Bioinformatics, 37(21), 2021, 38053814

doi: 10.1093/bioinformatics/btab572

Advance Access Publication Date: 6 August 2021
Original Paper

Gene expression
Sparse least trimmed squares regression with

compositional covariates for high-dimensional data

Gianna Serafina Monti ® "* and Peter Filzmoser?

1Department of Economics, Management and Statistics, University of Milano-Bicocca, 20126 Milano, Italy and 2|nstitute of Statistics &
Mathematical Methods in Economics, Vienna University of Technology, 1040 Vienna, Austria

*To whom correspondence should be addressed.
Associate Editor: Pier Luigi Martelli

Received on January 29, 2021; revised on July 8, 2021; editorial decision on July 30, 2021; accepted on August 3, 2021

Abstract

Motivation: High-throughput sequencing technologies generate a huge amount of data, permitting the quantifica-
tion of microbiome compositions. The obtained data are essentially sparse compositional data vectors, namely
vectors of bacterial gene proportions which compose the microbiome. Subsequently, the need for statistical and
computational methods that consider the special nature of microbiome data has increased. A critical aspect in
microbiome research is to identify microbes associated with a clinical outcome. Another crucial aspect with high-
dimensional data is the detection of outlying observations, whose presence affects seriously the prediction
accuracy.

Results: In this article, we connect robustness and sparsity in the context of variable selection in regression with
compositional covariates with a continuous response. The compositional character of the covariates is taken into
account by a linear log-contrast model, and elastic-net regularization achieves sparsity in the regression coefficient
estimates. Robustness is obtained by performing trimming in the objective function of the estimator. A reweighting
step increases the efficiency of the estimator, and it also allows for diagnostics in terms of outlier identification. The
numerical performance of the proposed method is evaluated via simulation studies, and its usefulness is illustrated
by an application to a microbiome study with the aim to predict caffeine intake based on the human gut microbiome
composition.

Availability and implementation: The R-package ‘RobZS’ can be downloaded at https://github.com/giannamonti/
RobZS.

Contact: gianna.monti@unimib.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Human microbiome studies that make use of high-throughput tech-
nologies are a valuable source of information for the human health.
The human microbiome, constituted by all microorganisms in and
on the human body, is associated to health and has an impact on
risk of disease. A microbiome dataset, derived from 16S rRNA
sequencing, consists in the collection of abundances of microbial op-
erational taxonomic units (OTUs), or bacterial taxa. Such count
data are usually normalized by the total abundance of a sample to
relative abundances, to account for differences in sequencing depths.
In that case, the values of each observation would sum up to 1 or
100%, if reported in proportions or percentages, and many statistic-
al methods such as regression on the normalized data are no longer
applicable because of data singularity.

In the literature, microbiome data have been considered and suc-
cessfully treated as compositional data (CODA) (Li, 2015; Gloor

et al., 2016; Quinn et al., 2018). CODA convey relative information
in a sense that the (log-)ratios of the values between the variables are
of major interest for the analysis (Filzmoser et al., 2018). This leads
to many appealing properties, one of them being scale invariance:
the ratios between the original or between the relative abundances
are identical, and thus the statistical analysis does not depend on
how the data are normalized, or if they are normalized at all. The
lack of scale invariance is also a major argument against applying
standard regression models on the original data, even if the data
have not been normalized to constant sum.

In many studies, the microbiome composition is used as covari-
ate in regression models to analyze its association with a clinical out-
come. This composition has special features: it consists of many
variables and thus forms high-dimensional data. Many abundances
are reported as zero, and thus we can talk about sparse data.
Typically, only few variables from the composition are important to
model the outcome, and most of them are irrelevant for the model.
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Thus, an appropriate variable selection is desirable and necessary. A
further challenge are data outliers, i.e. observations which deviate
from the majority of the samples. In the ideal case, outlying observa-
tions should receive smaller weight in the regression problem in
order to reduce their influence on the estimated regression coeffi-
cients. Robust regression methods take care of an appropriate
weighting scheme (Maronna et al., 2006).

In this article, we propose a unified framework capable to inte-
grate robust techniques in the context of the variable selection and
coefficient estimation problem in high-dimensional regression with
compositional covariates, leading to parsimonious inferential solu-
tions and models which are easier to interpret.

Several methods to perform regression with compositional ex-
ploratory variables have been presented in the literature: for a mix-
ture experiment, Aitchison and Bacon-Shone (1984) introduced a
CODA regression model based on linear log-contrasts, namely a lin-
ear combination of logratios between compositional parts.

In the high-dimensional setting, Lin et al. (2014) considered vari-
able selection and estimation for the log-contrast model. They pro-
posed an ¢; regularization method for the linear log-contrast
regression model with a linear constraint on the coefficients. Their
constrained Lasso is also known as ZeroSum regression, it incorpo-
rates the compositional nature of the data into the model, and works
well in the high-dimensional setting where the number of available
regressors p is much larger than the number of observations 7. Shi
et al. (2016) extended the linear log-contrast regression model by
imposing a set of multiple linear constraints on the coefficients in
order to achieve subcompositional coherence of the results obtained
at different taxonomic ranks which the composition of taxa belongs
to. Altenbuchinger et al. (2017) imposed an elastic-net penalty to
the ZeroSum regression, developing a coordinate descent algorithm
for the estimation. This constrained regularized regression method
has been applied in case of compositional covariates, as well as ref-
erence point insensitive analyses involving any biological measure-
ment such as the human microbiome.

Bates and Tibshirani (2019) adapted Lasso for CODA, using the
logratios of all variable pairs of the components as predictors. They
proposed a two-step fitting procedure that combines a convex filter-
ing step with a second non-convex pruning step, yielding highly
sparse solutions to face the very large dimensionality of the predictor
space.

Some penalized robust estimation methods have been recently
proposed in the literature. These include an MM-estimator with a
ridge penalty (Maronna, 2011), a sparse least trimmed squares
(LTSs) regression estimator with a lasso penalty (Alfons et al.,
2013), and with elastic-net penalty (Kurnaz et al., 2018), a regular-
ized S-estimator with an elastic-net penalty (Freue et al., 2019) and
bridge MM-estimators (Smucler and Yohai, 2017), among others.

In this article, we propose a robust version of the penalized
ZeroSum regression. Robustness is achieved by trimming large resid-
uals, motivated by the fact that outliers in the data affect the inferen-
tial results, and also small misspecifications of the underlying
parametric model can lead to poor prediction accuracy (Huber and
Ronchetti, 2009; Maronna et al., 2006).

The outline of the paper is as follows. Section 2 reviews the
regression models with compositional covariates, and presents the
Robust ZeroSum regression estimator. Simulation experiments
are conducted in Section 3 to evaluate the numerical performance of
the proposed method. Section 4 presents an application to gut
microbiome data, and the final Section 5 concludes.

2 Regression models for CODA

2.1 Linear log-contrast model

In the seminal work of Aitchison and Bacon-Shone (1984), a regres-
sion model for CODA was introduced, which is known as linear
log-contrast model. It is related to the design of experiments with
mixtures, called simplex designs. Consider a matrix X of compos-
itional covariates, X = [x;]i <;<,1<j<p W.l.0.g. expressed with
constant sum 1. Thus, each row lies in the unit simplex

8" = {x;j : x; > Oand ;;1 x;7 = 1}. The log-transformed values of
X are collected in the matrix Z = [z;; = log(xj})]{ < ;< 1 <j<p € R™?.
A log-contrast is defined, in a symmetric form, as a linear combin-
ation of the columns of Z with coefficients = (f,... 7[)’p)T,
thus Zp, with the constraint Zle B; =0 (Lin et al., 2014). The lin-
ear log-contrast model considers a response with values
y=(y1,...,ys)7, and the corresponding regression model with the
log-contrast as covariates is

P
y=ZB+e sty p=0, (1)

i=1

where ¢ is the error component, usually assumed normally distrib-
uted around zero, with constant variance ¢. The parameters are
usually estimated by the least-squares (LS) method considering the
constraint on the parameters. Note that the formulation (1) does not
include an intercept in the model, as it can be omitted by centering
all the predictor variables and the response.

In the high-dimensional setting, when the sample size 7 is lower
than the number of predictors p, and the ordinary LSs method is not
applicable, Lin et al. (2014) proposed a variable selection procedure
and estimation for a sparse log-contrast model,

p
/f|1>, st f=0, (2)

=1

" (1 5
ps/)a‘rse = argmin ; Hy - Zﬂ“z +4

BeRP

where 4 > 0, is the regularization parameter, which calibrates the
sparseness, and || - ||, and || - ||; indicate the ¢, and ¢; norm, respect-
ively. Depending on the choice of 4, several or many of the compo-
nents of B are zero, and thus this sparse regression coefficient vector
corresponds to a variable selection in the model. The authors intro-
duced a coordinate descent method of multipliers to estimate the
model parameters. By virtue of the zero-sum constraint, the pro-
posed estimator fulfills desirable compositional properties such as
scale invariance, i.e. the regression coefficients are independent of
an arbitrary scaling of the basis count from which a composition is
obtained, permutation invariance and selection invariance. The se-
lection invariance property asserts that the estimator is unchanged if
one knew in advance which components would be estimated as zero
and applied the procedure only to the components associated to
non-zero coefficients (Lin et al., 2014).

Altenbuchinger et al. (2017) combined the variable selection
problem and estimation for model (1) with the elastic-net regulariza-
tion (Zou and Hastie, 2005),

»
ﬂZeroSum = argmin <% Hy - Zﬂ“% + ZPA(ﬁ))v st Zﬁ/ = 01 (3)

BeRP =1
where P, (B) = (of|Bl|; + 132 [|BII3) is the elastic-net penalty, o € [0, 1]
is a tuning parameter which balances the ¢, and ¢; penalty. Model
(3) is known as ZeroSum elastic-net estimator, to emphasize the
constraint on the regression coefficients in conjunction with the
elastic-net regularization. To fit the model (3), a coordinate descent-
based algorithm (Friedman ef al., 2007) was implemented. Setting
o=1, model (3) is the Lasso model, and for « =0 it is Ridge regres-
sion (Tibshirani, 1994).

2.2 Robust and sparse regression models for CODA
It is well known that the ordinary LSs estimator for linear regression
is very sensitive to the presence of outliers in the space spanned by
the dependent variable, namely vertical outliers, and in the space
spanned by the regressors, namely leverage points. To overcome this
issue, several robust alternatives were proposed in the literature;
among others, we focus here on Rousseeuw’s LTS estimator
(Rousseeuw, 1984).

Considering a regression of the response y on the design matrix
X e R, i.e. y=XB +¢&, where = (B,... ,ﬁp)T € RP. For every
B € RP we denote the corresponding residuals by 7;(f) =yi — x|
B, (i=1,...,n), where x; = (xj1,...,%j,) . Denote the ordered
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squared residuals as r(z,l) <...< r(zn>, then the LTS estimator is
obtained as

b
Burs = argmin | 3 7 (/s)>, )
BeRP =1
where b may lie between 7/2 and n. The specific choice of b depends
on the desired properties of the resulting estimator: a smaller value
leads to more robustness, but to less efficiency, and vice versa.
Minimizing (4) is equivalent to finding the subset of size » with the
smallest LSs objective function. As the number of observations and
covariates increases, the search of LTS estimates in (4) becomes
computationally more and more expensive, and thus a fast-LTS al-
gorithm (Rousseeuw and Van Driessen, 2006) was proposed. The
basic idea of this algorithm consists in the concentration-step (C-
step), in which the most promising subsets of size b are used to find
a local optimum. These C-steps can be repeated a specified number

of times, or iterated until convergence.

Alfons et al. (2013) proposed an extension of the fast-LTS algo-
rithm for sparse data by adding an ¢; penalty on the LTS coefficient
estimates, leading to the sparse LTS estimator

B |1>7 (%)

for b < n and the tuning parameter 4 > 0. Sparse LTS regression is
equivalent to detecting the subset of » observations whose Lasso fit
leads to the smallest penalized sum of squared residuals. The sparse
LTS estimator can be interpreted as a trimmed version of the Lasso.
Due to the ¢; penalty, some of the estimated regression coefficients
are exactly zero, performing variable selection. Since potential out-
liers are trimmed in the objective function, the sparse LTS estimator
is robust against vertical outliers, and leverage points.

Kurnaz et al. (2018) extended the work of Alfons et al. (2013)
by substituting the ¢; penalization in (5) with an elastic-net (EN)
penalty. They proposed the trimmed (EN)LTS estimator, defined by

b
Bsi s = argmin (Z 7(2,-)([3) +hi
i=1

BeRP

f’(EN)LTS = argmin argmin (Z (yi —x] B)* + hiPa(ﬁ)) , (6)

BeRP HCc{1,...,n}: ieH
H

where P,(p) is the elastic-net penalty as in (3), H is an outlier-free
subset of the set of all indexes {1,2,...,n}, and |H| denotes the car-
dinality of the set H. They used an analogue of the iterative fast-LTS
algorithm along with a ‘warm start’ strategy to obtain the optimal
choice of the tuning parameters o and A in (6).

Our study extends the trimmed (EN)LTS estimator to a con-
strained parameter space, to convey the zero-sum constraint typical
for compositional covariates. We call our estimator the Robust
ZeroSum (RobZS) estimator. The interesting aspect of RobZS is the
combination of the zero-sum constraint of the regression coeffi-
cients, with the elastic-net regularization in a robust way.

The algorithm to find the solution of RobZS is detailed in
Section 2.3. The selection of the tuning parameters « and 7 will be
discussed in Supplementary Section S1 of Supplementary Material,
and an extensive simulation study, reported in Section 3, demon-
strates the robustness of the estimator in presence of data outliers.

2.3 Algorithm
A preprocessing data step is required: the response variable and the
compositional covariates are robustly centered by the median.

Let R(H, B) the objective function of the RobZS regression, for
a fixed combination of the tuning parameters « and A, based on a
subsample of observations from the index set H C {1,...,n} with
Hl=h < n,

p

RH,B) = (yi—# B> +hiP(B), st Y B;=0,  (7)

icH =1

where P,(B) is the elastic-net penalty as in (3). For each subsample
given by the set H we can obtain B as

P

By = argmin R(H, p), st Zﬁi =0.
pezp =1
Let Hope the optimal subset Hop =
argmin py ,....n): R(H, By), that is the optimal subset of b <

[H| =h
n observations which lead to the smallest penalized residual sum of
squares, where the zero-sum constraint needs to be preserved, thus
the optimal solution is

Bop = argmin (8)
perp R(Hopt B)-

The optimal subset H,p, is obtained using an analogue of the
fast-LTS algorithm, based on iterated C-steps on diverse initial sub-
sets. The C-step at iteration k consists of computing the elastic-net
solution, that preserves the zero-sum constraint, based on the cur-
rent subset H,, with |H,| = h, and constructing the next subset
H,.1 from the observations corresponding to the / smallest squared
residuals. Let H, denote a certain subsample derived at iteration k
and let ffHA be the coefficients of the corresponding ZeroSum fit,
see model (3). After computing the squared residuals
r%x =(yi — ziTﬁHh)z, for i=1,...,n, the subsample H,.; for iter-
ation x + 1 is defined as the set of indices corresponding to the 5
smallest squared residuals at the previous iteration x. Let By, de-
note the coefficients of the ZeroSum fit based on the subset H,., 1. It
is straightforward to derive that

R(Hx+l7ﬁx+l) < R(Hrﬁrlrﬂ:c) < R(Hmﬁx)'

We can see that the C-steps result in a decrease of the objective
function, and that the algorithm iteratively converges to a local opti-
mum in a finite number of steps. In order to increase the chance to
approximate the global optimum, a large number of random initial
subsets Hy of size b for any sequence of C-steps should be used.
Each initial subset Hy is obtained through a search with elemental
subsets of size 3.

For a fixed combination of the tuning parameters A > 0 and
a € [0,1], the implemented algorithm, which is similar to the fast-
LTS, is as follows:

1. Draw s = 500 random initial elemental subsamples H of size 3
and let B 1 be the corresponding estimated coefficients.

2. For all s subsets, compute the squared residuals for all 7 observa-
tions 72, = (y; — ZITﬁHfI)Z, for i=1,...,n, and consider the
indexes of the smallest » of them: {7%1)‘5, . ”(2k>,s}’ as starting
points to compute only two C-steps.

3. Retain only s; = 10 subsets of size b with the smallest objective
function (7) and for each subsample perform C-steps until con-
vergence. The resulting best subset corresponds to the one with
the smallest value of the objective function.

The choice of the parameters for the algorithm has been dis-
cussed in literature (Alfons et al., 2013; Kurnaz et al., 2018;
Rousseeuw and Van Driessen, 2006). For example, a large number
for s increases the likelihood to approximate the global optimum,
and a small number s; decreases the computation time.

To reduce the computational cost of this 3-step sequential al-
gorithm, which ideally should be computed for each possible
combination of the tuning parameters, we considered a ‘warm-
start’ strategy (Friedman et al., 2010). The idea is that for a par-
ticular combination of « and A, the resulting best h-size subset
from step 3 might also be an appropriate subset for a combination
in the neighborhood of this & and/or A, and thus step 1 can be
omitted.
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To select the optimal combination (tlop,Aope) Of the tuning
parameters o € [0,1] and 4 € [¢ - AMax, AMax], With ¢ > 0, leading to
the optimal subset H,, a repeated K-fold CV procedure (Hastie
et al., 2001) applied on those best h-size subsets, on a two-
dimensional surface is adopted. (Details are reported in
Supplementary Section S1 of Supplementary Material).

Furthermore, we apply a reweighting step, that downweights
outliers detected by the solution ﬁopt, to increase the efficiency of the
proposed estimator. We consider outliers as observations with
standardized residuals larger than a certain quantile of the standard
normal distribution. Since the RobZS estimator is biased due to
regularization, it is necessary to center the residuals. Denote 7 as
the standardized residuals, where the residual scale is derived from
the b observations in the final subset. Then the binary weights are
defined by

D RN SUC T
w,{ if 1] > i=1,...,n (9)

where @ is the cumulative distribution function of the standard
normal distribution. The typical choice for § is 0.0125, so that 2.5%
of the observations are expected to be flagged as outliers in the nor-
mal model.

Finally, the RobZS estimator is defined as

n ~ p
Brobzs = argmin (Zw,-(yz‘ — 2/ B + my P, (l’)>7 st Zﬁi =0,

BERP i=1

(10)

n

where 7,, = Y~ w; is the sum of weights, oy, is the optimal param-
eter obtaineddonsidering the optimal subset H,, whereas the tun-
ing parameter 4 is obtained by a 5-fold cross-validation (CV)
procedure. Note that it is necessary to update the parameter A4,
because 7, > b, the initial conservative guess of outliers in the data,
and thus the penalty can act moderately in a different way than for
(8).

This algorithm to compute RobZS estimator is implemented in
the software environment R. The source code files are hosted in the
Github repository of the first author (https://github.com/gianna
monti/RobZS).

Estimation of an intercept. Simulation experiments have shown
that data preprocessing by robustly centering the response and the
covariates by the median, and by applying the model without inter-
cept does not yield the best results. An improvement is possible by
additionally centering and scaling (with arithmetic means and em-
pirical standard deviations) the input data for the ZeroSum elastic-
net estimator. This has been done in all steps of the previously out-
lined algorithm where this estimator is involved. An exception is the
repeated K-fold CV procedure to determine the tuning parameters,
where additional centering and scaling of folds would lead to biased
results. .

Given the optimal RobZS solution fg,,zs on the robustly cen-
tered data, we can recover the estimate of the intercept f3, by simply

computing o =y — > f/B,’Robzs, where y and {x;}} are the original

medians. This intercé};% is added to the intercept which results from
classically centering and scaling the response and the explanatory
variables to compute the final RobZS estimator in (10).

Debiasing strategies. RobZS suffers from a bias due to double
penalization resulting from the elastic-net penalty. To overcome this
shortcoming we suggest three debiasing strategies: a rescaled RobZS
solution, following the approach of Zou and Hastie (2005), a
relaxed (Meinshausen, 2007) and a hybrid RobZS. Let By.yzs the
RobZS estimate of p € RP, given the couple of estimated tuning
parameters (0op, /), the rescaled RobZS solution is defined as

. 7 .
Broszs(rescaled) = (145 (1= topBrapzs: (1)

This simple way of rescaling mitigates the effect of shrinkage, it
leads to an estimator with less bias, at the price of more variance. A

valid alternative of rescaling is a relaxed RobZS, which consists in a
two-step procedure. Firstly, RobZS is applied to identify the set of
non-zero coefficients, say A%P“;V, then RobZS is performed again on
the active predictors selected in the first step Z Ao and fixing

o = dopr. The active set of predictors A, 5 presumably does not in-

op
clude ‘noise’ variables, and collects variables that are effective com-
petitors in being part of the model, thus the shrinkage in the second
step is less marked. We considered also a hybrid RobZS solution, a
two-step procedure where, in the first stage, RobZS is applied to
perform variable selection and in the second stage, a RobZS with a
Lasso penalty (x=1) is performed again on the predictors selected
in the first stage to reduce the excessive number of false positives
(see Tibshirani, 2011, Peter Bithlmann’s comments). In all cases the
intercept should be re-estimated. The effect of these debiasing strat-
egies is reported in Supplementary Section S2.2 of Supplementary
Material. All other results refer to the direct RobZS solution.

3 Simulation

The aim of this section is to compare the performance of the RobZS
estimator to the competing estimators by means of a Monte Carlo
study. We make a comparison with the Lasso (the regular least abso-
lute shrinkage and selection operator) (Tibshirani, 1994), the
ZeroSum (ZS) estimator (Altenbuchinger ez al., 2017), the sparse
LTS estimator (SLTS) of Alfons et al. (2013) and the robust
EN(LTS) estimator (Kurnaz et al., 2018), denoted by RobL in the
following. We also provide a comparison with the algorithm of
Bates and Tibshirani (2019), here abbreviated by “ZS (B&T)’. In
their log-ratio Lasso estimator they propose a fast approximate al-
gorithm which is used here for comparison. Note that this algorithm
does not return an optimized value of the tuning parameter 4, and
thus we cannot report loss values. In order to compare with the
Lasso solution, we have set the parameter « equal to 1 for the meth-
ods involving elastic-net penalties.

3.1 Sampling schemes

We generated the covariate data, corresponding to the relative
bacterial abundances in a microbiome analysis, following Lin
et al. (2014). We first generated an nxp data matrix W=
(il <i<n1<j<p from a multivariate normal distribution N, (0, X),
and then obtained the design matrix X = [x;]i <;<,.1<;<, Dy the
transformation

P
xij = exp(wy)/ > exp (wy),

k=1

subsequently each row is a random sample from a logistic normal
distribution (Aitchison and Shen, 1980). The correlation structure of
the predictors is defined by X = [Xj], i, = Pl with p=0.2 or
0.5, to consider different levels of correlation. To reflect the fact
that the components of a composition in metagenomic data often
differ by orders of magnitude, the components of 0 = (04,..., 9p)T
are defined as 6; = log(0.5p), forj =1,...,5, and 6; = 0 otherwise.

The two robust estimators are calculated taking the subset size
b =|3(n+ 1)/4] for an easy comparison. This means that #/4 is an
initial guess of the maximal proportion of outliers in the data. For
each replication, we choose the optimal tuning parameter Ao as
described in Supplementary Section S1 of Supplementary Material,
with a repeated 5-fold CV procedure and a suitable sequence of 41
values between & - Arax, With &€ > 0 and Anay, Where Jyay is chosen
in order to get full sparsity in the coefficient vector.

The values of the response were generated according to model
(1), with coefficient vector B=B)i<i<p with
ﬁl = 17 ﬁl = _087 ﬁS = 067 ﬁé = _157 ﬁ7 = —05, ﬁS =12 and
B;=0forje{l,...,p}\{1,2,3,6,7,8}, and ¢ = 0.5, so that three
of the six non-zero coefficients were among the five major compo-
nents and the rest were among the minor components.

Different sample size/dimension combinations (1, p) = (50, 30),
(100, 200) and (100, 1000) are considered, thus a low-high-
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dimensional setting (7>p), moderate-high-dimensional setting
(n<p), and high-dimensional setting (7 < p), and the simulations
are repeated 100 times for each setting.

For each of the three simulation settings we applied the follow-
ing contamination schemes:

* Scenario A. (Clean) No contamination.

* Scenario B. (Vert) Vertical outliers: we add to the first y% (with
y = 10 or 20) of the observations of the response variable a ran-
dom error term coming from a normal distributions N(10, 1).

* Scenario C. (Both) Outliers in both the response and the predic-
tors: this is a more extreme situation in which we considered ver-
tical outliers but also leverage points. Vertical outliers are
generated adding to the first y% (with y = 10 or 20) of the obser-
vations of the response variable a random error term coming
from a normal distributions N(20, 1). To get leverage points we
replace the first % (with y = 10 or 20) of the observations of the
block of informative variables by values coming from a p-dimen-
sional Logistic-Normal distribution with mean vector
(50,...,50)T and a correlation equal to 0.9 for each pair of vari-
able components.

We do not consider a scenario with exclusively leverage points,
as the resulting contaminated design matrix X is constructed to have
row sums of 1, consequently the effect of leverage points is by con-
struction always limited.

We present here the simulation results for y =10%. The conclu-
sions that can be drawn for y=20% follow the same tendency, and
the related simulation results are reported in Supplementary Section
S2.1 of Supplementary Material for the sake of completeness.

3.2 Performance measures

To evaluate the prediction performance of the proposed sparse
method in comparison to the other models we use the prediction
error (PE) and a trimmed prediction error. For this purpose, two in-
dependent test samples, a clean and a contaminated one, of size #
for each contamination scheme were generated in each simulation
run. The prediction error is computed as

PE= |y - Z' B3, (12
where y* and Z* denote the response vector and the design matrix of
the test set data, respectively, and B is the parameter estimate
derived from the training data. The trimmed prediction error is the
trimmed version of the measure defined in (12). In the simulation
we used a trimming level equal to 0.1.

Concerning sparsity, the estimated models are evaluated by the
number of false positives (FP) and the number of false negatives
(FN), defined as

FP(B) =i € {1.....p} : B; #0nf; =0 13)
where positives and negatives refer to non-zero and zero coefficients,
respectively. .

The estimation accuracy is assessed by the £, losses || — |,
with g=1, 2 and cc. The lower values of these criteria are, the bet-
ter the models perform.

3.3 Simulation results

Tables 1-3 report averages (‘mean’) and standard deviations (‘SD’)
of the performance measures defined in the previous section over all
100 simulation runs, for each method and for the different contam-
ination schemes. The prediction error is computed considering the
clean test set, while the trimming prediction error refers to a test set
generated according to the same structure as the training set.
Table 4 reports the comparison results of selective performance, FP

and FN. The results presented refer to a parameter configuration
with p =0.2, for a contamination level of 10%, and for the low
(Table 1), moderate (Table 2) and high-dimensional data configur-
ation (Table 3).

In Scenario (A)—no outliers (Clean)—ZS and ZS (B&T) show
the best performance in terms of the mean prediction error. Of
course, the Lasso estimator (and its robust version), as well as the
SLTS estimator, only perform variable selection, but they do not ful-
fill the condition that the sum of the estimated regression coeffi-
cients should be zero, missing the desirable properties of CODA
analysis mentioned in Section 2, and these results are reported here
only for benchmarking purposes. The algorithm of Bates and
Tibshirani (2019), ZS (B&T), slightly improves the ZS prediction
error results. A big difference is the excellent performance for the
false positives (FP), but a (much) poorer performance for the false
negatives (FN), see Table 4; the latter might be more important in
applications.

All robust methods lose efficiency which is reflected by a some-
what higher prediction error, and the gap to the non-robust estima-
tors is increasing in higher dimension. However, this gap is smaller
for the mean 10% trimmed PE, which means that although no out-
liers have been generated, there are test set observations which are
clearly deviating from the data majority. All methods perform well
in terms of the average number of false positives and false negatives.
In high dimension, the robust methods produce a higher number of
FN. The estimation accuracy through ¢, losses is quite comparable
for all methods, but the values increase for the robust methods with
increasing dimensionality.

The second scenario (B)—outliers in the response, or vertical
outliers (Vert)—shows quite different results: the Lasso and
ZeroSum estimators are strongly influenced by the outliers. The pre-
diction errors increased dramatically, and the same is true for the ¢,
losses. The reason for that can be seen in the high number of FN (re-
member that 6 non-zero coefficients have been generated). The ro-
bust estimators achieve similar results as in the case of non-
contaminated data. RobZS shows an excellent behavior, and it is
the clear winner especially in the high-dimensional situation. Since
the non-trimmed and the trimmed prediction errors are very similar
for the robust estimators, they are able to correctly identify the
model and thus the generated outliers. The variable selection per-
formance of the proposed estimator is comparable to that of SLTS,
but it tends to select fewer FN at the cost of slightly increased FP.
We note that the FN have a substantially higher negative effect on
the prediction error than FP, as important variables are incorrectly
ignored.

In the third scenario (C)—outliers in both response and the pre-
dictors (Both)—the RobZS estimators shows the best performance
in terms of prediction error, especially in the high-dimensional set-
ting. As observed before, RobZS leads to the smallest FN at the cost
of a higher FP.

An interesting observation is that, although SLTS shows in sev-
eral settings comparable performance to the RobZS estimator, it
performs poor in terms of the FN for the uncontaminated setting,
particularly in lower dimension.

Overall, we observe a general decrease in prediction accuracy for
the Lasso and the ZeroSum estimators in presence of vertical outliers
and with both vertical outliers and bad leverage points, underlining
the need for robust methods. Moreover, in the contaminated scen-
arios, the standard deviations of the RobZS estimator for the vari-
ous performance measures are among the smallest, suggesting
stability in the estimation and in the prediction performance in all
considered settings. These simulation results also enhance that the
RobZS estimator has an excellent prediction performance in conta-
minated scenarios.

Supplementary Section S2.1 of Supplementary Material reports
the analogue results for p = 0.5 and 10% contamination, as well as
results for a contamination level of 20%. These results follow the
same tendency and thus a change in the correlation structure of the
explanatory variables or an increase of the amount of outliers has
no essential impact on the overall conclusions. An exception is that
for 20% contamination, SLTS is very competitive to RobZS in
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Table 1. Means and standard deviations of various performance measures among different methods, based on 100 simulations

PE PE (10%) Loss 1 Loss 2 Loss co
Mean SD Mean SD Mean SD Mean SD Mean SD

(A) Lasso 0.415 0.104 0.300 0.080 1.282 0.445 0.177 0.101 0.227 0.074
7S 0.393 0.107 0.283 0.080 1.182 0.427 0.145 0.078 0.200 0.059
RobL 0.615 0.342 0.443 0.247 1.869 0.784 0.427 0.420 0.338 0.142
RobZS 1.031 0.487 0.739 0.364 3.115 1.077 0.841 0.555 0.449 0.171
SLTS 1.423 0.775 1.033 0.582 3.019 1.107 1.327 0.800 0.640 0.205
ZS (B&T) 0.476 0.237 0.347 0.187

(B) Lasso 5.212 2.192 5.850 2.433 5.725 1.987 4.190 1.765 1.143 0.254
ZS 5.129 2.219 5.716 2.405 5.555 1.805 3.936 1.720 1.084 0.258
RobL 1.156 0.954 1.318 1.104 2.623 1.429 1.020 1.095 0.506 0.276
RobZS 0.760 0.327 0.861 0.380 2.383 0.813 0.525 0.290 0.377 0.114
SLTS 0.932 0.475 1.057 0.551 2.257 0.827 0.759 0.476 0.497 0.153
ZS (B&T) 5.699 2.416 6.175 2.453

(C) Lasso 17.911 5.668 14.600 3.586 13.183 2.824 15.463 5.921 2.021 0.511
7S 17.115 6.136 14.300 3.889 12.818 2.833 14.435 5.325 1.941 0.392
RobL 0.822 0.604 0.927 0.684 2.304 1.158 0.650 0.629 0.414 0.177
RobZS 0.762 0.403 0.860 0.458 2.416 1.012 0.541 0.417 0.367 0.129
SLTS 0.931 0.489 1.050 0.564 2.294 0.839 0.749 0.487 0.490 0.174
ZS (B&T) 20.836 6.259 17.015 4.070

Note: Parameter configuration: (1, p)=(50, 30), p = 0.2. The best values (of “mean”) among the different methods are presented in bold.

PE, prediction error.

Table 2. Means and standard deviations of various performance measures among different methods, based on 100 simulations

PE PE (10%) Loss 1 Loss 2 Loss co
Mean SD Mean SD Mean SD Mean SD Mean SD

(A) Lasso 0.390 0.073 0.275 0.054 1.602 0.518 0.164 0.066 0.207 0.059
ZS 0.380 0.072 0.268 0.053 1.561 0.601 0.147 0.064 0.185 0.051
RobL 0.772 0.804 0.548 0.577 2.474 1.474 0.581 0.856 0.350 0.236
RobZS 1.179 0.483 0.836 0.353 3.582 0.875 1.031 0.517 0.521 0.146
SLTS 1.367 0.813 0.974 0.601 3.377 1.262 1.280 0.798 0.603 0.191
ZS (B&T) 0.377 0.176 0.267 0.129

(B) Lasso 4.549 1.637 4.999 1.660 6.468 2.662 3.609 1.197 1.000 0.195
ZS 4.366 1.366 4.827 1.417 6.202 1.952 3.443 1.017 0.975 0.210
RobL 1.514 0.957 1.680 1.044 3.700 1.671 1.395 1.017 0.600 0.253
RobZS 0.771 0.383 0.865 0.437 2.709 0.958 0.575 0.405 0.388 0.135
SLTS 0.790 0.398 0.885 0.451 2.380 0.853 0.609 0.416 0.417 0.130
ZS (B&T) 4.736 1.863 5.191 1.907

(C) Lasso 5.163 1.182 3.834 0.837 10.414 1.780 10.477 1.271 1.674 0.172
ZS 8.821 1.727 6.519 1.168 10.935 1.865 7.405 1.165 1.339 0.197
RobL 0.953 0.691 1.073 0.788 2.978 1.395 0.806 0.779 0.461 0.213
RobZS 0.672 0.318 0.752 0.357 2.526 0.936 0.480 0.377 0.346 0.116
SLTS 0.733 0.345 0.822 0.384 2.304 0.887 0.580 0.376 0.406 0.131
ZS (B&T) 12.928 3.297 9.247 2.243

Note: Parameter configuration: (1, p)=(100, 200, p = 0.2). The best values (of “mean”) among the different methods are presented in bold.

PE, prediction error.

scenario (B) in lower dimension, but this advantage disappears in
the high-dimensional setting.

3.4 Simulations with increasing proportion of zeros in

the covariates

We compare the predictive accuracy of the ZS and RobZS estima-
tors as a function of the proportion of zeros in the training and test
data, because this setting is relevant in various real data applica-
tions. We firstly generate the matrix of count data from which, after
normalization and logarithmic transform, we compute the response

vector y according to the linear model. Then we replace a fixed pro-
portion of the existing counts by 0 in a random uniform way, and
subsequently the zeros are replaced by values 0.5 before converting
the data to compositional form to allow the logarithmic transform-
ation. We use contamination setting (B) and increase the zero pro-
portion in the covariates from 0.1 to 0.8 in steps of 0.1. Note that
we only contaminated the training sample and not the test sample.
Figure 1 shows the resulting prediction error averaged over 100 rep-
lications for each fixed proportion of zeros (solid lines). The dashed
lines are the means plus/minus two times the standard errors from
the replications. The red lines are for ZS, the blue lines for RobZS.
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Table 3. Means and standard deviations of various performance measures among different methods, based on 100 simulations
PE PE (10%) Loss 1 Loss 2 Loss oo
Mean SD Mean SD Mean SD Mean SD Mean SD

(A) Lasso 0.500 0.117 0.352 0.084 2.280 0.618 0.293 0.111 0.284 0.073
ZS 0.480 0.103 0.339 0.074 2.150 0.603 0.259 0.101 0.261 0.067
RobL 3.354 1.890 2.368 1.343 5.633 1.845 3.356 1.894 0.934 0.369
RobZS 1.919 1.289 1.362 0.916 4.462 1.606 1.859 1.409 0.669 0.291
SLTS 2.730 1.088 1.928 0.771 5.573 1.274 2.712 1.032 0.873 0.192
ZS (B&T) 0.470 0.358 0.334 0.262

(B) Lasso 5.481 1.190 5.946 1.172 7.537 2.912 4.709 1.068 1.133 0.185
ZS 5.444 1.171 5.902 1.177 7.575 2.830 4.647 1.108 1.128 0.209
RobL 3.157 1.157 3.544 1.333 6.037 1.371 3.287 1.240 0.946 0.233
RobZS 1.513 1.013 1.701 1.143 3.999 1.408 1.434 1.156 0.591 0.252
SLTS 1.966 0.998 2.214 1.141 4.875 1.486 1.950 1.079 0.726 0.223
ZS (B&T) 5.827 2.178 6.337 2.287

(C) Lasso 2.996 0.722 2.324 0.580 8.105 1.175 6.224 0.643 1.258 0.120
ZS 6.356 1.105 4.655 0.900 9.787 1.461 5.477 0.862 1.135 0.166
RobL 2.843 1.527 3.162 1.712 5.552 1.594 2.911 1.438 0.892 0.260
RobZS 1.342 0.819 1.490 0.914 3.986 1.326 1.282 0.981 0.556 0.222
SLTS 1.818 0.877 2.026 0.960 4.604 1.386 1.833 0.910 0.707 0.197
ZS (B&T) 10.260 2.300 7.197 1.632

Note: Parameter configuration: (1,p) = (100,1000), p = 0.2. The best values (of “mean”) among the different methods are presented in bold.

PE, prediction error.

As expected, the performance of both estimators linearly reduces
as the proportion of zero counts in the covariates increases.
However RobZS shows the best overall behavior even when the pro-
portion of zero counts in the covariates is very high, as ZS is very
much affected by outliers.

3.5 Simulations with increasing outlier proportion
The simulations in this section investigate the behavior of the esti-
mators ZS and RobZS for increasing levels of contamination. We
use contamination setting (C) and increase the outlier proportion
from zero to 0.5 in steps of 0.02. In each step, 50 replications are
carried out, and the means plus/minus two standard errors of the
results are presented in Figure 2. The red lines are for ZS, the blue
lines for RobZS. The simulations are conducted for the parameters
n=>50, p=30 and p = 0.2. The results basically reveal that the
results for ZS get worse if the outlier proportion increases.
Particularly, FN quickly increases to a value of about 2, and thus 2
out of 6 active variables are (on average) not identified. RobZS
shows stable performance up to about 25% of contamination. This
is explained by the trimming proportion of the procedure, which we
set to 25% in all experiments. The evaluation with a 10% trimmed
prediction error (upper right plot) is clearly not appropriate in a set-
ting with high proportions of outliers. It is interesting that FN is
very stable (up to about 20% contamination), and that FP decreases
for an outlier proportion of up to 0.25. This means that the esti-
mated regression parameters get sparser with higher contamination,
and true noise variables are more accurately identified.
Supplementary Section S2.3 of Supplementary Material also con-
tains simulations studies which investigate the effect of varying
sparsity. A general conclusion from these results is that less sparsity
of the model reduces the advantage of the robust method. Or, in
other words, RobZS has much better performance than ZS in pres-
ence of outliers, and if the true underlying model is very sparse.
Finally, a further simulation study is presented in Supplementary
Section S2.4 of Supplementary Material which focuses on the use of
the elastic-net penalty (both Ridge and Lasso). The comparison of
ZS and RobZS reveals that RobZS tends to select on average a
much smaller value for the tuning parameter « than ZS, which
comes closer to a ridge penalty, and thus contains more variables in
the model. Consequently, FP is generally higher for RobZS com-
pared to ZS, but FN is considerably lower, even in the

uncontaminated case. As expected, the prediction error is much
smaller for the robust method in a contaminated scenario.

4 An application to human gut microbiome data

We applied the proposed RobZS model to a cross-sectional study of
the association between diet and gut microbiome composition (Wu
et al.,2011). In this study, fecal samples from 98 healthy individuals
were collected and the microbiome dataset was produced by high-
throughput sequencing of 16S rRNA, obtaining 6674 OTUs, the
normalized counts of clustered sequences that depict bacteria types.
We aim to predict caffeine intake, the continuous outcome of inter-
est, based on the OTU abundances (Jaquet et al., 2009; Xiao et al.,
2018). The microbiome dataset was previously preprocessed by
Xiao et al. (2018) removing rare OTUs with prevalence less than
10%. Due to the high proportion of zero counts, we further retained
OTUs that appeared in at least 25 samples, resulting in a matrix of
dimension 7 x p = 98 x 240. Additionally, we applied the quantile
transformation to the caffeine intake to fulfill the underlying as-
sumption of normality, as done in Xiao et al. (2018). Zero counts
were replaced by the maximum rounding error of 0.5 to allow for
the logarithmic transformation, which is a common practice in the
context of analyzing microbiome data (Aitchison, 1986, Section
11.5). Note that in CODA analysis there are more sophisticated
methods for zero replacement (Lubbe ez al., 2021), but since this is
not the focus of this paper, and because the proportion of zeros is
also quite high with 49%, we stick to this simple replacement
strategy.

For a fair investigation of the prediction performance of the four
sparse estimators, a 5-fold CV procedure was repeated 50 times,
resulting in 250 fitted models for each sparse regression method.
This is a common way used in machine learning to reduce the error
in the estimate of mean model performance. In the training set, the
parameter selection follows the one described in the simulation sec-
tion. Prediction error and trimmed prediction error were used to as-
sess the prediction accuracy of the different methods. Note that
instead of using a trimmed prediction error, one could also use other
robust error measures if the outlier proportion is unknown, such as
the robust 1 scale estimator of Maronna and Zamar (2002).

Figure 3 shows the boxplots of the CV PEs (left) and the 10%
trimmed CV PEs (right) over all replications for the estimators
Lasso, ZeroSum, RobL, RobZS and SLTS. The estimators RobZS
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Table 4. Comparison of selective performance among different methods, scenarios and parameters configuration

(n,p) Method Scenario
(A) (B) (€)
Mean SD Mean SD Mean SD
(50,30) FP Lasso 10.63 4.037 6.07 5.109 12.91 2.771
7S 10.37 4.012 6.19 4.896 12.35 2.672
RobL 10.81 4.282 9.28 5.121 10.71 4.728
RobZS 17.37 4.894 14.61 4.878 14.95 4.723
SLTS 7.63 2.581 7.38 2.662 8.24 2.523
ZS (B&T) 1.46 1.167 1.42 1.505 4.13 1.942
FN Lasso 0.00 0.000 2.84 1.680 2.20 1.326
7S 0.00 0.000 2.53 1.678 2.05 1.132
RobL 0.06 0.278 0.54 1.105 0.15 0.458
RobZS 0.10 0.414 0.04 0.197 0.02 0.141
SLTS 0.53 0.674 0.25 0.479 0.16 0.420
ZS (B&T) 0.05 0.219 3.47 1.226 3.66 0.987
(100, 200) FP Lasso 29.54 12.851 16.16 13.925 23.89 11.573
7S 29.60 13.999 16.19 12.054 30.37 8.684
RobL 31.27 13.111 23.27 12.984 27.34 13.192
RobZS 35.39 10.549 31.30 11.079 32.26 12.554
SLTS 22.10 6.505 20.87 5.417 20.23 5.683
ZS (B&T) 0.88 0.087 1.48 1.867 4.88 1.677
FN Lasso 0.00 0.000 2.67 1.303 0.51 0.577
7S 0.00 0.000 2.45 1.250 1.80 1.025
RobL 0.05 0.219 0.65 0.957 0.12 0.433
RobZS 0.13 0.418 0.05 0.261 0.04 0.243
SLTS 0.37 0.525 0.14 0.472 0.09 0.321
ZS (B&T) 0.01 0.100 3.66 1.066 3.51 1.068
(100, 1000) FP Lasso 47.28 18.593 21.28 21.592 28.29 14.163
7S 45.02 17.448 22.11 19.950 41.77 11.610
RobL 37.65 20.594 38.09 23.701 34.99 19.350
RobZS 42.10 17.210 39.91 16.076 43.74 14.912
SLTS 40.52 6.850 40.49 7.770 36.40 8.452
ZS (B&T) 1.11 1.230 1.77 1.958 4.78 1.962
FN Lasso 0.00 0.000 391 1.065 0.91 0.818
7S 0.00 0.000 3.52 1.275 2.08 0.849
RobL 2.33 1.798 2.28 1.371 1.90 1.453
RobZS 0.90 1.193 0.59 1.045 0.42 0.768
SLTS 1.76 1.026 0.94 0.993 1.04 0.777
ZS (B&T) 0.05 0.261 4.11 1.024 3.91 0.911

FP, number of false positives; FN, number of false negatives. The best values (of “mean”) among the different methods are presented in bold.
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Fig. 1. Prediction performance of the ZS (red) and RobZS (blue) estimators in scen-
ario (B) by increasing the proportions of zeros in training and test data from 0.1 to
0.8 in steps of 0.1. Parameter configuration: (a) 7= 50,p =30,p=0.2, (b)
n=100,p =200,p = 0.2, (c) n =100,p = 1000, p = 0.2. Shown are means (solid
lines) plus/minus two standard errors averaged over 100 replications for each fixed
proportions of zeros

and SLTS show somewhat smaller prediction errors, and SLTS
yields the smallest 10% trimmed PEs, at the cost of a larger variabil-
ity. It can thus be assumed that there is a certain effect of outliers
which influence the model estimation.

In order to investigate the impact of potential outliers in more
detail, we can apply an outlier analysis on the scaled residuals. For
each model fit within the CV scheme, the scale of the residuals for

the CV training data can be estimated. This is done with the classical
standard deviation; but for the robust fits we only include residuals
from observations with weight 1 in the reweighting step, see
Equation (9). Thus, outliers according to this weighting scheme will
not affect the estimation of the residual scale. Then the residuals
from the left-out folds are scaled with this estimator, and the CV
PEs now include only the observations where the scaled residuals
are within the interval [-2.5,2.5]. The results are shown in the box-
plots of the left panel of Figure 4, and in Figure 5. Figure 5 shows,
for each model and over all CV replications, the mean of the scaled
residuals for each observation. The residual scale was estimated
from the model fit, and the scaled residuals are computed from the
CV predictions. Since there are 50 CV replications, we can show the
averages over 50 scaled residuals for each observation and for each
estimator. The sorting of the observations on the horizontal axis is
according to the RobZS mean. With the cutoff values +2.5, shown
as dashed lines, we see that SLTS identifies a huge amount of out-
liers when compared to the other estimators, i.e. more than 74% of
the predicted values are flagged as anomalous, also their range is ex-
tremely large, suggesting that this model is inadequate for the ex-
ample data we are dealing with. Consequently, the smaller CV PE
without outliers for SLTS in the boxplot of Figure 4(left) is not
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Fig. 2. Performance of the ZS (red) and RobZS (blue) estimators by increasing the
contamination level, using scenario (C). Here, n= 50, p =30, p = 0.2; shown are
means (solid lines) plus/minus two standard errors derived from 50 simulation repli-
cations at each step

3
o 0000
o] 000

- |5 E
=B A= E
%IAEEIQ . EB

CV PE
L

CV PE (10%)
!

1.0

0.9

T T T T T T T T T T
lasso  ZS RoblL RobZS SLTS Lasso  ZS Robl RobZS SLTS

Fig. 3. Analysis of gut microbiome data. Boxplots of CV PEs (left) and 10%
trimmed CV PEs (right) over all replications for Lasso, ZeroSum, RobL, RobZS and
SLTS
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Fig. 4. Analysis of gut microbiome data. Left panel: Boxplot of CV PEs over all rep-
lications by Lasso, ZeroSum, RobL and RobZS. Only the observations whose corre-
sponding scaled residuals are within the interval [-2.5,2.5] were considered. Right
panel: Fitted versus measured values of the transformed caffeine intake. The green
points correspond to observations detected as outliers by the RobZS estimator

comparable with the others as it is based only on few observations.
RobZS instead identifies a more feasible number of outliers in the
predictions, namely less than 30%.

We can recognize that the RobZS estimator achieves the best
performance, outperforming the other methods by a large margin.
This is due to the robustness and precision of the RobZS estimator,
which allows for a reliable outlier diagnostics for the predictions.
This can also be seen in the right panel of Figure 4, where RobZS
was simply applied to the complete dataset. The plot shows the
measured versus fitted response variable, and the color corresponds
to the weights from Equation (9). The green points correspond to
observations detected as outliers by the RobZS estimator, namely
data with binary weight w; = 0. Based on the analysis in Figure 4
(right) we can also investigate which observations are potential (pre-
diction) outliers.

The 250 models for each method, resulting from the described
CV procedure, can be further analyzed for the variable selection per-
formance. Figure 6 shows on the vertical axis the proportion of
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Fig. 5. Analysis of gut microbiome data. Mean of the scaled CV prediction residuals
for each observation. The sorting of the observations on the x-axis is according to
the mean for RobZS
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Fig. 6. Analysis of gut microbiome data. Proportion of models (out of all 50 * 5)
containing at least the number of zeros shown on the horizontal axis over all CV
replications by Lasso, ZeroSum, RobL, RobZS and SLTS

models containing at least the number of zeros in the regression par-
ameter estimates indicated on the horizontal axis (in total 241 varia-
bles). A substantial proportion of models lead to a fully sparse
solution; for RobL we obtain in about 60% of the models full or al-
most full sparsity. In contrast, SLTS yields much less sparsity, and
the models are also very similar in terms of sparsity. RobZS seems
to be best tunable, as this method leads to higher sparsity, but the
proportion of fully sparse models is still the lowest.

Further investigations on application results are reported in
Supplementary Section S3 of Supplementary Material.

5 Conclusions

We have proposed the robust ZeroSum (RobZS) regression estima-
tor as a trimmed version of the ZeroSum (ZS) estimator, used in
high-dimensional settings with compositional covariates. This model
can be applied in microbiome analysis to identify bacterial taxa
associated with a continuous response. Like in Lasso or elastic-net
regression, the estimated regression coefficient vector is typically
sparse. Additionally, however, the non-zero coefficients sum up to
zero, and this constraint is appropriate for linear log-contrast mod-
els as they are used in the context of CODA analysis. In other words,
the estimator is appropriately performing variable selection among
compositional explanatory variables and allows for an interpret-
ation of those selected compositional parts.

The estimation procedure of the RobZS estimator is based on an
analogue of the fast-LTS algorithm in the context of robust regres-
sion. For the computation, a robust elastic-net regression procedure
has been adapted and implemented. The conducted simulation stud-
ies reveal that the RobZS estimator has similar performance as the
non-robust ZS estimator if there are no outliers, but in case of con-
tamination (vertical outliers, leverage points) the robust version
leads to a big advantage in terms of prediction error, precision of the
estimated regression coefficients and ability to correctly identify the
relevant variables (partly at the cost of a slightly increased false posi-
tive rate). Also when compared to other robust estimators such as
sparse LTS (Alfons et al., 2013) or elastic-net LTS (Kurnaz et al.,
2018), which however do not incorporate the compositional aspect
of the data, RobZS is superior according to the evaluation measures
in almost all settings. Simulations with zeros in the data, with
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varying sparsity and varying outlier proportions have further under-
lined the excellent performance of RobZS. The application to micro-
biome data has demonstrated that RobZS is capable to balance the
sparsity of the solution with proper prediction accuracy. A further
benefit is that outliers in the training data can be identified, but also
for new data it is possible to indicate outlyingness, thus values of the
explanatory variables or the response which do not match the train-
ing data.

In future work, this model will be extended to the generalized
linear models framework for high-dimensional compositional
covariates.
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