high frequency even on unconstrained modeling results,
show redundant or sometimes even repeated information and have a
high degree of structural localization, being often observed near the
protein terminals or over the same sections of continuous secondary
structure.

From definition, it is understandable that a large portion of the
trivial constraints are of short primary range, but that is not always
the case: it is possible that a medium or long-range constraint arises
naturally during modeling (for example, on fragment-based
approaches); in contrast, some short-range constraints could happen
over loops and be important for defining local shapes on hard tar-
gets when there was low availability of evolutionary information. In
light of such observations, we defend that a candidate constraint
scoring measure must be able to naturally (without supervision or
arbitrary cutoffs) filter out trivial constraints from the recovered set.

3 Materials and methods

3.1 Target list and coevolution analysis
A target is a protein to be modeled, given its primary sequence. In

this work, we selected nine different proteins from both a and a-b
fold classes, with sequence lengths (L) between 71 and 167, averag-
ing 130 amino acids. For each protein, the first step is the identifica-
tion of a family and generation of a multiple sequence alignment
containing the target sequence. MSAs for the whole protein family
of those targets were obtained from the respective Pfam entries (El-
Gebali et al., 2019), identified by the InterProScan (Jones et al.,
2014) search engine. Clustal Omega (Sievers et al., 2011; Sievers
and Higgins, 2018) was utilized to align the target sequence to the
family profile. Information regarding target length, MSA size and di-
versity is portrayed on Table 1.

Direct-coupling analysis (Morcos et al., 2011) was performed on
the resulting MSA utilizing the GaussDCA (Baldassi et al., 2014)
protocol, which provided Direct Information (DI) values for each
pair of amino acids on the target primary structure. The residue
pairs were sorted through descending values of DI, generating a list
from which the top L (L being the primary sequence length) pairs
are selected as the preliminary estimated contacts and encoded as
constraints for modeling.

We acknowledge that the modeling result will depend on the tar-
get size, Neff, constraint estimation protocol and modeling strategy.
Upon selecting our targets, we intentionally approached smaller
sizes of domain length, while also avoiding the harder-to-model beta
folding class. This kept us away from the size limitations of
fragment-based ab initio folding. In our targets, DCA constraints
were not good enough to definitely guide modeling toward fold-
quality models without a strongly positively biased fragment library
(more comments on Supplementary Section S1). This provided room
for improvement, allowing our selection strategy to increase the
value of noisy and insufficient constraint sets. Nevertheless, the prin-
ciple of using discrimination analysis to enrich the constraint set is
universal, as exemplified by an additional target modeled with a
deep-learning-estimated contact set, available in Supplementary
Section S2.
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3.2 Contact definition and constraining potential
Constraints were incorporated with bounded flat-bottom potentials
between Cb atoms of both residues (except for glycines, where the
Ca atom was utilized). Along the flat portion, this potential assumes
the value of zero, growing quadratically with the amount of viola-
tion when the boundaries are trespassed. In agreement with contem-
porary contact definitions (Shrestha et al., 2019), the upper
boundary of the flat portion or maximum separation distance be-
tween atoms in contact was 8.0 Å. A minimum separation distance
(lower boundary) of 3.5 Å was also added in order to reinforce the
prevention of steric clash between the centroid atoms in the coarse-
grained ab initio phase of modeling.

3.3 Modeling experiments
For each target, we performed six types of modeling experiments.
The first of them, which we called DCA_INIT (1), is a preliminary
modeling round that employs the top L contacts derived from the
DCA-based coevolution analysis. This round is important because it
provides not only a baseline of modeling performance for our selec-
tion protocol, but also an initial pool of structures to be analyzed
and over which the structural discrimination selection protocol can
act. To maintain consistency, in every modeling round for every tar-
get, the number of models generated is equals to 10*L. All our mod-
eling efforts were performed with the Rosetta abinitiorelax
framework (Raman et al., 2009) with a homologous-free fragment
library obtained via the Robetta server (Kim et al., 2004).
Configuration files, when pertinent, are included on an open reposi-
tory, along with a reproducible example of our analysis (see end of
Section 3.3).

From this first modeling round, we blindly elect a representative
model via a simple consensus score inspired based on the Davis-
QAconsensus (Kryshtafovych et al., 2014), and perform two other
experiments: the first one, employing constraint selection through
the point-biserial correlation coefficient through three incremental
rounds, named BIS_CONS (2) and a separate modeling round, based
on naive random resampling of contacts on this very consensus
model, named L_CONS (3). On the BIS_CONS experiment, all resi-
due pairs are rescored through the value of rpb and contacts are
ranked again, generating a new list with the top L contacts for input
on the next rounds. In the L_CONS experiment, each model is gen-
erated from a random set of L contacts consistent with the consensus
reference elected after the DCA_INIT round.

Another branch of experiments also derives from the DCA_INIT
starting point, in an effort to decouple the reference model selection
strategy from the constraint selection strategy. For this branch, the
reference model is selected not by a consensus strategy, but by an
idealized selector which always picks the model with highest TM-
score (Zhang and Skolnick, 2004) against the native structure,

which can be called the ‘best model’. Again, in this branch, two
experiments were performed: one with constraint selection using the
value of rpb, named BIS_BEST (4); another with naive resampling of
the contacts found on the best model, named L_BEST (5). Finally,
an upper-boundary control experiment was also performed, with
random sampling of native contacts, where every constraint is a
true-positive on the crystallographic structure. This final experiment
was named L_CRYS (6).

At the end of each round, the models are added to the existing
model pool, incrementing its size and contributing new information.
This analysis-modeling-incrementing block is then iterated accord-
ing to experimental design. Inside each branch of experiments and
after each modeling round, the whole model pool undergoes all-on-
all structural alignment with the LovoAlign software (Martı́nez
et al., 2007) to update the elected representative. For the targets in
this work, we performed three rounds of this incremental block on
the BIS experiments. Figure 1 shows a visual summary of the
methodology.

To perform the constraint selection on the BIS rounds, we build
a binary contact constraint-compliance matrix for every model, and
the point-biserial correlation of each constraint is evaluated using
TM-score as the continuous classification variable of the similarity
of each model to the consensus reference. Contacts are sorted
through this score, generating a new constraint set of L contacts
which serve as input to a new modeling round. A minimal reprodu-
cible example for one of the targets with detailed instructions, codes
and configuration files, as well as the selection scripts and produc-
tion parameters for the abinitio protocol is available at https://
github.com/m3g/2021_Bottino_Biserial.

3.4 Point-biserial correlation coefficient as constraint se-

lection criterion
The point-biserial correlation coefficient (rpb) (Pearson, 1900) is a
correlation coefficient with properties which adapt to the problem
of constraint selection. It is sometimes regarded as the dichotomic
case of the traditional correlation coefficient derived by the same au-
thor and provides a measure of discrimination between a binary
variable—the observance or violation of a given constraint through-
out protein models—and a continuous variable, in our case the esti-
mated structural quality of models.

For a long time, this coefficient has been employed on large-scale
educational assessment, in order to estimate correlations between
the binary answer to a question from a test and the student’s score
or ability: questions with higher point-biserial coefficients are the
most discriminatory between students of high and low ability. It is
not only a tool of test item validation, but also exam refinement,
since it is possible to improve the performance of an exam by
excluding test items with low or negative values of rpb (LeBlanc and

Table 1. Target information for the constraint selection experiments

Target Sequence CATH MSA MSA Pfam Reference

PDBID_CHAIN Length (L) fold class Size (N) Diversity (Neff)
a Family ID

1C52_A 131 a 27780 9.19 PF00034 Than et al. (1997)

1C75_A 71 a 26546 7.43 PF13442 Benini et al. (2000)

1D06_A 130 a-b 40030 8.38 PF00989 Miyatake et al.

(2000)

1E6K_A 130 a-b 78398 5.37 PF00072 Solà et al. (2000)

1KAO_A 167 a-b 62267 5.29 PF00071 Cherfils (1997)

1RQM_A 105 a-b 55298 6.97 PF00085 Leone et al. (2004)

4LE1_A 139 a-b 78398 7.18 PF00072 Trajtenberg et al.

(2014)

5CXO_B 134 a-b 21409 9.48 PF12680 Luhavaya et al.

(2015)

5P21_A 166 a-b 62267 5.44 PF00071 Pai et al. (1990)

aNeff was measured by the exponential of entropy, averaged over all columns of the L-length MSA (Peng and Xu, 2010).
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Cox, 2017). This selection strategy is traditionally established as
allowing for better predictive performance than simply selecting the
hardest items—those consistent with the most performant students.

Our idea is to adapt this concept to constraint-assisted biomolec-
ular modeling, in such a way that the aim is not to find out con-
straints consistent with the best models; actually, we want to find
out which constraints are most discriminating between the worst
and best models, given a consensual reference, employing rpb as a
measure for such discriminating power.

The general formula for a point-biserial correlation coefficient
(rpb) iS

rpb ¼ S1 � S0
sn
�
ffiffiffiffiffiffiffiffiffiffi
n1n0

n2

r

where S1 and S0 are, respectively, the mean structural scores for
models where the constraint was observed or not; n1 and n0 are the
absolute amounts of models consistent or not with the given con-
straint, n is the total number of evaluated models and sn is the stand-
ard deviation estimate for the structural similarities.

Point-biserial correlation has a number of properties of interest to our
approach. Being a correlation coefficient, its value will always belong to
the closed interval ½�1; 1�, providing not only a convenient natural sign
change at rpb ¼ 0, but also an interesting value range for input at statistic-
al learning models, which often require some sort of scaling or normaliza-
tion. Another interesting feature is that, thanks to the normalization
factor

ffiffiffiffiffiffiffi
n1n0

n2

p
, constraints with high frequency (n0 small)—such as most

structurally trivial constraints—experience a heavy penalization on the ab-
solute value of their point-biserial score.

It is important to mention that the same principle of finding
zero-order correlations between individual constraints and model
qualities could also be applied in workflows that use predicted con-
tinuous distances instead of binary contacts. The type of correlation
itself would have to be changed, since point-biserial demands a di-
chotomous variable for the constraint compliance axis, but other
types of correlation could be coupled with adapted non-discrete
metrics of constraint violation, following a similar principle.

4 Results and discussion

Individualized results for all six experiments and all nine targets can
be collectively discussed in light of a representative example. For

this discussion, we elected PDB_1D06_A as such an example, por-
traying the relevant data in Figure 2. The same data regarding all
other targets can be found in Supplementary Figures SF1.1 through
SF1.8, and additional discussions are available in supporting text
ST1.

4.1 Structural information improves sparsity and

structural motifs of contact maps
Figure 2A represents the native distance map of the target crystallo-
graphic structure, in which darker areas represent closer residues.
Inspection of the preliminary estimated DCA maps in Figure 2B
shows that some features of the native distance map are captured in
the coevolution analysis, but evolutionary contacts are generally
sparse (with highlights to some undersampled regions between resi-
dues 70 and 110) and noisy, with little definition of characteristic
secondary-structure motifs near the diagonal of the DI (Direct
Information) map. When inspecting the BIS map (Fig. 2C), however,
we note a visual improvement of definition on the structural features
as a result of the incorporation of structural information, specifically
some well-defined beta strands and the rise of important constraints
in undersampled regions of the DI map. This result was consistently
observed for all targets evaluated in this work.

4.2 Point-biserial correlation gives high scores to true-

positive constraints of larger primary separation
The distribution of selected constraints on the residue pair map
(Fig. 2D) shows that the BIS contacts are better distributed through
the different regions of the native map. BIS contacts appear to ex-
plore better medium and long-range true-positive regions, while also
being more cohesive at that matter. Part of this claim is confirmed
by Figure 2E, which shows the accumulated true-positive rate along
the ranked variable, for the DCA set and two BIS sets from each
modeling branch (BIS_CONS and BIS_BEST). Except for some fluc-
tuations on the very beginning of the charts, those proportions of
true positives show that the BIS sets are not only superior on the L-
length subset, but in almost every case the TPR for L/10, L/5 and L/
2 is also greater. Additionally, the average separation of the residue
pairs in the set was increased from 29 to 43 residues. We conclude
that the true-positive rate and average range of the BIS sets consist-
ently surpass that of the DCA sets, as should be expected for any
constraint selection method.

Fig. 1. Visual summary of the methodology. The central rectangle highlights the incremental modeling rounds with point-biserial coefficient acting as the main tool for con-

straint selection, rescoring all possible constraints through their ability to discriminate toward the reference consensus model
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4.3 Model topologies are improved after point-biserial

selection
In Figure 2F, we have the opportunity to look at the 3D alignment
of blindly elected models on the DCA_INIT and BIS_CONS experi-
ment, against the crystallographic structure. In almost every target,
it is possible to visually identify one or more regions where the BIS-
generated model shows an important improvement on its topology,
compared to the preliminary counterpart. Specifically on target
PDB_1D06_A, we can identify two major regions where the correct
orientation and secondary structure of the backbone were reached
after the constraint selection. It is also notable that, in some targets
including PDB_1D06_A, there were portions of the native structure
that were incorrectly sampled in both experiments (before and after
constraint selection). Closer inspection allows us to conclude that in
most cases this setback was a consequence of mistakes in the second-
ary structure or—in the case of PDB-1D06 - the privileging of
smaller gyration radius by the force-field.

Looking at quality distributions for each experiment (Fig. 2G), it
can be seen that the BIS experiments tend to form taller and nar-
rower peaks than their naive counterparts. For some targets, the
peak of the BIS_CONS and BIS_BEST curves matched secondary
peaks or shoulders on the curves of the DCA_INIT curve, giving the
idea that the constraint selection contributed as a biasing force to-
ward privileging quality ranges that were already sampled in previ-
ous stages.

Figure 2H portrays the fraction of generated models in the final
round of each experiment which attained a TM-score larger than
0.5 relative to the crystallographic structure, which is considered to
be a common standard for matching topology between protein
structures (Xu and Zhang, 2010). This general pattern where the
greater proportions of correct models are achieved by the
BIS_CONS and BIS_BEST sets emerged not only on PDB_1D06_A,
but also in most of the other targets (as shown in Supplementary
Figs SF1.1–SF1.8). The fact that these fractions for the BIS sets were
not only larger than their combinatorial counterparts, but also
larger than the control L_CRYS experiment, gave rise to interesting
conclusions discussed further in the results summary (Section 4.5).

An ensemble of 10 representative models, symbolizing the result
of the modeling effort for each target, was extracted from each

experiment, employing again a simple consensus strategy. The aver-
age quality of the representative ensemble (TM-score against the na-
tive structure) as a function of its size is depicted on Figure 2I. The
clear pattern that emerges is consistent with our hypothesis: in the
lowest end, we can find the quality for the preliminary DCA_INIT
set. It is followed by the qualities in the first branch of experiments
(L_CONS and BIS_CONS), where a consensus reference was
chosen, where the employment of point-biserial correlations yielded
better results than a naive use of the reference model. Next, we can
find those pertaining to the second branch of experiments (L_BEST
and BIS_BEST), where the reference model was the best one avail-
able. Again, the result for the employment of point-biserial coeffi-
cients through the best model is better than the naive use of the best
model. Finally, the highest curve is occupied by the theoretical
LCRYS control experiment. These observations show that the BIS
sets result not only in better constraint sets, but also give rise to bet-
ter models.

4.4 Key performance indicators for all targets show that

post-selection modeling is consistently better
When summarizing those individual observations for all other tar-
gets, we understood that in order to probe the quality improvement
conferred by constraint selection, there are three key performance
indicators of interest, which are somewhat related: an increase on
the proportion of true-positive contacts, the enrichment of the out-
put model set with candidates of correct topology, and the ability to
elect a better representative model (or ensemble of models) from
such output set. We built Figure 3 to represent the global results
based on those elected figures of merit.

In Figure 3A, we address the criterion of overall model topolo-
gies by presenting boxplots of model qualities measured as TM-
score of the alignment between each model and the reference PDB
structure for all targets. There is a notable pattern for the shifting of
the mean model quality, which for most cases, is minimal on the pre-
liminary DCA_INIT modeling and reaches a maximum on the ideal-
ized L_CRYS set. Notably, the mean model quality was higher after
constraint selection (BIS sets) in comparison with the preliminary
DCA constraints, advocating the success of constraint selection

Fig. 2. Modeling results for representative target PDB_1D06_A. (A) Native distance map for target crystallographic structure. (B) Estimated DI map from DCA analysis on

Target family MSA. (C) Rescored point-biserial correlation map from BIS_CONS round. (D) Selected constraints for DCA_INIT and BIS_CONS modeling experiments. (E)

Cumulative True Positive Rates for sorted constraints in the DCA_INIT, BIS_CONS and BIS_BEST experiments. (F) Structural alignment of the target native structure with

the consensus models elected after DCA_INIT and BIS_CONS rounds. Blue arrows indicate regions where topology improved after constraint selection; Gray arrows indicate

regions wrongly sampled by reasons discussed in Section 4.3. (G) Distribution of model qualities measured through TM-score against crystallographic structure for each mod-

eling experiment. (H) Proportion of models with correct topology (TM-score of alignment with native structure > 0.5) for each experiment. (I) Average TM-score of the en-

semble with n models recovered after the last round of each modeling experiment
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using point-biserial correlations. This success can be further exam-
ined on Figure 3B, which shows the proportion of models generated
in the final round in each experiment whose TM-score is greater
than 0.5 against the crystallographic structure. With the exception
of targets 1C52 (which produced no successful models neither be-
fore nor after constraint selection), 1E6K (which showed no signifi-
cant increase in quality) and 1RQM (which actually experienced a
marginal decrease in proportion of successful models), all the other
targets underwent a noticeable increase on the amount of correct
models, ranging from 50% to 220% increments.

At this moment, it seemed logical to assess whether our proposed
use of a consensus model through the point-biserial coefficient was

better than simply attempting to populate the neighborhood of this
elected model. From Figure 3A, it can be noted that the mean quality
is consistently higher on the BIS_BEST and BIS_CONS experiments
when compared to their counterparts L_BEST and L_CONS.
Figure 3B also confirms that the proportion of models with correct
topology follows the same pattern, with the exception of target
1C52. This observation allows us to remark that the employment of
a consensus model through our proposed selection mechanism is
consistently better performant than the naive use of constraints
derived from the consensus model.

Figure 3C portrays the quality of the representative model en-
semble, elected via consensus, while Figure 3D represents the pro-
portion of true positives (TPR) on each constraint set. Through
examination of the elected representative models, we again notice a
consistent pattern where the models generated and blindly elected
after point-biserial selection are better than their DCA and naive
counterparts, even if marginally.

4.5 Point-biserial contact maps surpass other sets with

more true positives due to the lack of trivial constraints
A question that naturally arises, at this point, is how can the
BIS_BEST and BIS_CONS constraint sets surpass the naive
L_CONS and L_BEST constraint set in model qualities, if the latter
portray higher true-positive rates? Or, somewhat equivalent, how
can the BIS sets generate a higher proportion of successful models
when compared to the L_CRYS set, whose true positive rate is a per-
fect 100%?

The answer to both questions lies in the relative population of
trivial constraints on the combinatorial sets. Although the BIS sets
contain fewer true-positives, they are structurally discriminating in
such a way that their capability of biasing the conformational space
surpasses that of their counterparts, richer in true positives, but ra-
ther non-informative ones.

To illustrate this, we produced Figure 4 which summarizes the
mean amount of structural information (Censoni and Martı́nez,
2018) encoded by the constraint set (Fig. 4A). This method measures
information by comparing distances in the target structure with their
estimated likelihoods, derived by a self-avoiding random walk
model of the peptide chain. The most informative constraints are the
‘unexpected’ ones, which might be short-range contacts between dis-
tant residues in the sequence, or long-range contacts in general, but
particularly those which require stretched conformations of the pep-
tide chain. We also decomposed the true-positive rates reported in
Figure 3D in two separate contributions: that accounting only the
medium and long-range contacts (Fig. 4B) and that accounting only
the short-range contacts (Fig. 4C).

Combined inspection of Figures 3D, 4B and C show an interest-
ing pattern: even though the BIS sets may not have always the high-
est true-positive rates, their TPR is consistently concentrated on
medium and long-range contacts, which are believed to be much
more contributing to modeling efforts than shorter constraints
(Mandalaparthy et al., 2018). The pattern is clear: most of the true-
positive rate of the BIS_BEST and BIS_CONS sets is contributed by
medium and long-range contacts, while in the case of the L_CONS,
L_BEST and L_CRYS sets, the opposite happens: the TPR is greatly
concentrated on short-range contacts. This information is reinforced
by Figure 4A, which shows that the information is generally highest
in the BIS sets, adding to the idea that the proposed constraint selec-
tion strategy has the potential to naturally—meaning, without the
necessity of an arbitrary cutoff—filter out short-range contacts and
privilege those of larger primary separation.

It is even possible that, in the BIS sets, some marginally violating
false-positives may be useful during the modeling cycles, as means to
bring the candidate model closer to the neighborhood of the native
state on early stages of the conformational search and up until a
point where a larger set of collaborating true positives gains larger
weight on the energy scores.

In fact, this very statement can explain the reason why, in
Figure 3B, the BIS sets (which all contain some percentage of false-
positives) sometimes lead to similar or even higher proportions of

Fig. 3. Assessment of key performance indicators of constraint selection results for

all nine targets. (A) Boxplots of TM-score of alignment with crystallographic struc-

ture, for each target and each Constraint set/Experiment. (B) Proportion of models

whose TM-score (in A) was higher than 0.5, for each target and each Constraint set/

Experiment. (C) Average TM-score of a blindly elected ensemble of 10 models

extracted from the final modeling round in each experiment. (D) True Positive Rate

or Percentage of correct contacts in each constraint set, excluding L_CRYS since it

contains, by definition, 100% true-positive contacts. For the combinatorial/random

sets (L_CONS, L_BEST), reported value is an average over all individual sets

generated
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models with correct topologies than the L_CRYS set. Again, the
100% true-positive L_CRYS constraint sets contain fairly larger
amounts of trivial constraints than their BIS counterparts. Because
of that, the ability of the L_CRYS constraint sets to effectively shift
the mean modeling quality is diminished. In this case, however, since
every single constraint is a crystallographic true positive contribu-
ting (in a higher or lower magnitude) to the same region of the con-
formational space, a huge part of the models is concentrated on a
fairly small portion of the folding funnel, allowing for the selected
consensus model to be of much better topology.

5 Conclusion

Selecting a good subset of constraints from an estimated contact
map is critical to the performance of assisted protein structural mod-
eling. In order to respect the particularities of the modeling work-
flow, a selection criterion should be able to penalize trivial
constraints taking some kind of structural measure in consideration.
Our proposed indicator, point-biserial correlation coefficient
employing consensus similarity as an individual model score, was
able to consistently improve modeling experiments starting from a
simple coevolution analysis. In the end of three iterations, the con-
straint sets exhibited a larger amount of true-positives, concentrated
on medium and long-range primary separations, leading to an over-
all increase in the average structural information encoded.

This improvement reflected on the output models as higher aver-
age model qualities, higher proportion of correct topologies and a
better representative blindly selected model. Significant improve-
ments were found on seven out of nine targets, with marginal but

still positive results for the other two. We believe this advocates to
the use of constraint selection strategies on different workflows, es-
pecially point-biserial correlation coefficient, which, due to the sim-
ple principle of being based on structural discrimination, should be
able to be modularly inserted on a vast amount of different assisted
modeling strategies.
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