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Abstract

Motivation: The increasing amount of time-series single-cell RNA sequencing (scRNA-seq) data raises the key issue
of connecting cell states (i.e. cell clusters or cell types) to obtain the continuous temporal dynamics of transcription,
which can highlight the unified biological mechanisms involved in cell state transitions. However, most existing tra-
jectory methods are specifically designed for individual cells, so they can hardly meet the needs of accurately infer-
ring the trajectory topology of the cell state, which usually contains cells assigned to different branches.

Results: Here, we present CStreet, a computed Cell State trajectory inference method for time-series scRNA-seq
data. It uses time-series information to construct the k-nearest neighbor connections between cells within each time
point and between adjacent time points. Then, CStreet estimates the connection probabilities of the cell states and
visualizes the trajectory, which may include multiple starting points and paths, using a force-directed graph. By com-
paring the performance of CStreet with that of six commonly used cell state trajectory reconstruction methods on
simulated data and real data, we demonstrate the high accuracy and high tolerance of CStreet.

Availability and implementation: CStreet is written in Python and freely available on the web at https://github.com/
TongjiZhanglab/CStreet and https://doi.org/10.5281/zenodo.4483205

Contact: cczhao@tongji.edu.cn or yzhang@tongji.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cell state transitions are the basis of the ontogenesis of multicellular
organisms. In recent years, the increasing amount of time-series
single-cell RNA sequencing (scRNA-seq) data has enabled transcrip-
tional dynamics to be obtained, as well as the temporal transitions
of cell states (Lederer and La Manno, 2020). However, it is practic-
ally impossible to obtain the transcriptome characteristics of one
cell at multiple time points. Therefore, connecting cells with con-
tinuous cell states between adjacent time points has become a key
issue in analyzing transcriptional dynamics over time (Griffiths
et al., 2018).

To address this issue, researchers have tried some alternatives in
the experimental design and computational method development.
At the experimental level, lineage tracing strategies that make use of
the genetic recordings of cells have been used to trace the cell lineage
changes at various time points (Wu et al., 2019). However, these

methods have not yet been widely applied, and they cannot be
applied to existing time-series scRNA-seq data without lineage trac-
ing information. At the computational level, a series of single-cell
data based trajectory inference methods such as TSCAN (Ji and Ji,
2016), Monocle 2 (Cao et al., 2019; Qiu et al., 2017; Trapnell et al.,
2014), PAGA (Wolf et al., 2019), CytoTRACE (Gulati et al., 2020),
SCUBA (Marco et al., 2014), TASIC (Rashid et al., 2017), RNA vel-
ocity (La Manno et al., 2018), Briggs’s algorithm (Briggs et al.,
2018), STITCH (Wagner et al., 2018), Waddington-OT
(Schiebinger et al., 2019), pseudodynamics (Fischer et al., 2019),
CSHMM (Lin and Bar-Joseph, 2019) and Tempora (Tran and
Bader, 2020) have been developed (Saelens et al., 2019; Sagar and
Grun, 2020). Each of these computational methods has a specific de-
sign and worked well on meeting different needs. For example,
Monocle constructed a minimum spanning tree (MST) based on
transcriptome similarity to describe the cell state trajectory;
CSHMM used continuous states HMM to reconstruct continuous
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cell state trajectory; SCUBA modeled the development process using
a stochastic dynamic system to identify bifurcation events; Tempora
used biological pathway information to help identify cell type rela-
tionships; RNA velocity predicted the cell states in the near future
by taking consideration of the intrinsic splicing kinetics. Although
many of those methods incorporated time-series information to im-
prove the performance of trajectory construction, most prior meth-
ods, such as CytoTRACE and RNA velocity, were specifically
designed for individual cells. Since cells in one cell state may be
inferred to have different branches of the trajectory, these single-cell
based trajectory methods can hardly meet the needs of accurately
inferring the topology of the cell state trajectory (Supplementary
Fig. S1), which can highlight the unified biological mechanisms dur-
ing cell state transitions.

Here, we present CStreet: a computed Cell State trajectory infer-
ence method for time-series scRNA-seq data. CStreet takes advan-
tage of the time-series information of the input data to construct the
k-nearest neighbors (k-NN) connections within each time point and
between adjacent time points. Then, the cells in a cluster or of the
same cell type are coarsely categorized to a cell state. CStreet uses a
distribution-based parameter interval estimation to measure the
transition probabilities of the cell states, while prior approaches
used scoring, such as the percentages of votes used by Briggs et al. or
the mutual information of the cluster pathway enrichment used by
Tempora. The force-directed graph is created based on these connec-
tion probabilities to visualize the trajectory of the cell states, which
may include multiple starting points and paths. By comparing the
performance of CStreet with that of six commonly used cell state
trajectory reconstruction methods on simulated data and real data,
we demonstrate the high accuracy and high tolerance of CStreet.

2 Materials and methods

An expression matrix containing the time-series expression level as
read counts or normalized values in tab-delimited or AnnData for-
mat (Wolf et al., 2018) is accepted as the input of CStreet. Low-
quality cell filtering and normalization can be conducted according
to the input parameters. The cell state information can be inputted
by the user or generated using the internal clustering function of
CStreet. To assess and compare the performance of single-cell state
trajectory inference methods, we simulated a series of scRNA-seq
datasets using Splatter (Zappia et al., 2017) and collected three
time-series scRNA-seq datasets from ArrayExpress under accession
E-MTAB-6967 (Pijuan-Sala et al., 2019) and Gene Expression
Omnibus under accession GSE90047 (Yang et al., 2017) and
GSE107122 (Yuzwa et al., 2017). The expression matrixes, meas-
ured as read counts, of Pijuan-Sala et al. (2019) and Yang et al.
(2017) were downloaded from these public databases. The batch
effects of these datasets were corrected using the scanpy.pp.combat
function in SCANPY (Wolf et al., 2018). The scaled expression ma-
trix after normalization of Yuzwa et al. (2017) was downloaded
from the supplementary information of Tran and Bader (2020). The
scripts and the processed data can be found at the ‘Data&Code’ sec-
tion on the https://github.com/TongjiZhanglab/CStreet.

2.1 Data simulation using splatter
We first used the splatSimulatePaths function in Splatter and gener-
ated a simulated scRNA-seq dataset with four continuous and par-
tially overlapping cell paths that consisted of 12 000 cells and 2000
genes. Then, we used three time windows (t1, t2, t3), selecting 2000
cells from each to simulate the samplings of a time-series experi-
ment. In this way, we obtained a simulated time-series scRNA-seq
dataset containing two cell fate bifurcations of 2000 genes among
6000 cells. These cells can be divided into seven classes (one class at
the t1 stage, i.e. C1A; two classes at the t2 stage, i.e. C2A and C2B;
and four classes at the t3 stage, i.e. C3A, C3B, C3C and C3D). The
known trajectories of these classes are C1A–C2A, C1A–C2B, C2A–C3A,
C2A–C3B, C2B–C3C and C2B–C3D. We also simulated another two
time-series datasets with different sampling densities by using five

time windows and seven time windows, each containing 1000 cells,
on the same continuous paths.

2.2 Construction of k-NN graphs using time-series

scRNA-seq data
k-NN graphs within each time point were constructed based on the
Euclidean distance or the Pearson correlation coefficient of the cells
in each cell state. Based on the k-NN graphs of individual cells, the
cells in a cluster or of the same cell type are first coarsely categorized
to a cell state; the interconnection numbers of cell states are calcu-
lated as the sum of cell interconnection numbers in the k-NN
graphs. Then, connection probabilities between cell states are esti-
mated by using these interconnection numbers. The force-directed
graph is created based on these connection probabilities to visualize
the layout of the cell states within each time point.

For the cells in adjacent time points, we find the k-nearest neigh-
bors from the bidirections. A connection between two cells is intro-
duced when they are identified as neighbors. The connections
among these cells between adjacent time points are used in the sub-
sequent estimation of the connection probabilities.

2.3 Calculation of connection probabilities of cell states
Under the assumption that each connection of cells is equally likely
to occur, we denote event E as a connection between a cell in state
Ax and a cell in state By. Assuming that the probability of the occur-
rence of E is p, then the probability of its nonoccurrence is
q ¼ 1� p. Then, the probability distribution of the occurrence of E
is assumed to follow a binomial distribution Bið1; pÞ. To estimate
the connection probability p, we adopt a strategy of repeated sam-
pling trials using the frequency of cell connections. In each trial, a
fraction of cells at the earlier time point (Ax, M cells) or later time
point (By, N cells) is sampled to calculate the frequency (PAxBy

) of
the cell connections as follows:

PAxBy
¼

PM
i¼1

PN
j¼1 Cai&bjPM

i¼1 Cai
þ
PN

j¼1 Cbj

; (1)

where Cai&bj
denotes the number of connections between cell ai

in state Ax and cell bj in state By. Cai
denotes the times that cell ai in

state Ax was identified to connect to other cells and Cbj
denotes the

times that cell bj in state By was identified to connect to other cells.
Then, the total number of the connections of the M cells in state Ax

and the N cells in state By are summed. To ensure reliability, the
mean of the frequency and its 95% confidence interval for 100
repeated trials is used as the estimated connection probability (p).
The connection threshold is determined by users or using Otsu’s
method (Otsu, 1979), which calculates the optimum threshold sepa-
rating the connected states and unconnected states. We assume that
the cells at the later time point experienced a longer cell state transi-
tion than the cells at the earlier time point. Thus, the cell states be-
tween adjacent time points are chronologically directed along with
the time series.

2.4 Expression matrix generation with rare cells and

gene dropouts
To generate the expression matrix with different cell numbers, we
randomly sample different numbers of cells (n ¼3200, 1600, 800,
400, 200, 100) from the previously described simulated dataset at
the three time points. These downsampled datasets are then used to
infer the cell state trajectory. For each number, the selection is per-
formed 10 times with different random seeds.

To generate the expression matrix with different gene dropouts,
we randomly sample fractions of 2000 genes to represent dropout
rates from 10% to 60% (at intervals of 10% points) and changed
their expression level to ‘not available (NA)’. For each fraction, the
selection is performed 10 times with different random seeds.
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2.5 Calculation of Hamming–Ipsen–Mikhailov (HIM)

score and F1 score
The HIM score is a combination of the Hamming distance and the
Ipsen–Mikhailov distance to quantify the difference in the trajectory
topologies. The Hamming distance measures the local structural
similarities by calculating the distance between two graphs by
matching individual edges in the adjacency matrix, and the Ipsen–
Mikhailov distance measures the overall structural similarity by cal-
culating the overall distance of two graphs based on matches be-
tween the adjacency matrix and its degree. Then, these clusters are
connected based on the cell state trajectory results. The clusters with
the same label are connected in both directions. In this way, we ob-
tain the inferred trajectory topologies (Tinf). The real trajectory top-
ologies (Treal) for the simulated data are recorded during the
simulated data generation and for the real data are adopted from the
related publications (Pijuan-Sala et al., 2019; Yang et al., 2017) and
an embryonic development database (https://discovery.lifemapsc.
com). The HIM scores were calculated using the nd.him function in
NetworkDistance (Jurman et al., 2011) to measure the difference be-
tween the inferred trajectory topologies and the real trajectory top-
ologies according to the following formula:

HIM Tinf ; Trealð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Tinf ; Trealð Þ

2 þ n� IM Tinf ; Trealð Þ
2

q
ffiffiffiffiffiffiffiffiffiffiffi
1þ n
p ; (2)

where H and IM represent the Hamming distance and the Ipsen–
Mikhailov distance, respectively. n is a parameter to control the bal-
ance between these two distances and is estimated based on the
number of nodes in the graph. For the comparisons of different
methods in the same dataset, this parameter is consistent so that the
HIM scores are comparable.

The F1 score is the harmonic mean of the precision and recall
and measures the accuracy of a clustering scheme. In our case, this
metric maps the cells in the real and predicted states by using their
shared members. The precision is calculated as the ratio of the num-
ber of correctly predicted cells (true positives, TP) to the total num-
ber of predicted cells (the sum of TP and the number of false
positives, FP). The recall is calculated as the ratio of the number of
correctly predicted cells (TP) to the number of all real cells (the sum
of TP and the number of false negatives, FN). Formally,

Precision ¼ TP

TPþ FP
; 3ð Þ

Recall ¼ TP

TPþ FN
; (4)

F1 ¼ 2� Precision� Recall

Precisionþ Recall
: (5)

3 Results

3.1 Overview of CStreet
As shown in Figure 1, CStreet uses the expression matrix of time-
series scRNA-seq data as input and constructs the cell state trajec-
tory. It first builds k-NN graphs within and between the time points
of cells that passed quality control and were normalized. Then,
within each time point, the cells in a cluster or of the same cell type
are coarsely categorized to a cell state with the number of intercon-
nections calculated. Then connection probabilities between cell
states are estimated by using these interconnection numbers. A
force-directed graph (Jacomy et al., 2014) is created based on these
connection probabilities to visualize the layout of the cell states
within each time point and is used as the skeleton of the time-series
trajectory. Next, we calculate the connection probabilities of each
state at the earlier time point to the states at the later time point
based on the k-NN graph between these two time points. Finally,
based on the assumption that the cells at the later time point have
experienced a longer cell state transition than the cells at the earlier
time point, the cell states between adjacent time points were directed
along with the time-series chronologically. The clustering results,
connection probabilities and trajectory plot are outputted in separ-
ate files as well as an interactive states trajectory file that can be
visualized using Cytoscape and its apps (Micale et al., 2014).

3.2 Evaluation on simulated datasets
To evaluate the performance of CStreet, we compared the trajec-
tory accuracy and state assessment accuracy of CStreet with six
commonly used cell state trajectory reconstruction methods (i.e.
Monocle 2, TSCAN, SCUBA, PAGA, CSHMM and Tempora).
As the pathway information, which is required by Tempora, is
not applicable in simulated datasets, five commonly used meth-
ods were used on the simulated time-series scRNA-seq data
(Fig. 2a and b; more description in Section 2). The HIM score
was used to quantify the difference between the inferred trajec-
tory and the ‘true trajectory’ (see more description in Section 2).
The F1 score was used to measure the cell assessment accuracy.
In this simulation dataset, CStreet and SCUBA accurately
inferred all six trajectories among those cell states (Fig. 2c and f).
Monocle 2 inferred the pseudotime of cells, and it failed to infer
most trajectories (Fig. 2d). TSCAN constructed a cluster-based
MST, and its main trajectory is C1A–C1A–C2A–C3B–C3D–C2B, in

Fig. 1. The overall workflow of CStreet
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which C3B–C3D–C2B were mistakenly identified (Fig. 2e). PAGA
constructed a coarse-grained graph, which contained 14 connec-
tions, including 8 FP ones (Fig. 2g). In the result of CSHMM, the
trajectories of C2B–C3A, C2A–C3C and C3A–C3D were mistakenly
identified, while C2A–C3A, C2B–C3C and C2B–C3D were missed
(Fig. 2h). The results based on simulated data showed that
CStreet and SCUBA achieved the best performance in terms of
trajectory inference and states assessment (Table 1). CStreet also

demonstrated reliable trajectory results using simulated datasets
with different sampling densities (Supplementary Fig. S2).

For the real data with labeled cells, the calculation of the F1

scores was not applicable and only the HIM scores were calculated.
For the simulated data that performed 10 times, the mean values of
the HIM scores and F1 scores, as well as the 95% confidence inter-
vals around the mean values, were calculated. HDTSD 1, mouse
hepatoblast differentiation time-series data using the label strategy
of intermediate cells; HDTSD 2, mouse hepatoblast differentiation
time-series data using the label strategy of directed links; ETSD 1,
mouse embryogenesis time-series data in the first three time points;
ETSD 2, mouse embryogenesis time-series data in the all nine time
points; CCTSD, early murine cerebral cortex development time-
series data. NA means the result of the corresponding method is not
available. The pathway information, which is required by Tempora,
is not applicable in the simulated data. CSHMM failed to complete
the trajectory construction in ETSD 1 and ESTD 2 datasets.
Monocle 2, TSCAN, Tempora and SCUBA failed to complete the
trajectory construction in ETSD 2 dataset.

3.3 Tolerance evaluation of cell rarity and gene

dropouts
To further evaluate the tolerance of CStreet to rare cells and gene
dropouts, we constructed trajectories using these methods on groups
of simulation datasets with different numbers of cells and different
numbers of detected genes. CStreet showed reliable results and the
best trajectory inference accuracy and state assessment accuracy
with 400 or more cells and gene dropout rates of 50% or lower
(Fig. 3).

3.4 Application on real time-series scRNA-seq datasets
We next applied CStreet and the other methods on three real time-
series scRNA-seq datasets with different characteristics, i.e. one hav-
ing multiple sampling time points, one having multiple cell states
and one having convergent cell state trajectories.

To evaluate the performance of CStreet on the dataset with mul-
tiple sampling time points, we compared the trajectory results of
CStreet to the other six methods on a time-series scRNA-seq dataset
at embryonic day 10.5 (E10.5, 54 cells), E11.5 (70 cells), E12.5 (41
cells), E13.5 (65 cells), E14.5 (70 cells), E15.5 (77 cells) and E17.5
(70 cells) during mouse hepatoblast differentiation. To distinguish
the cell states for the inference of trajectories, we used two strategies
to specifically label the cells with mixed cell states [the ‘hepatoblast/
hepatocyte’ cells defined in Yang et al. (2017)]. The first strategy is
labeling these cells in early time points (E10.5, E11.5) as ‘hep-
atoblast’, in late time points (E15.5, E17.5) as ‘hepatocyte’, and in
intermediate time points (E12.5, E13.5, E14.5) as ‘intermediate
cells’ (Fig. 4a and b). CStreet, TSCAN and SCUBA accurately
inferred the transitions of hepatoblasts to intermediate cells, then to
hepatocytes and cholangiocytes (Fig. 4c, Supplementary Fig. S3b
and d). Tempora missed the trajectory of hepatoblasts to intermedi-
ate cells (Supplementary Fig. S3c); while PAGA and CSHMM mis-
takenly connected hepatocytes with cholangiocytes (Supplementary
Fig. S3e and f). The second strategy is labeling these cells as hepato-
blasts (E10.5, E11.5, E12.5 and E13.5) or hepatocytes (E14.5,
E15.5 and E17.5) to construct a direct link from hepatoblasts to
hepatocytes and cholangiocytes (Supplementary Fig. S4a and b).

Fig. 2. Comparison of CStreet with Monocle 2, TSCAN, SCUBA, PAGA and

CSHMM on the simulated time-series data. (a) Scatter plot showing the visualiza-

tion of the UMAP dimensional reduction output of the embryogenesis scRNA-seq

data. Different cell states are plotted using different colors. (b) The true trajectory of

the simulation data used to evaluate the accuracy of all the inferred trajectories. (c–

h) The inferred cell state trajectories of the embryogenesis scRNA-seq data using

CStreet (c), Monocle 2 (d), TSCAN (e), SCUBA (f), PAGA (g) and CSHMM (h).

The black dots in (d), (e) and (g) represent the center of cell states and the gray dots

in (d) and (e) represent the starts of trajectories. The black edges represent the con-

nections of these centers. The thickness of edges in (c) and (g) represents the corre-

sponding statistical measure of the connectivity between cell states. In (f), cell types

and proportions contained in each cluster were labeled. In (h), each path represents

a set of infinite states, each node represents the location where paths split, and each

intermediate circle represents a cell state on the path. The circle sizes represent the

numbers of cells assigned to the cell state. The cells are colored according to their

true state

Table 1. Comparison between CStreet and the other methods

Method HIM score (simulated

data)

F1 score (simulated

data)

HIM score

(HDTSD 1)

HIM score

(HDTSD 2)

HIM score

(ETSD 1)

HIM score

(ETSD 2)

HIM score

(CCTSD)

CStreet 0.000 6 0.000 1.000 6 0.000 0.000 0.000 0.007 0.056 0.079

Monocle 2 0.209 6 0.038 0.759 6 0.033 0.397 0.636 0.065 NA 0.636

TSCAN 0.174 6 0.034 0.817 6 0.020 0.000 0.318 0.051 NA 0.397

Tempora NA NA 0.159 0.000 0.101 NA 0.079

SCUBA 0.000 6 0.000 1.000 6 0.000 0.000 0.318 0.058 NA 0.397

PAGA 0.185 6 0.000 0.999 6 0.000 0.556 0.636 0.101 0.033 0.477

CSHMM 0.124 6 0.000 0.962 6 0.000 0.238 0.318 NA NA 0.477
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CStreet and Tempora correctly inferred the transition of hepato-
blasts to hepatocytes and cholangiocytes (Supplementary Fig. S4c
and f). TSCAN, SCUBA, PAGA and CSHMM mistakenly connected
hepatocytes with cholangiocytes (Supplementary Fig. S4d, e and g–
i). With both strategies, CStreet accurately inferred the trajectory of
the cell states (Table 1), illustrating the applicability of CStreet to
scRNA-seq datasets with multiple sampling time points.

Next, to evaluate the performance of CStreet with multiple cell
states at each time point, we constructed cell state trajectories using
CStreet and other six methods at the first three time points (E6.5:
3482 cells, E6.75: 2067 cells and E7.0: 14 585 cells) of a time-series
scRNA-seq dataset during mouse embryogenesis (Fig. 4d and e).
CStreet accurately inferred the trajectories of epiblast to primitive
streak, primitive streak to nascent mesoderm, together with inde-
pendent trajectories of extraembryonic (ExE) endoderm, parietal
endoderm and visceral endoderm. These independent trajectories
might be caused by the cells in the earlier time point but having
advanced developmental cell states. CStreet also correctly inferred
the trajectory of primitive streak to anterior primitive streak, and
the trajectory of nascent mesoderm to mixed mesoderm and
haemato-endothelial progenitors, but it missed the trajectory of an-
terior primitive streak to definitive (Def.) endoderm (Fig. 4f).
Monocle 2 correctly inferred the trajectory of epiblast to epiblast,
but it mistakenly inferred the trajectories of haemato-endothelial
progenitors to ExE ectoderm and ExE endoderm (Supplementary
Fig. S5a). TSCAN correctly inferred the trajectories of epiblast to
primitive streak and primitive streak to nascent mesoderm, but it
mistakenly inferred the trajectories of primitive streak to epiblast,
primitive streak to ExE ectoderm and ExE ectoderm to ExE endo-
derm (Supplementary Fig. S5b). Tempora correctly inferred the tra-
jectory of anterior primitive streak to Def. endoderm, but it
mistakenly inferred the trajectories of epiblast to visceral endoderm,

ExE endoderm to nascent mesoderm, parietal endoderm to mixed
mesoderm and mixed mesoderm to ExE ectoderm (Supplementary
Fig. S5c). SCUBA mistakenly inferred the trajectories of epiblast to
ExE ectoderm and ExE ectoderm to ExE endoderm (Supplementary
Fig. S5d). PAGA correctly inferred the connections of epiblast with
primitive streak, primitive streak with nascent mesoderm and anter-
ior primitive streak, but it mistakenly inferred the connections of vis-
ceral endoderm with ExE endoderm and epiblast with anterior
primitive streak (Supplementary Fig. S5e). These results showed that
CStreet outperformed other methods on this dataset (Table 1). To
evaluate the performance of CStreet and other methods on complex
trajectories, we further extended the comparisons using all the nine
time points (E6.5, E6.75, E7.0, E7.25: 13 537 cells, E7.5: 10 994
cells, E7.75: 14 493 cells, E8.0: 16 681 cells, E8.25: 15 935 cells and
E8.5: 16 909 cells) of the dataset (Supplementary Fig. S6a). As the
dataset contained uncharacterized cell states, it was difficult to set a
whole trajectory as the gold standard. Nevertheless, we curated
reported trajectories between characterized cell states, i.e. a subset
of the whole trajectory, to quantificationally evaluate the perform-
ance of the methods (Supplementary Fig. S6a and b). Both CStreet
and PAGA showed comparable performance (Supplementary Fig.
S6c and d; Table 1); while other methods failed to complete the tra-
jectory construction, due to memory errors (Monocle 2, TSCAN,
Tempora and SCUBA) and exceptionally excessive runtime
(CSHMM). Taken together, these results demonstrated that CStreet
is suitable to infer the trajectory of complex cell states.

Finally, we applied CStreet and other methods on a time-series
scRNA-seq dataset with convergent trajectories, and we constructed
cell state trajectories using CStreet and other six methods using data
from E11.5 (1402 cells), E13.5 (1129 cells), E15.5 (2922 cells) and
E17.5 (863 cells) during embryonic murine cerebral cortex develop-
ment (Fig. 4g and h). CStreet and Tempora displayed better per-
formance than other methods (Table 1). CStreet inferred all the
correct cell state transitions, but it mistakenly inferred the trajectory
of neurons to young neurons (Fig. 4i). Tempora accurately inferred
most trajectories, but it missed the trajectory from intermediate pro-
genitors (IPs) to neurons (Supplementary Fig. S7c). Monocle 2 mis-
takenly inferred trajectories of IPs to apical precursors/radial
precursors (APs/RPs) and young neurons to IPs (Supplementary Fig.
S7a). TSCAN inferred the correct trajectories of APs/RPs to IPs and
IPs to neurons, but it mistakenly inferred trajectories of neurons to
young neurons (Supplementary Fig. S7b). SCUBA inferred the cor-
rect trajectories of APs/RPs to neurons, APs/RPs to IPs and young
neurons to neurons, but it mistakenly inferred trajectory of IPs to
APs/RPs and neurons to young neurons (Supplementary Fig. S7d).
PAGA inferred the correct trajectories of IPs to neurons and young
neurons to neurons, but it mistakenly inferred trajectories of neu-
rons to young neurons and young neurons to APs/RPs
(Supplementary Fig. S7e). CSHMM inferred the correct trajectory of
APs/RPs to neurons, but it mistakenly inferred the trajectory of neu-
rons to young neurons (Supplementary Fig. S7f). These results illus-
trate the applicability of CStreet to scRNA-seq datasets having
convergent cell states trajectories.

4 Discussion

The constructions of cell trajectories and cell state trajectories are two
effective strategies to dissect the time-series scRNA-seq data. The con-
struction of cell trajectories can demonstrate the relevance as well as the
heterogeneity of each cell, while the construction of cell state trajectories
can highlight the main path of cell state transitions and make the top-
ology of the trajectory easier for interpretation. As mentioned in a tra-
jectory inference method selection tool (Saelens et al., 2019), users need
to take into account their specific needs, expected topology and the
dataset dimensions to choose the most appropriate method to construct
the trajectory. Each cell state trajectory inference method has a specific
design. For example, Monocle 2 infers a graph manifold of single cells
based on transcriptome similarity; instead of inferring cell state trajec-
tory, the pseudotime ordering of cells is of greater concern when using
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plots showing the dynamic changes in the HIM score for the trajectory results using

CStreet, TSCAN, CSHMM, PAGA, Monocle 2 and SCUBA on the simulated data-

sets with different numbers of cells. (b) Line plots showing the dynamic changes in
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Monocle 2. SCUBA starts with a binary tree model and uses a stochastic
dynamic system to identify bifurcation events, and it performed well in
the cases with typical bifurcation trajectories. Tempora uses biological
pathway information to help identify cell type relationships, and it pro-
vides the significantly changed pathways along with the trajectory,
which can benefit the users to explore novel biological insights of the
trajectory. As a replenishment, CStreet provided another easy and ac-
curate way to understand and interpret the trajectories of cell states.
CStreet is designed for cell state trajectory construction using time-series
scRNA-seq data. It obtains better, or at least comparable, cell state tra-
jectory results compared to six commonly used cell state trajectory
methods using both simulated data and real data. It also displays high
tolerance to small cell numbers and high gene dropout rates. In add-
ition, CStreet is available as a command line tool and a Python library
to meet the different needs of users.
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Fig. 4. Application of CStreet on three real time-series scRNA-seq datasets. (a) Scatter plot showing the visualization of the dimensional reduction output of the scRNA-seq

data during mouse hepatoblast differentiation (HDTSD 1). Different states of cells are plotted using different colors. (b) The real trajectory of mouse hepatoblast differenti-

ation with the label strategy of intermediate cells used to evaluate the accuracy of all the inferred trajectories. (c) The inferred cell state trajectory of CStreet on the scRNA-seq

data during mouse hepatoblast differentiation using the label strategy of intermediate cells. (d) Scatter plot showing the visualization of the UMAP dimensional reduction out-

put of the ETSD 1. Different cell states are plotted using different colors. (e) The real trajectory of ETSD 1 used to evaluate the accuracy of all the inferred trajectories. Blue

boxes indicate cell states that are included in this dataset, while gray boxes indicate cell states that are not included. (f) The inferred cell state trajectory of CStreet on ETSD 1.

(g) Scatter plot showing the visualization of the dimensional reduction output of the scRNA-seq data during murine cerebral cortex development (CCTSD). The coordinates

and states of cells are obtained from Tran and Bader’s paper. Different cell states are plotted using different colors. (h) The real trajectory of CCTSD used to evaluate the accur-

acy of all the inferred trajectories. (i) The inferred cell state trajectory of CStreet on the CCTSD. The thickness of edges in (c), (f) and (i) represents the estimated connection

probabilities between cell states. ExE, extraembryonic; Def., definitive; APs/RPs, apical precursors and radial precursors; IPs, intermediate progenitors
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