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Abstract

Motivation: The negative binomial distribution has been shown to be a good model for counts data from both bulk
and single-cell RNA-sequencing (RNA-seq). Gaussian process (GP) regression provides a useful non-parametric ap-
proach for modelling temporal or spatial changes in gene expression. However, currently available GP regression
methods that implement negative binomial likelihood models do not scale to the increasingly large datasets being
produced by single-cell and spatial transcriptomics.

Results: The GPcounts package implements GP regression methods for modelling counts data using a negative bi-
nomial likelihood function. Computational efficiency is achieved through the use of variational Bayesian inference.
The GP function models changes in the mean of the negative binomial likelihood through a logarithmic link function
and the dispersion parameter is fitted by maximum likelihood. We validate the method on simulated time course
data, showing better performance to identify changes in over-dispersed counts data than methods based on
Gaussian or Poisson likelihoods. To demonstrate temporal inference, we apply GPcounts to single-cell RNA-seq
datasets after pseudotime and branching inference. To demonstrate spatial inference, we apply GPcounts to data
from the mouse olfactory bulb to identify spatially variable genes and compare to two published GP methods. We
also provide the option of modelling additional dropout using a zero-inflated negative binomial. Our results show
that GPcounts can be used to model temporal and spatial counts data in cases where simpler Gaussian and Poisson
likelihoods are unrealistic.

Availability and implementation: GPcounts is implemented using the GPflow library in Python and is available at
https://github.com/ManchesterBioinference/GPcounts along with the data, code and notebooks required to repro-
duce the results presented here. The version used for this paper is archived at https://doi.org/10.5281/zenodo.
5027066.

Contact: nuha.bintayyash@manchester.ac.uk or magnus.rattray@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological data are often summarized as counts, e.g. high-
throughput sequencing allows us to count the number of sequence
reads aligning to a genomic region of interest, while single molecule
fluorescence in situ hybridization (smFISH) allows us to count the
number of RNA molecules in a cell or within a cellular compart-
ment. For datasets that are collected with temporal or spatial reso-
lution, it can be useful to model changes in time or space using a

Gaussian process (GP). GPs provide a flexible framework for non-
parametric Bayesian modelling, allowing for non-linear regression
while quantifying the uncertainty associated with the estimated la-
tent function and data measurement process (Rasmussen and
Williams, 2006). GPs are useful methods for analyzing gene expres-
sion time series data, e.g. to identify differentially expressed genes,
model temporal changes across conditions, cluster genes or model
branching dynamics (Ahmed et al., 2019; Äijö et al., 2014;
Boukouvalas et al., 2018; Hensman et al., 2013; Kalaitzis and
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Lawrence, 2011; McDowell et al., 2018; Stegle et al., 2010; Yang
et al., 2016). GPs have also been applied to spatial gene expression
data as a method to discover spatially varying genes (Sun et al.,
2020; Svensson et al., 2018). In many previous applications of GP
regression to counts, the log-transformed counts data are modelled
using a Gaussian noise assumption. Such Gaussian likelihood mod-
els do not properly capture the typical characteristics of counts data,
in particular substantial probability mass at zero counts and hetero-
scedastic noise. Alternative data transformations attempt to match
the mean/variance relationship of counts data (Anscombe, 1948)
but cannot model all relevant aspects of the distribution, e.g. the
probability mass at zero. More suitable distributions for modelling
counts data include the negative binomial distribution, which can
model over-dispersion beyond a Poisson model, and zero-inflated
extensions that have been developed for single-cell data exhibiting
an excess of zero counts (Pierson and Yau, 2015; Risso et al., 2018).
A negative binomial likelihood was implemented for GP regression
using Markov chain Monte Carlo (MCMC) inference (Äijö et al.,
2014). However, this approach does not scale to large datasets, e.g.
single-cell RNA-seq (scRNA-seq) data after pseudotime inference or
from spatial transcriptomics assays.

Various statistical methods have been proposed for spatially resolved
omics data (Arnol et al., 2019; Edsgärd et al., 2018; Sun et al., 2020;
Svensson et al., 2018). The SpatialDE approach uses a GP to model the
expression variability of each gene with a spatial and non-spatial compo-
nent (Svensson et al., 2018). The latter is modelled as observation noise,
while the former is modelled using a covariance function that depends on
the pairwise distance between the cells. The ratio of these components is
used to measure the spatial variability of each gene. A Gaussian likelihood
is used for inference and the raw counts data is transformed using
Anscombe’s transformation (Anscombe, 1948) to reduce heteroscedastic-
ity. Statistical significance is assessed by a likelihood ratio test against a
spatially homogeneous model, with P-values calculated under the assump-
tion of a v2-distribution. Trendsceek (Edsgärd et al., 2018) assesses spatial
expression of each gene by modelling normalized counts data as a marked
point process, where the points represent the spatial locations and marks
represent the expression levels, with a permuted null used to assess signifi-
cance. SPARK (Sun et al., 2020) is a recently introduced GP-based
method that relies on a variety of spatial kernels and a penalized quasi-
likelihood algorithm. SPARK models counts using a Poisson likelihood
function and captures over-dispersion through a nugget (white noise)
term in the underlying GP covariance function.

Here, we introduce an alternative GP regression model
(GPcounts) to model temporal or spatial counts data with a negative
binomial (NB) likelihood. GPcounts can be used for a variety of
tasks, e.g. to infer temporal trajectories, identify differentially
expressed genes using one-sample or two-sample tests, infer branch-
ing genes from scRNA-seq after pseudotime inference, or to infer
spatially varying genes. We use a GP with a logarithmic link func-
tion to model variation in the mean of the counts data distribution
across time or space. As an example, in Figure 1, we show how
GPcounts captures the distribution of a short RNA-seq time course
dataset from Leong et al. (2014). In this example we use a two-
sample test to determine whether time-series measured under differ-
ent conditions have differing trajectories. The GP with Gaussian
likelihood fails to model the data distribution well, leading to a less
plausible inferred dynamics and overly broad credible regions.
Although the trajectories of the two samples clearly differ, the
Gaussian likelihood model provides a poor fit and the single trajec-
tory model is preferred in the two-sample test.

Our package is developed using the GPflow library (De
Matthews et al., 2017) which we have extended to include the
DEtime kernel (Yang et al., 2016) for branching genes and to in-
clude an NB likelihood function with an efficient variational ap-
proximate inference method.

2 Materials and methods

2.1 Gaussian process regression
A Gaussian Process (GP) is a stochastic process over real valued func-
tions and defines a probability distribution over function space

(Rasmussen and Williams, 2006). GPs provide a non-linear and non-
parametric framework for inference. Consider a set of N temporal or
spatial locations x ¼ ½x1;x2; . . . ;xN � associated with observations
y ¼ ½y1; y2; . . . ; yN �. As this is a continuous model, spacings between
data points can vary. Each observation yn is modelled as a noisy ob-
servation of the function evaluated at xn, fn ¼ f ðxnÞ, through some
likelihood function pðynjfnÞ. The function f is a latent function
sampled from a GP prior and pðynjfnÞ models the data distribution at
x ¼ xn. The simplest and most popular choice of likelihood function
is i.i.d. Gaussian noise centred at f, in which case yjf � Nðf ; r2IÞ,
where f ¼ ½f1; f2; . . . ; fN � is the GP function evaluated at the times or
locations in x. In this work we use likelihood functions that are more
suitable for counts data, which we introduce below.

To indicate that f is drawn from a GP we write,

f � GPðl; kÞ : (1)

Here, lðxÞ ¼ E½f ðxÞ� is the mean function of the GP. The covari-
ance function k (also known as the kernel function) is a positive
semidefinite function kðx; x�Þ ¼ E½f ðxÞf ðx�Þ� � E½f ðxÞ�E½f ðx�Þ� that
determines the covariance of f at any two locations x and x�. The co-
variance function describes our beliefs when modelling the function,
e.g. whether it is stationary or non-stationary, rough or smooth etc.
A popular choice is the Radial Basis Function (RBF) kernel which
leads to smooth and infinitely differentiable functions, defined as:

kðx; x�Þ ¼ r2
f exp � jjx� x�jj2

2l2

� �
(2)

where the hyper-parameters are the lengthscale l, controlling spatial
or temporal variability, and the amplitude r2

f , controlling the mar-
ginal variance of the function. The RBF kernel is also known as the
squared exponential, exponentiated quadratic or Gaussian kernel
(Rasmussen and Williams, 2006). Below we describe an alternative
kernel appropriate for branching functions.

The kernel hyper-parameters and parameters of the likelihood
function can be learned from the data by optimizing the log margin-
al likelihood function of the GP. The marginal likelihood is given by
the probability of the data y after integrating out the GP function,

pðyÞ ¼
ð

pðyjfÞN ðfj0;Kðx; xÞÞdf ; (3)

where we have set the GP prior mean to be zero and Kðx; xÞ is the co-
variance matrix of the GP function evaluated at the data locations x.
For the special case of a Gaussian likelihood function this integral is
tractable but for the non-Gaussian likelihoods below we use a vari-
ational approximation introduced by Opper and Archambeau (2009).
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Fig. 1. Example of data from a two-sample time course RNA-seq experiment

(Leong et al., 2014). With a Negative Binomial likelihood we are able to identify

this differentially expressed gene based on a likelihood ratio statistic. With a

Gaussian noise model we obtain a poor fit and the likelihood ratio does not identify

the gene as differentially expressed
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GPcounts enables model comparison between models with alter-
native kernels, such as linear and periodic. These kernels are defined
as:

kðx; x�Þlin ¼ r2
f xx�T; (4)

kðx;x�Þper ¼ r2
f exp � 2

l2
sin 2 pjx� x�j

p

� �� �
; (5)

where p is the period. When comparing different covariance func-
tions the models are assessed based on the Bayesian Information
Criterion (BIC), defined as:

BIC ¼ NlnðdÞ � 2L̂; (6)

where L̂ is the log marginal likelihood, N corresponds to the num-
ber of observations and d to the number of optimized hyper-
parameters of a given model.

2.2 Negative binomial likelihood
The Negative Binomial (NB) distribution is a popular model for
bulk RNA-seq counts data (Love et al., 2014; Robinson and Smyth,
2007) and has been shown to be suitable for modelling scRNA-seq
count data with UMI (unique molecular identifier) normalization
(Svensson, 2020; Townes et al., 2019). It can be parameterized by a
fixed number of failures r and mean l:

NBðy; l; rÞ ¼ Cðyþ rÞ
Cðyþ 1ÞCðrÞ

r

rþ l

� �r l
rþ l

� �y

; 8y 2 N (7)

where C is the Gamma function. It is convenient to parameterize the
NB distribution by a dispersion parameter a ¼ r�1 which captures
excess variance relative to a Poisson distribution, since
Var½y� ¼ lþ al2. A logarithmic link function is used to model the
mean of the NB as a transformation of the GP function
f ðxÞ ¼ log lðxÞ.

In some cases it has been found useful to model additional zero
counts through a zero-inflated negative binomial (ZINB) distribu-
tion (Pierson and Yau, 2015; Risso et al., 2018). Such extensions
can easily be implemented by modifying the likelihood function and
we provide a specific implementation using a Michaelis–Menten
drop-out function (see Supplementary Material). However, for mod-
ern UMI-normalized datasets the standard NB likelihood is often
sufficient for inference and estimating an additional drop-out par-
ameter can be difficult (Choi et al., 2020).

2.3 Tests and credible regions
We provide one-sample and two-sample likelihood-ratio statistics in
GPcounts to identify differentially expressed genes. In the one-
sample case the null hypothesis assumes there is no difference in
gene expression across time or space (Kalaitzis and Lawrence, 2011;
Svensson et al., 2018) and we compute the ratio of the GP model
marginal likelihood versus a constant model likelihood. The models
are nested since the constant model is equivalent to the GP with an
infinite lengthscale parameter. In the two-sample case the null hy-
pothesis assumes there is no difference in gene expression under two
different conditions and the alternative hypothesis is that two differ-
ent GP functions are required to model each sample (Stegle et al.,
2010). Rejecting the null hypothesis in each case indicates that a
gene is differentially expressed. In the two-sample case, we fit three
GPs: one for each dataset separately and a shared GP where the
datasets are treated as replicates.

For spatial transcriptomics data we follow two testing proce-
dures. The approach of Svensson et al. (2018) is to use P-values esti-
mated according to a v2-distribution and a 5% FDR threshold is
estimated using the approach of Storey and Tibshirani (2003). To
obtain better FDR calibration we also implement a permutation test
where we randomly rearrange the spatial coordinates to estimate P-
values based on the permuted null.

To plot [5–95%] credible regions we draw 100 random samples
from the GP at 100 equally spaced times. We exponentiate each GP
sample to set the mean of the count distribution (NB or Poisson)
and draw counts at each time. We use the mean and percentiles to
plot the predictive distribution with the associated credible regions.
To smooth the mean of the samples, we use the Savitzky–Golay fil-
ter with cubic polynomial to fit the samples (Savitzky and Golay,
1964). To smooth the samples used to construct the credible regions,
we use the Locally Weighted Scatterplot Smoothing (LOWESS)
method (Cleveland, 1979).

2.4 Scale normalization for gene expression data
In some cases, there may be confounding variation that will domin-
ate the temporal or spatial trends in the data. For example, Svensson
et al. (2018) point out that there may be spatial patterns in cell size
that can lead to almost all genes being identified as spatially vari-
able. In this case, it is necessary to normalize away such confound-
ing variation in order to model other sources of spatial variation.
Svensson et al. (2018) used ordinary least-squares regression of
Anscombe-normalized spatial expression data against logged total
counts to remove this confounding variation. We use NB regression
with an identity link function to learn location-specific normaliza-
tion factors for spatial counts data. In GPcounts, we model the tem-
poral or spatial data using a modified GP likelihood
yi � NBðkili; rÞ for i ¼ 1; . . . ;N with li ¼ ef ðxiÞ and f � GPð0; kÞ.
In spatial data, the multiplicative normalization factor ki is calcu-
lated as ki ¼ bTi for i ¼ 1; . . . ;N, where b is the slope calculated by
fitting for each gene a NB regression model with intercept zero and
Ti corresponds to the total counts at the ith spatial location.

2.5 Modelling branching dynamics
In the two-sample time course setting it can also be useful to identify
the time at which individual genes begin to follow different trajecto-
ries. This can be useful in bulk time course data in a two-sample test-
ing scenario (Yang et al., 2016) or for modelling branching
dynamics in single-cell data after pseudotime inference
(Boukouvalas et al., 2018). We first define a joint covariance func-
tion for two GPs with the same covariance function f � GPð0;kÞ
and g � GPð0; kÞ constrained to cross at a branching point xb:

ð kff kfg

kgf kgg
Þ ¼

kðx;xÞ kðx;xbÞkðx; xbÞ>

kðxb;xbÞ
kðx;xbÞkðx;xbÞ>

kðxb;xbÞ
kðx;xÞ

0
BBB@

1
CCCA : (8)

Now consider data from two lineages yt and yb representing
noise-corrupted measurements of a baseline (trunk) and diverging
(branch) time course respectively. Before the divergence point xb the
data are distributed around the trunk function f(x) according to
some likelihood function pðyjf Þ,

ytðxnÞ �pðyjf ðxnÞÞ for xn � xb : (9)

After the branching point xb, the mean function of the trunk con-
tinues to follow f while the mean function of the diverging branch
trajectory changes to follow g,

ytðxnÞ �pðyjf ðxnÞÞ;
ybðxnÞ �pðyjgðxnÞÞ for xn � xb:

(10)

The branching point xb is a hyper-parameter of the joint covariance
function of this model along with the hyper-parameters of the GP func-
tions (lengthscale l and amplitude r2

f ). The lengthscale and amplitude
are shared by both functions and are fitted (along with the likelihood
model parameters) by fitting two separate GP regression models to the
data from both conditions or lineages and estimated using maximum
likelihood (Yang et al., 2016). This leaves the problem of inferring the
branching time xb only. As this is a one-dimensional problem, the pos-
terior distribution of xb is estimated using a simple histogram approach.
We have used a simple discretization xb 2 ½xmin;xmin þ d; xmin þ
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2d; . . . ; xmax� as in Yang et al. (2016) and estimate the posterior by
using the normalized likelihood evaluated at each grid point,

pðxbjyt; ybÞ ’ pðyt; ybjxbÞPx¼xmax

x¼xmin

pðyt; ybjxÞ
; (11)

which avoids the need for complex optimization or integration
schemes.

2.6 Efficient approximate inference implementation
The integral in Equation (3) is intractable for non-Gaussian likeli-
hood functions. Therefore, we need to approximate the posterior
and variational inference provides a computationally efficient ap-
proximation (Bauer et al., 2016; Bernardo et al., 2003; Opper and
Archambeau, 2009). Full variational Bayesian inference is computa-
tionally intensive and requires OðN2Þ memory and OðN3Þ computa-
tion time so we use a sparse approximation to reduce the
computational requirements (Rasmussen and Williams, 2006;
Seeger, 2000). In sparse inference, we choose M<N inducing points
z defined in the same space of regressors x. Using inducing points
reduces the time complexity to OðNM2Þ. In GPcounts the default is
to set the number of inducing points to M ¼ 5%ðNÞ although fewer
should be used for very large datasets. We apply the ��approximate
M-determinantal point process (M-DPP) algorithm to select the can-
didate inducing points (Burt et al., 2020). Using the M-DPP algo-
rithm reduces the required number of inducing points to
M ¼ Oðlog NÞ2D in the case of a squared exponential kernel, where
D is the data dimensionality. Therefore, a smaller number of induc-
ing points can be used for very large datasets and we provide the
user with the option to set the number of inducing points. We also
provide the option to use a simpler k-means clustering algorithm to
select the inducing point locations (Hensman et al., 2015).

2.7 Practical considerations
Practical limitations of the inference framework include local op-
tima in the hyperparameter search and occasional numerical insta-
bilities. We have therefore incorporated some checks to detect both
numerical errors failure of Cholesky decomposition or failure of op-
timization. Local optima are a likely issue if the GP posterior pre-
dictive is consistently higher or lower than the observations. Where
we suspect local optima or numerical errors we restart the optimiza-
tion from new random values for the hyper-parameters. In
GPcounts, we implement a safe mode option to detect and fix local
optima. The safe mode option is switched off by default as multiple
restarts can increase the running time. Supplementary Figure S1 in
Supplementary Material shows an example from a two-sample time
course RNA-seq experiment (Leong et al., 2014) with a NB likeli-
hood, where the GP is facing a local optimum solution and the safe
mode option is switched off in (a) while in (b) safe mode option is
switched on so that GPcounts can detect and fix the problem.

3 Results and discussion

Below we apply GPcounts on simulated counts time course datasets,
scRNA-seq data after pseudotime inference and a spatial transcrip-
tomics dataset.

3.1 Assessment on synthetic time course data
We simulated four counts time course datasets with two levels of
mean expression (high/low) and two levels of dispersion (high/low)
to assess the performance of GPcounts in identifying differentially
expressed genes using a one-sample test. Each dataset has 600 genes
with time-series measurements at 11 equally spaced time points x ¼
½0;0:1;0:2; . . . 1:0� and two replicates at each time. Half of the genes
are differentially expressed across time. We use two classes of gen-
erative functions f(x), sine functions and cubic splines, to simulate
data from time-varying genes. The sine functions are of the form
f ðxÞ ¼ a sinðxbþ dÞ þ c where parameters are drawn from uniform

distributions. Specifically, b � U½p=4; 2p�; d � U½0; 2p� while the a
and c distributions are chosen to alter the signal amplitude and
mean ranges respectively. The cubic spline function has the form
f ðxÞ 2 C2½0; 1� passing through two control points (x, y) where x
and y are drawn from uniform distributions. For non-differentially
expressed genes we choose constant values set to the median value
of each dynamic function in the dataset. The low and high disper-
sion values are drawn from uniform distributions alow �
U½0:01;0:1� and ahigh � U½1; 3� respectively. An exponential inverse-
link function is used to determine the mean of count data at each
time lðxÞ ¼ ef ðxÞ and we use the SciPy library (Millman and Aivazis,
2011) to sample counts from the negative binomial distribution.
Specific simulation parameters and final datasets are provided with
the supporting code.

In Figure 2 we compare the performance of GPcounts using the
NB likelihood with a Poisson likelihood and the Gaussian likelihood
using a simple logarithmic transformation logðyþ 1Þ or using
Anscombe’s transformation (Anscombe, 1948) as implemented in
SpatialDE (Svensson et al., 2018). We use Receiver Operating
Characteristic (ROC) curves to assess the performance of ranking
differentially expressed genes using the log likelihood ratio (LLR)
against a constant model. For the low dispersion data, both the NB
and Gaussian likelihood perform similarly well for low and high ex-
pression levels. The Poisson likelihood does not perform as well in
the high expression case since the restriction that the variance equals
the mean is too inflexible even for relatively low dispersion data.
For the high dispersion data, the NB likelihood performs best and is
clearly superior to both the Gaussian and Poisson likelihoods. In this
case, the Poisson is unable to estimate the extra variance due to
over-dispersion while the Gaussian assumes constant noise variance
which is unrealistic for counts data. These results demonstrate that
the NB likelihood is well suited to model high dispersion data such
as RNA-seq from single-cell and spatial transcriptomics experi-
ments. Anscombe’s transformation does not improve the perform-
ance of the Gaussian likelihood model and typically makes it worse.

3.2 Assessment on tradeSeq cyclic time course data
The tradeSeq method uses spline-based generalized additive models
(GAMs) with a NB likelihood to identify genes significantly associ-
ated with changes in pseudotime (Van den Berge et al., 2020) and/or
different lineages. The method was benchmarked against a number
of other methods for identifying dynamic genes, including the
GPfates method based on a GP regression, and was shown to

(a) low counts/low dispersion (b) low counts/high dispersion
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Fig. 2. ROC curves for a one-sample test using a GP to identify dynamic time-series

from synthetic counts data. Negative binomial, Gaussian and Poisson likelihoods

are used to identify differentially expressed genes with a one-sample test. Genes are

ranked by likelihood ratio between a dynamic and constant model. Results are

shown for (a) low counts/low dispersion, (b) low counts/high dispersion, (c) high

counts/low dispersion and (d) high counts/high dispersion datasets
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perform better than other methods on benchmark data. Tradeseq
requires cell weight information to assign each cell to a lineage
where packages such as slingshot (Street et al., 2018) or GPfates
(Lönnberg et al., 2017) can be used to assign cell weight
information.

We compare the performance of GPcounts running a one-sample
test with NB likelihood and Gaussian likelihood against the per-
formance of tradeSeq using an association test on ten cyclic single-
cell simulation datasets from the tradeSeq benchmark. The datasets
were simulated using the dynverse toolbox (Saelens et al., 2019)
where the number of genes are between 312 and 444, number of
cells are 505 and 507 and the percentages of differentially expressed
genes are between 42% and 47%. In Figure 3a we compare the aver-
age performance of GPcounts and the performance of tradeSeq
using inferred pseudotime trajectories on the ten simulated datasets
from (Van den Berge et al., 2020). In Figure 3b we compare against
ground truth time trajectories on the same data. The results in
Figure 3a suggest that tradeSeq performs better than GPcounts.
However, when looking at specific examples we found that many
constant examples that were incorrectly classified as dynamic by
GPcounts appear to have dynamic profiles. Comparing these pseu-
dotime profiles with profiles against the ground truth time shows
that the dynamic structure is actually an artifact introduced by infer-
ring pseudotime (in this case using slingshot). Supplementary Figure
S2 in Supplementary Material shows an example of gene H1672
from dataset1 fitted using GPcounts with an NB likelihood where in
(a) the pseudotime is estimated using slingshot and in (b) the true
time is shown. Figure 3b shows that the average performance of
GPcounts (either with NB likelihood or Gaussian likelihood) is bet-
ter than using tradeSeq when using the ground truth time informa-
tion, and this remains the case for different numbers of knots
½3;5;10� (the number selected automatically by the package is 5).
Detailed performance on each dataset using pseudotime information
and using the true time information can be found in Supplementary
Material (Supplementary Figs S3 and S4).

For scRNA-seq data the number of cells can be very large and
computational efficiency becomes important. We benchmark the
computation time for a one-sample test with GPcounts on the tenth
synthetic cyclic dataset which has 312 genes and N¼507 cells. We
use the full GP and compare it with a more computationally efficient
sparse GP with different numbers of inducing points M, using the
M-DPP algorithm (Burt et al., 2020) to set the locations of inducing
points. We choose different percentages of N to set the number of
inducing points M. Our results in Figure 4 show that using sparse
version gives results highly correlated with the full version dataset
ranked by LLR while computation time reduces with M. Choosing
the default M ¼ 5%ðNÞ ¼ 25 inducing points decreases the compu-
tational time by �88% while obtaining a 96% Spearman correlation
score between the LLRs.

3.3 Modelling scRNA-seq pseudotime-series
We apply GPcounts on mouse pancreatic a cell data from scRNA-
seq experiments without UMI normalization (Qiu et al., 2017)
which has large numbers of zeros for some genes. We use the pseu-
dotime inference results from Qiu et al. (2017) which are based on
PCA. Figure 5 shows the inferred trajectory for two genes with
many zero count measurements: Fam184b with 86% zero counts
and Pde1a with 68% zero counts. From left to right, we show the
GP regression fit with Gaussian and NB likelihoods respectively. For
both genes, the Gaussian model is unable to effectively model the
high probability region at zero counts, due to the symmetric nature
of the distribution. In Supplementary Material, we run GPcounts
with ZINB likelihood and compare it to NB and Gaussian likeli-
hoods. Our results show that the ZINB model is a little better cali-
brated for Fam184b (Supplementary Fig. S9). However, the fits for
NB and ZINB are very similar for most genes (Supplementary Fig.
S10).

Qiu et al. (2017) identify 611 differentially expressed genes in
mouse pancreatic a cells using DESeq2 (Love et al., 2014) which
they applied to two distinctive clusters of cells along the pseudotime
dimension. Since DESeq2 also assumes an NB model, we examined
whether the results from GPcounts would be closer to DESeq2 than
to a Gaussian GP model. We ran DESeq2 with time as a covariate
and used the adjusted P-values as a score to label differentially
expressed genes. We then compared the performance of one-sample
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tests using the NB likelihood and Gaussian likelihood. We consider
different adjusted P-value thresholds to identify DE genes according
to DESeq2 and look at the concordance with using a GP with NB
and Gaussian likelihoods. Figure 6 shows precision–recall curves to
explore how similarly GPcounts performs compared to DESeq2. We
see that with the NB likelihood the genes obtained are very similar
to those found by DESeq2. With a Gaussian likelihood the GP iden-
tifies very similar genes among its top-ranked DE genes but has
much less concordance further down the list. This result is also
reflected in the higher rank correlation between the DESeq and NB
likelihood GP results than with the Gaussian likelihood GP (Fig. 7).
This suggests that the test statistic is more influenced by the form of
likelihood term rather than the form of regression model in this ex-
ample. However, for datasets with cells more evenly distributed
across pseudotime the form of the regression model plays a more im-
portant role (e.g. as in Section 3.2).

In Supplementary Material, we show results using the sparse ap-
proximation for more efficient computational inference and show
that the M-DPP algorithm for setting the inducing point locations
(Burt et al., 2020) provides much better performance on this dataset
than using k-means clustering.

3.4 Identification of spatially variable genes
We applied GPcounts to spatial transcriptomics sequencing counts
data from mouse olfactory bulb (Ståhl et al., 2016) consisting of
measurements of 16 218 genes at 262 spatial locations. We compare
the performance to SpatialDE which uses a GP with a Gaussian like-
lihood (Svensson et al., 2018) and we use as similar a set-up as pos-
sible in order to make the comparison fair. We filter out genes with
less than three total counts and spatial locations with less than ten
total counts and ended up with 14 859 genes across 260 spatial loca-
tions. To assess statistical significance we used the q-value method
(Storey and Tibshirani, 2003) to determine an FDR cut-off (0.05)
based on P-values assuming a v2-distribution of LLRs. We compare
our findings in Figure 8a, where GPcounts identified 1096 spatially
variable (SV) genes in total, whilst SpatialDE identified 67, with 63
of them overlapping between the two methods. It is worth pointing
out here that, in the current SpatialDE version, the log likelihood
statistic implemented in the code is incorrect, as the LLR rather than
twice the LLR is used in the test. Correcting this error leads to 345

SV genes being called at 5% FDR threshold. However, GPcounts
still identifies many more SV genes. We also compare with the
SPARK method (Sun et al., 2020) which is based on a GP with a
Poisson likelihood that models over-dispersion using a white noise
kernel. The SPARK and Trendsceek methods, which consider cali-
brated P-values under a permuted null, identified 772 and 0 SV
genes respectively (Sun et al., 2020). In Figure 8a we compare
SPARK to GPcounts and SpatialDE and we find that GPcounts iden-
tifies more SV genes at the same FDR level.

It is possible that the v2-distribution is not perfectly calibrated and
therefore we also implemented a permutation test approach where we
randomly rearrange spatial coordinates to calculate P-values based on
the permuted null. Under the permuted null, GPcounts indentified 1202
SV genes at the 5% FDR threshold, a much higher number than both
the SpatialDE and SPARK methods (Supplementary Fig. S13).

In Figure 8b we plot the GPcounts LLR versus SpatialDE LLR,
showing in quadrants the genes that are identified as SV by each
method. Genes Olfr635, Gna14, Taf7l and 4933405L10Rik were
only identified by SpatialDE as significant. However, these genes
were all extremely low expressed with three having the minimum
number of counts (three) after filtering, while two of those are
expressed in only one location (Supplementary Fig. S13c). Relative
expression profiles of four selected genes detected by GPcounts as
SV are illustrated in Figure 8c with their q-values. Their spatial pat-
terns match the associated profiles obtained with in-situ hybridiza-
tion in the Allen Brain Atlas (Fig. 8d).

Checking against ten biologicaly important marker genes,
known to be spatially expressed in the mitral cell layer (Ståhl et al.,
2016), GPcounts identified nine of those (Doc2g, Slc17a7, Reln,
Cdhr1, Sv2b, Shisa3, Plcxd2, Nmb, Rcan2) while SpatialDE identi-
fied three (Doc2g, Cdhr1, Slc17a7) and SPARK identified eight (the
same as GPcounts but missing Sv2b). Supplementary Figure S14a
shows relative expression profiles of three selected marker genes
(Fabp7, Rbfox3 and Eomes) and one house keeping gene (Actb)
detected by GPcounts and SPARK as SV. None of these four genes is
identified as SV by SpatialDE. Their associated profiles obtained
with in-situ hybridization in the Allen Brain Atlas are shown in
Supplementary Figure S14b.

3.5 Identifying gene-specific branching locations
We used scRNA-seq of haematopoietic stem cells (HSCs) from
mouse (Paul et al., 2015) to demonstrate the identification of
branching locations for individual genes. The data contain cells that
are differentiated into myeloid and erythroid precursor cell types.
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Fig. 6. Precision-recall curves for GPcounts one-sample test with (a) Gaussian likeli-

hood and (b) NB likelihood assuming ground truth from DESeq2 with different

adjusted P-value thresholds. Mouse pancreatic a-cell scRNA-seq data from Qiu

et al. (2017)
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Fig. 7. Spearman correlation scores for different percentages of the mouse pancreat-

ic a-cell scRNA-seq data (Qiu et al., 2017) ranked by DESeq2 adjusted P-value in

(a) and (b) and by NB GP LLR in (c). We show (a) Gaussian likelihood GP versus
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Fig. 8. (a) Venn diagram shows the overlap between GPcounts’s, SpatialDE’s and

SPARK’s spatially variable (SV) genes with the green area showing the four SV genes

that are only identified by SpatialDE. (b) GPcounts’s LLR versus SpatialDE’s LLR.

The dashed horizontal and vertical lines correspond to 5% FDR threshold. (c)

Relative spatially resolved expression profiles for four selected SV genes, with their

q-value in the parenthesis. (d) In-situ hybridization images of the selected SV genes

in (c). The images are taken from Ståhl et al. (2016)
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Paul et al. (2015) analyzed changes in gene expression for myeloid
progenitors and created a reference compendium of marker genes
related to the development of erythrocytes and several other types of
leukocytes from myeloid progenitors. The Slingshot algorithm is
used to get trajectory-specific pseudotimes as well as assignment of
cells to different branches. After removing two small outlier cell
clusters related to the dendritic and eosinophyl cell types, Slingshot
infers two lineages for this dataset. These two outlier cell clusters do
not belong to any particular lineage and have previously been
excluded from trajectory inference and downstream analysis (Van
den Berge et al., 2020), which leaves us 2660 cells under
consideration.

Figure 9 shows examples of GPcounts model fits with associated
credible regions (upper sub-panels) as well as the posterior probabil-
ity distribution over branching time (bottom sub-panels) for an early
branching known bio-marker MPO (upper row) and for a late
branching gene LY6E (bottom row). Here, we have sub-sampled the
data and larger markers in Figure 9 represent the cells used in the in-
ference process. Figure 9a and c shows the results with a Gaussian
likelihood, equivalent to the model in Yang et al. (2016), while
Figure 9b and d show the results with the NB likelihood. In all cases,
the bottom sub-panels reflect the significant amount of uncertainty
associated with the identification of precise branching points. Both
models provide a reasonably similar posterior probability of the
branching time. However, looking at the credible region of the data
we find that the model with NB likelihood better models the data. In
the case of the Gaussian likelihood the credible regions are wide but
they still miss some points that have zero values. In the case of NB

likelihood the credible regions can adequately model the points hav-
ing zero values. Further example fits are shown in the accompanying
notebook.

It should be noted that trajectory-based inference can give differ-
ent results depending on the non-linear relationship between pseu-
dotime and real time, which can differ along each lineage. Time
warping methods can therefore be useful to obtain improved identi-
fication of branching trajectories (Alpert et al., 2018).

4 Conclusion

We have developed a GP regression method, GPcounts, implement-
ing a negative binomial (NB) likelihood in GP inference. This pro-
vides a useful tool for RNA-seq data from time-series, single-cell
and spatial transcriptomics experiments. Our results show that the
NB likelihood can provide a substantial improvement over a
Gaussian likelihood when modelling counts data. Our simulations
suggest that gains are largest when data are highly over-dispersed.
For lower dispersion data the performance of the Gaussian and NB
likelihood is similar. We find that the Poisson distribution likelihood
performs very poorly for highly expressed genes even for relatively
low dispersion. RNA-Seq data can exhibit substantial over-
dispersion, especially in the case of single-cell and spatial transcrip-
tomics, and therefore the NB likelihood can be expected to provide
a substantial benefit over the Poisson and Gaussian likelihood.

Regarding our different application examples, the analysis of
spatial transcriptomics data shows promising results. We found a
substantial difference using the NB likelihood compared to the
SpatialDE method that is based on a Gaussian likelihood GP. Using
a similar normalization and testing set-up, we found a much larger
set of spatially variable (SV) genes than SpatialDE. Similarly, we
found more SV genes than the over-dispersed Poisson method,
SPARK, which also uses GP inference but with differences in both
the modelling and inference set-up. When modelling the scRNA-Seq
data from Qiu et al. (2017) against pseudotime we found that the
NB GP identifies DE gene lists more similar to DESeq2 than to a
Gaussian GP. This suggests that the likelihood function plays a
more important role than the regression model in some problems,
emphasizing the importance of using an appropriate likelihood func-
tion. Finally, we applied a branching kernel to infer the initial point
when the two gene expression time profiles begin to diverge along a
pseudotime trajectory. For genes with strong branching evidence the
NB and Gaussian likelihood provided similar inference results in
this case.

To improve the practical performance of GPcounts, we imple-
ment a heuristic to detect locally optimal solutions and to detect nu-
merical instability. Since the naive GP scales cubically with number
of time points we improve the computational requirements through
a sparse inference algorithm from the GPflow library (De Matthews
et al., 2017) using the M-DPP algorithm for learning the inducing
points (Burt et al., 2020). Our implementation of GPcounts is flex-
ible and can easily be extended to work with any kernel or likeli-
hood compatible with the GPflow library. A natural next step
would be to better parallelize model fitting for each gene.
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