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Abstract

Motivation: Clinical trials are the essential stage of every drug development program for the treatment to become
available to patients. Despite the importance of well-structured clinical trial databases and their tremendous value
for drug discovery and development such instances are very rare. Presently large-scale information on clinical trials
is stored in clinical trial registers which are relatively structured, but the mappings to external databases of drugs
and diseases are increasingly lacking. The precise production of such links would enable us to interrogate richer
harmonized datasets for invaluable insights.

Results: We present a neural approach for medical concept normalization of diseases and drugs. Our two-stage
approach is based on Bidirectional Encoder Representations from Transformers (BERT). In the training stage, we
optimize the relative similarity of mentions and concept names from a terminology via triplet loss. In the inference
stage, we obtain the closest concept name representation in a common embedding space to a given mention
representation. We performed a set of experiments on a dataset of abstracts and a real-world dataset of trial
records with interventions and conditions mapped to drug and disease terminologies. The latter includes mentions
associated with one or more concepts (in-KB) or zero (out-of-KB, nil prediction). Experiments show that our
approach significantly outperforms baseline and state-of-the-art architectures. Moreover, we demonstrate that our
approach is effective in knowledge transfer from the scientific literature to clinical trial data.

Availability and implementation: We make code and data freely available at https://github.com/insilicomedicine/
DILBERT.

Contact: elena@insilicomedicine.com or kudrin@insilicomedicine.com

1 Introduction

The emerging use of neural network architectures in early-stage
drug development has recently resulted in several breakthroughs.
Later stages of drug development are significantly less amenable to
innovation due to the immense infrastructure allocated to the exist-
ing establishment of clinical trials. The clinical development of the
drug is a long and costly process that typically requires several years
and a billion-dollar budget to progress the drug from phase 1 clinical
trials to the patients (Dowden and Munro, 2019). The use of state-
of-the-art neural network approaches in clinical trials may dramatic-
ally speed up the overall drug development process and increase its
success rate, thus saving lives.

It is widely recognized that the drug development industry suf-
fers from high attrition rates with less than one in six drugs making
it from phase 1 to the market (Hay et al., 2014). ClinicalTrials.gov,
the clinical trial repository maintained by the National Institutes of
Health (NIH), contains over 284 000 clinical trial entries submitted
by various organizations as of January 1, 2021 (see www.clinical
trials.gov). It is estimated that trained analysts would require tens of

thousands of hours of labor to incorporate its full information
manually (Wong et al., 2019). Thus it’s critical to develop precise
automatic approaches for the clinical trial entry annotation. This
work focuses on the harmonization of diseases and interventions
presented in the clinical trial entry as free text with the existing
centralized standardized taxonomies. The use of automatic natural
language processing (NLP) methods is imperative to semantic
annotation of a large volume of clinical records, and to linking and
standardization of biomedical entity mentions to formal concepts.
In biomedical research and healthcare, the entity linking problem is
known as medical concept normalization (MCN).

Inspired by metric learning (Hoffer and Ailon, 2015; Huang et
al., 2013; Schroff et al., 2015), its usage for multimodal and
sentence representation learning (Liu et al., 2017; Reimers
and Gurevych, 2019), negative sampling (Mikolov et al., 2013) and
Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2019), we present a neural model for Drug and disease
Interpretation Learning with Biomedical Entity Representation
Transformer (DILBERT). This model directly optimizes the
BioBERT representations (Lee et al., 2019) of entity mentions and
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concept names themselves, rather than classification or ranking
layer. We use triplets of free-form entity mention, positive concept
names and randomly sampled concept names as negative examples
to train our model.

The key contributions of this work are three-fold. First, we
develop a simple and effective model that uses metric learning and
negative sampling to obtain entity and concept embeddings. Second,
we consider the zero-shot scenario with cross-domain evaluation
because it is often the case in the biomedical domain, where exist
dozens of concept categories and terminologies. Third, we perform
extensive experiments of several BERT-based models on a newly
annotated dataset of clinical trials in two setups, where each
mention is associated with one or more concepts (in-KB) or zero
(out-of-KB). A preliminary version of this work has appeared in
Miftahutdinov et al. (2021). Compared to the conference version,
we have: (i) extended our description of the proposed dataset of
clinical trials; (ii) significantly extended the experimental part of this
work to assess the performance of DILBERT; in particular, we
investigated the impact of dictionary size on the task of disease
and drug normalization, adding new experimental results and
conclusions; (iii) performed error analysis and discussed the limita-
tions of our model.

The paper is organized as follows. We begin with an overview of
existing papers on processing of clinical trials and MCN systems in
Section 2. In Section 3, we present our dataset of clinical trials.
Description of our novel DILBERT model is presented in Section 4.
Descriptions of our experimental setup, academic datasets we
used and the results are reported in Section 5. Section 6 contains a
discussion of our results and limitations of our approach. Finally,
we summarize our contributions and discuss directions for further
research in Section 7.

2 Related work

While the majority of biomedical research on information extraction
primarily focused on scientific literature (Huang and Lu, 2016),
much less work utilizes NLP methods to conduct curation of clinical
trial records’ fields (Atal et al., 2016; Boland et al., 2013; Brown
and Patel, 2017; Hao et al., 2014; Sen et al., 2018) with most of the
work conducted on a subset of clinical trial data severely restricted
either by therapeutic indication (Boland et al., 2013; Sen et al.,
2018), development status (Brown and Patel, 2017) or terminology
(Atal et al., 2016). This restriction ultimately impedes the advance-
ment of crucial downstream tasks concerning drug repurposing
(Malas et al., 2019), overall clinical development risk assessment
(Lo et al., 2019; Wong et al., 2019) and its aspects such as clinical
failure prediction based on safety concerns (Gayvert et al., 2016).

2.1 Downstream applications
Characteristically, Lo et al. (Lo et al., 2019; Wong et al., 2019)
leveraged the proprietary dataset of unprecedented size to compute
the statistical parameters associated with clinical development phase
transitions as well as to build a machine learning model to predict
the probability of successful phase transition. As the source data is
not available for the independent quality assessment and reproduc-
tion of the work there is currently an unmet need in frameworks for
the creation of datasets of comparable scale. Gayvert et al. (2016)
selected 108 clinical trials of any phase that were annotated as hav-
ing failed for toxicity reasons. Then intervention names of each trial
were manually mapped to DrugBank (Wishart et al., 2018) concepts
to collect molecular weight, polar surface area and other com-
pounds’ properties which were then used as an input for decision
tree ensemble-based machine learning model predictive of the trial
failure due to toxicity.

2.2 Clinical trial record field processing
In Brown and Patel (2017), presented a novel database of approved
and failed drugs and their indications for drug repositioning. Pairs
of drugs and approved indications were drawn from DrugCentral,
which contains UMLS indications mapped from free-text mentions

in drug labels. To create a list of failed drugs and their indications,
the authors adopted the AACT database and utilized a dictionary-
based approach to map interventions to DrugCentral synonyms.
Indication information was mapped to UMLS identifiers using the
UMLS REST API. In Atal et al. (2016), developed a knowledge-
based approach to classify entity mentions to disease categories
from a Global Burden of Diseases (GBD) cause list. The proposed
method uses MetaMap to extract UMLS concepts from trial fields
(health condition, public title and scientific title), link UMLS con-
cepts with ICD10 codes and classify ICD10 codes to candidate GBD
categories. The developed classifier identified GBD categories for
78% of the trials. Li and Lu (2012) identified clinical pharmacogen-
omics (PGx) information from clinical trial records based on dic-
tionaries from a pharmacogenomics knowledge base PharmGKB.
First, they applied dictionaries from a pharmacogenomics know-
ledge base PharmGKB to identify genes, drugs and diseases from
clinical trials and assign these entities PharmGKB identifiers.
Second, they used a co-occurrence-based method for identifying
relationships between three types of entities. 100 identified gene-
drug-disease relationships were manually validated and the pro-
posed approach achieves an accuracy of 74%. Given these 26 PGx
gene-drug pairs, a total of 240 3-way PGx relationships were found
in trial records; 68 relationships are overlapped with 261 results in
PharmGKB. Li and Lu noted that their approach failed to identify
entity variants not covered by the dictionaries. Summarizing the
above, previous studies on clinical trial records, however, have not
analyzed the performance of linking of clinical trials to disease and
drug concepts, but rather across eligibility criteria (e.g. patient’s
demographic, disease category). They also share the common re-
striction of relying on specific terminologies that cannot be changed
in a feasible manner for knowledge transfer purposes (Atal et al.,
2016; Boland et al., 2013; Hao et al., 2014; Leveling, 2017; Sen et
al., 2018).

Neural architectures have been widely used in recent state-of-
the-art models for MCN from scientific texts, user reviews, social
media texts and clinical notes (Ji et al., 2020; Leaman and Lu, 2016;
Li et al., 2017, 2019; Miftahutdinov and Tutubalina, 2019; Sung
et al., 2020; Xu et al., 2020; Zhao et al., 2019; Zhu et al., 2020).
Most models share limitations regarding a supervised classification
framework: (i) to retrieve concepts from a particular terminology
for a given entity mention, models are required re-training, (ii) use
additional classification or ranking layer, therefore, during inference
compute all similarities between a given mention and all concept
names from a dictionary through this layer and sort these scores in
descending order. For instance, Ji et al. (2020) fine-tuned BERT
with binary classifier layer. Xu et al. (2020) adopted a BERT-based
multi-class classifier to generate a list of candidate concepts for each
mention, and a BERT-based list-wise classifier to select the most
likely candidate. We note that this multi-class candidate generator
will require re-training for cross-terminology mapping. In our
work, we focus on direct optimization of BERT representations
to allow efficient similarity search with a FAISS library (Johnson
et al., 2019).

The works that are the closest to ours and use entity and concept
representation learning are triplet networks (Mondal et al., 2019),
Biomedical Named Encoder (BNE) (Phan et al., 2019) and BioSyn
(Sung et al., 2020). Mondal et al. used distances between disease
mentions, positive and randomly sampled negative candidates to
train a triplet network (Mondal et al., 2019). As encoder, convolu-
tional and pooling layer based on word embeddings was adopted.
Sung et al. proposed a BioBERT-based model named BioSyn that
maximizes the probability of all synonym representations in the top
20 candidates (Sung et al., 2020). BioSyn uses a combination of two
scores, sparse and dense, as a similarity function. Sparse scores are
calculated on character-level TF-IDF representations to encode mor-
phological information of given strings. Dense scores are defined by
the similarity between CLS tokens of a single vector of input in
BioBERT. This model achieves state-of-the-art results in disease and
chemical mapping over previous works (Leaman and Lu, 2016;
Mondal et al., 2019; Phan et al., 2019; Wright et al., 2019). Phan
et al. presented an encoding framework with new context, concept
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and synonym-based objectives (Phan et al., 2019). Synonym-based
objective enforces similar representations between synonymous
names, while concept-based objective pulls the name’s representa-
tions closer to its concept’s centroid. The word and concept unique
identifier (CUI) embeddings are pretrained on 29 million PubMed
abstracts annotated with UMLS concepts of diseases and chemicals.
However, ranking on these embeddings shows worse results on
three sets than supervised models.

Our work differs from the discussed studies in important aspects.
First, none of these methods have been applied to free-form descrip-
tions of conditions and interventions from clinical trials. Second,
evaluation strategies in the mentioned papers are based on train/test
splits provided by datasets’ authors. We follow recent refined evalu-
ation strategy from (Tutubalina et al., 2020) on creation of test sets
without duplicates or exact overlaps between train and test
sets. Finally, our dataset includes entity mentions for both in-KB
and out-of-KB linking.

3 Dataset of clinical trials

NLM maintains a clinical trial registry data bank ClinicalTrials.gov
(https://clinicaltrials.gov/) that contains over 284 000 trials
from 214 countries. This database includes comprehensive scientific
and clinical investigations in biomedicine (Gill et al., 2016). Each
trial record provides information about a trial’s title, purpose,
description, condition, intervention, eligibility, sponsors, etc. Most
information from records is stored in a free text format. In our
study, we use publicly available Aggregate Content of
ClinicalTrials.gov (AACT) Database (https://www.ctti-clinicaltrials.
org/aact-database), v. 20200201.

Since there is no off-the-shelf gold-standard dataset for drug and
disease concept normalization for clinical trials, we’ve constructed
one through selecting 500 clinical studies from AACT using the
following criteria:

1. The study is interventional, that is the study is a trial.

Participants of clinical trials receive intervention/treatment so

that researchers can evaluate the effects of the interventions on

health-related outcomes.

2. The study is associated with one or more interventions of the fol-

lowing types: Drug, Biological, Combination Product.

As a drug terminology source, we use a Drugbank v. 5.1.8 that
contains 14 325 concept unique identifiers (CUIs). As a condition
terminology source, we use MeSH v. 20200101. 500 selected trials
contain 1075 and 819 entries in the ‘Intervention’ and ‘Condition’
fields respectively. Each entry was manually annotated by the two
annotation experts with a background in biomedical data curation.
The calculated inter-annotator agreement (IAA) using Kappa was
92.32% for the entire dataset. Disagreement was resolved through
mutual consent.

Phase of the clinical study is defined by the FDA. There were
five phases included: Early Phase 1, Phase 1, Phase 2, Phase 3 and
Phase 4. As shown in Table 1, the selected trials cover various phases
evenly. Statistics of annotated texts are summarized in Table 2.

749 out of 1075 non-unique mentions (69.6%) were mapped to
one or more drug concepts. 838 (80%) of lower-cased interven-
tions are unique. 804 out of 819 non-unique mentions (98.2%)
were mapped to one or more concepts, while there are 638 (78%)
lower-cased unique mentions. Interestingly, MeSH concepts linked
to conditions belong to several MeSH categories including
Diseases (C), Psychiatry and Psychology (F) and Analytical,
Diagnostic and Therapeutic Techniques and Equipment (E). We
note that NLM provided automatically assigned MeSH terms to
trials’ interventions. 716 out of 1075 entries (66.6%) were
mapped to MeSH terms. Our analysis revealed that MeSH termin-
ology does not include investigational drugs, the data on which is
crucial for the downstream tasks. Table 3 contains a sample of
annotated texts.

4 Model

In this section, we present a neural model for Drug and disease
Interpretation Learning with Biomedical Entity Representation
Transformer (DILBERT). We address MCN as a retrieval task by
fine-tuning the BERT-based network using metric learning (Hoffer
and Ailon, 2015; Huang et al., 2013; Schroff et al., 2015), negative
sampling (Mikolov et al., 2013), specifically, triplet constraints.
This idea was successfully applied to learn multimodal embeddings
(Liu et al., 2017; Wu et al., 2013) and recent sentence embeddings
via a sentence-BERT model (Reimers and Gurevych, 2019).
Compared to a pair of independent sentences or images, two con-
cept names can have relationships as synonyms, hypernyms,
hyponyms, etc., that we consider during the training phase to
facilitate the concept ranking task at the retrieval phase.

Architecture Following denotations proposed by Humeau et al.
(2019), we encode both entity mention m and candidate concept
name c into vectors:

ym ¼ redðTðmÞÞ; yc ¼ redðTðcÞÞ (1)

where T is the transformer that is allowed to update during
fine-tuning, redð�Þ is a function that reduces that sequence of vectors
into one vector. There are two main ways of reducing the output
into one representation via redð�Þ: choose the first output of
T (corresponding to the token CLS) or compute the elementwise
average over all output vectors to obtain a fixed-size vector.
As a pretrained transformer model, we use BioBERT base v1.1
(Lee et al., 2019).

Scoring The score of a candidate ci for a entity mention m is
given by a distance metric, e.g. Euclidean distance:

sðm; ciÞ ¼ jjym � yci
jj (2)

A noteworthy aspect of the proposed model is its scope: by
design, it aims at the cross-terminology mapping of entity mentions
to a given lexicon without additional re-training. This approach
allows for fast, real-time inference, as all concept names from a
terminology can be cached. This is a requirement for processing
biomedical documents of different subdomains such as clinical
trials, scientific literature, drug labels.

Optimization The network is trained using a triplet objective
function. Given an user-generated entity mention m, a positive
concept name cg and a negative concept name cn, triplet loss tunes
the network such that the distance between m and cg is smaller than
the distance between m and cn. Mathematically, we minimize the
following loss function:

maxðsðm; cgÞ � sðm; cnÞ þ �;0Þ (3)

where � is margin that ensures that cg is at least � closer to m than
cn. As scoring metric, we use Euclidean distance or cosine similarity
and we set �¼1 in our experiments.

Positive and negative sampling Suppose that a pair of the entity
mention with the corresponding CUI is given as well as the vocabu-
lary. For positive examples, vocabulary is restricted to the concepts
that have the same CUI as a mention. Multiple positive concept

Table 1. Statistics of trials’ phases

Phase No. of trials in

our dataset

No. of trials

in clinicaltrials.gov

Phase 2 128 47 398

Phase 3 116 32 707

Phase 1 108 34 121

Phase 4 88 27 726

Phase 1/Phase 2 0 11 582

Phase 2/Phase 3 0 5632

Early Phase 1 0 3500

Total 500 162 666

3858 Z.Miftahutdinov et al.
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names could be explained by the presence of synonyms in the vo-
cabulary. Negative sampling (Mikolov et al., 2013) uses the rest part
of the vocabulary. We explore several strategies to select positive and
negative samples for a training pair (entity mention, CUI):

1. random sampling: we sample several concept names with the

same CUI as positive examples and random negatives from the

rest of the vocabulary;

2. random 1 parents: we sample k concept names from the con-

cept’s parents in addition to positive and negative names gath-

ered with the random sampling strategy;

3. re-sampling: using a model trained with random sampling, we

identify positives and hard negatives via the following steps: (i)

encode all mentions and concept names found in training pairs

using the current model, (ii) select positives with the same CUI,

which are closest to a mention, (iii) for each mention, retrieve

the most similar k concept names (i.e. its nearest neighbors) and

select all names that are ranked above the correct one for the

mention as negative examples. We follow this strategy from

(Gillick et al., 2019);

4. re-sampling 1 siblings: we modify the re-sampling strategy by

using k concept names from the concept’s siblings as negatives.

Inference At inference time, the representation for all concept
names can be precomputed and cached. The inference task is then
reduced to finding the closest concept name representation to entity
mention representation in a common embedding space.

Out-of-KB prediction To deal with nil prediction in clinical tri-
als, we apply three different strategies for selection of a threshold

value. Namely, the intervention or condition mention is considered
out of KB if the nearest candidate has a larger distance than a thresh-
old value. Our first strategy is to set the threshold equal to the min-
imum distance of false-positive (FP) cases. In this case, we consider a
mention mapped to a concept by our model but having no appear-
ance in the terminology as FP. Thus in the list of mentions ordered
by increasing the distance to the nearest concept, threshold will be
equal to the distance of first nill appearance. This strategy has high
precision and low recall. Our second strategy set the threshold to the
maximum distance of true-positive (TP) cases. Which is opposite to
the first strategy and in ordered by distances list threshold will be
equal to the last appearance of the TP case. Thus the second strategy
has low precision and high recall. The third strategy uses a weighted
average of the first two threshold values. The proportion of TP cases
used as a weight for the first strategy’s threshold, the proportion of
TP cases used as a weight for the second strategy’s threshold. The
third strategy is optimal and balances the low recall of first strategy
by the high recall of second and similar for the precision metric.

5 Experiments

For the experimental evaluation of DILBERT, we have posed and
attempted to answer the following research questions:

RQ1: how does DILBERT perform on clinical trials with both

in-KB and out-of-KB cases?

RQ2: can DILBERT outperform state-of-the-art MCN models

on existing benchmarks of scientific benchmarks?

RQ3: how dictionary size at prediction time affect the overall

performance?

Table 2. Statistics of annotated texts

Mention No. of texts No. of texts with CUIs No. of unique texts No. of unique texts with CUIs

Intervention types

Drug 850 657 671 584

Biological 118 58 102 55

Other 57 21 27 21

Procedure 19 1 16 1

Radiation 11 3 9 3

Device 11 4 11 4

Combination product 5 3 5 3

Dietary supplement 2 2 2 2

Diagnostic test 1 0 1 0

Behavioral 1 0 1 0

Total

Intervention 1075 749 838 661

Condition 819 804 638 638

Table 3. Sample of manually annotated trials’ texts

NCT Type Text Concept

Intervention (with DrugBank CUIs)

NCT00559975 Biological Adjuvanted influenza vaccine

combine with CpG7909

Agatolimod sodium (DB15018)

NCT01575756 Biological HaemocomplettanVR P or RiaSTAPTM Fibrinogen human (DB09222)

NCT00081484 Drug epoetin alfa or beta Erythropoietin (DB00016)

NCT03375593 Drug Ibuprofen 600 mg tab Ibuprofen (DB01050)

NCT01170442 Drug vitamin D3 5000 IU Calcitriol (DB00136)

NCT02493335 Drug Placebo orodispersible tablet twice daily nil (no concept)

Condition (with MeSH CUIs)

NCT02009605 Condition Squamous Cell Carcinoma of Lung Carcinoma, Non-Small-Cell Lung (D002289)

NCT04169763 Condition Stage IIIC Vulvar Cancer AJCC v8 Vulvar Neoplasms (D014846)
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Below we describe the results of our experimental evaluation on
the questions above.

5.1 Datasets
We have conducted our experimental evaluation of the proposed
model on two datasets: a publicly available benchmark BioCreative
V CDR Disease & Chemical (Li et al., 2016), (ii) our dataset of
clinical trials named CT Condition & Intervention. The BioCreative
V CDR Disease & Chemical is a part of a Biomedical Language
Understanding & Reasoning Benchmark (BLURB) (Gu et al., 2020).

Statistics of two datasets are summarized in Table 4. BioCreative
V CDR Disease & Chemical consists of chemical & disease
mentions in Pubmed abstracts with spans of text annotated as con-
cepts. The format is as follows: PMID <tab> START OFFSET
<tab> END OFFSET<tab>text MENTION <tab> mention TYPE
(e.g. Disease) <tab> database IDENTIFIER <tab> Individual men-
tions (e.g. 3403780 29 47 metabolic acidosis Disease D000138).
The main difference between BioCreative V and our dataset consists
in documents annotated and subsequent particularities of the anno-
tations such as in clinical trials interventions and conditions are
organized in fields whereas in abstracts presented in a free-form text
as well as differences in vocabularies. Statistics of terminologies syn-
onyms represented in Table 5.

BioCreative V CDR (Li et al., 2016) introduces a challenging
task for the extraction of chemical-disease relations (CDR) from
PubMed abstracts. Disease and chemical mentions are linked to the
MEDIC (Davis et al., 2012) and CTD (Davis et al., 2019) diction-
aries, respectively. We utilize the CTD chemical dictionary
(v. November 4, 2019) that consists of 171 203 CUIs and 407 247
synonyms and the MEDIC lexicon (v. July 6, 2012) that contains 11
915 CUIs and 71 923 synonyms.

According to BioCreative V CDR annotation guidelines, annota-
tors used two MeSH branches to annotate entities: (i) ‘Diseases’ [C],
including signs and symptoms, (ii) ‘Drugs and Chemicals’ [D]. The
terms ‘drugs’ and ‘chemicals’ are often used interchangeably.
Annotators annotated chemical nouns convertible to single atoms,
ions, isotopes, pure elements and molecules (e.g. calcium, lithium),
class names (e.g. steroids, fatty acids), small biochemicals, synthetic
polymers.

As shown in Tutubalina et al. (2020), the CDR dataset contains
a high amount of mention duplicates and overlaps between
official sets. To obtain more realistic results, we evaluate models on
preprocessed official and refined CDR test sets from Tutubalina
et al. (2020).

For preprocessing of clinical trials, we use heuristic rules to
split composite mentions into separate mentions (e.g. combination
of ribociclib þ capecitabine into ribociclib and capecitabine) by
considering each mention containing ‘combination’, ‘combine’,
‘combined’, ‘plus’, ‘vs’ or ‘þ’ as composite. We process all charac-
ters to lowercase forms and remove the punctuation for both
mentions and synonyms.

5.2 Baselines
BioBERT ranking This is a baseline model that used the BioBERT
model for encoding mention and concept representations. Each en-
tity mention or concept name is passed first through BioBERT and

then through a mean pooling layer to yield a fixed-sized vector. The
inference task is then reduced to finding the closest concept name

representation to entity mention representation in a common
embedding space. We use the Euclidean distance as the distance met-
ric. The nearest concept names are chosen as top-k concepts for enti-

ties. We use the publicly available code provided by Tutubalina
et al. (2020) at https://github.com/insilicomedicine/Fair-Evaluation-

BERT.
BioSyn BioSyn (Sung et al., 2020) is a recent state-of-the-art

model that utilizes the synonym marginalization technique and the
iterative candidate retrieval. The model uses two similarity functions
based on sparse and dense representations, respectively. The sparse

representation encodes the morphological information of given
strings via TF-IDF, the dense representation encodes the semantic in-

formation gathered from BioBERT. For reproducibility, we use the
publicly available code provided by the authors at https://github.
com/dmis-lab/BioSyn. We follow the default parameters of BioSyn

as in Sung et al. (2020): the number of top candidates k is 20, the
mini-batch size is 16, the learning rate is 1e-5, the dense ratio for the
candidate retrieval is 0.5, 20 epochs for training.

5.3 Evaluation strategies
Recent study (Tutubalina et al., 2020) on evaluation in concept nor-
malization summarized that there are several evaluation setups de-

pending on two modalities such as domain and terminology:

• Stratified and zero-shot evaluation
• In- and out-of-domain evaluation (or cross-domain setup)
• Single- and out-of-terminology evaluation (or cross-terminology

setup)

In general, terminology is homogeneous and include concept

names and corresponding CUIs of a specific entity type (e.g.
diseases, drugs). Most MCN methods are trained and evaluated on
sets of widely differing sizes, entity types, domains and a narrow

Table 4. Statistics of the datasets used in the experiments

CDR Disease CDR Chem CT Condition CT Intervention

Domain Abstracts Abstracts Clinical trials Clinical trials

Entity type Disease Chemicals Conditions Drugs

Terminology MEDIC CTD Chemicals MeSH Drugbank

Entity level statistics

% numerals 0.11% 7.32% 7.69% 25.3%

% punctuation 1.21% 0.07% 14.28% 24.83%

Avg. len 14.88 11.27 17.92 21.68

Number of pre-processed entity mentions

Train set 4182 5203 – –

Dev set 4244 5347 100 100

Test set 4424 5385 719 975

Filtered test 1240 (28.02%) 826 (15.38%) 642 (78.4%) 846 (78.7%)

Note: Two sets of annotated clinical trials’ fields are marked with ‘CT’.

Table 5. Synonyms statistics in terminologies

Vocabulary Name No. of

concepts

No. of concept

names

Avg synonyms

per concept

MEDIC 12513 73178 5.85

CTD Chem 171285 407615 2.38

Drugbank 14325 141617 9.89

3860 Z.Miftahutdinov et al.
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subsample of concepts from a target terminology. This clearly does
not correspond to real-world applications.

The first evaluation setup focuses on the intersection between
CUIs in train and test/dev sets. Here stratified, proposed in
Tutubalina et al. (2018), is intended to show how well a model
recognizes known concepts with different surface forms of entity
mentions: each concept appearing in the test/dev sets, appears at
least once in the training set. In contrast, zero-shot evaluation shows
how well a model links entity mentions to novel concepts: dev and
test sets contain novel concepts only for which there are no training
mentions. The same terminology is used during training and
evaluation.

The second evaluation setup focuses on domain change, i.e.
differences between train and test/dev corpora. This is the case of
biomedicine, a field with a lot of sub-domains and information sour-
ces (e.g. abstracts, patent documents, clinical records, drug labels,
social media). All sub-domains differ substantially in their structure,
language, writing style which is reflected in surface forms of entity
mentions. In-domain evaluation is intended to how well a model
maps entity mentions from the seen domain under the implicit
hypothesis that the training data and test data come from the same
underlying distribution. In contrast, out-of-domain strategy is
designed to train and evaluate on concepts from the seen target
terminology and mentions of the same type from another domain.
For example, models trained to map disease mentions to MeSH
terminology from PubMed abstracts (source domain) and evaluated
on disease mentions with MeSH CUIs from clinical records (target
domain). Adapting trained models to different language varieties
would be desirable to enable better generalizability.

The third evaluation setup is more complicated due to shift in
terminology which entails changes in entity type and surface form
mentions. Single-terminology evaluation is the most popular type of
evaluation: concept names and CUIs in the test/dev sets are seen
during training. Out-of-terminology strategy is a sophisticated
version of zero-shot: dev and test sets contain novel concepts from a
target terminology, while another terminology is used during train-
ing. For example, models trained to map disease mentions to MeSH
concepts and evaluated on drug mentions with DrugBank CUIs.
Tutubalina et al. (2020) provided the first cross-terminology evalu-
ation study and showed that knowledge transfer can be effective
between diseases, chemicals and genes from abstracts.

In our study, we focus on in-domain and out-of-domain
evaluation. We investigate the effectiveness of transferring concept
normalization from the general biomedical domain to the clinical
trial domain. We trained neural models on the CDR Disease and
CDR Chemical train sets for linking clinical conditions and interven-
tions, respectively.

5.4 Experimental setup
We experiment with BioBERTbase v1.1 and PubMedBERTbase both
with 12 heads, 12 layers, 768 hidden units per layer and a total of
110 M parameters. Empirical results showed that PubMedBERT
achieves 1-2% lower results for all training settings. Due to that
fact, we reported only BioBERT results. Epsilon, the number of
positive and negative examples, and distance metric were chosen
optimally on dev sets. We choose redð�Þ to be the average over all
outputs of BERT. We have evaluated different epsilons starting from
0.5 up to 4.0 with 0.5 step for Euclidean distance metric, for cosine
distance from 0.05 up to 0.3 with 0.05 step. These experiments have
quite similar results. We have evaluated a number of positive and
negative examples. For positives we iterated over values from 15 to
35, for negatives from 5 to 15. We found that the optimal is to
sample 30 positive examples and 5 negative examples per mention.
For the random þ parents strategy, we evaluated the number of
names of concept’s parents from 1 to 5. Similar, we evaluated the
number of names of concept’s siblings from 1 to 5. We found that
hard negative sampling (with siblings) achieves the same optima as
random negative sampling. The highest metrics are achieved at
5 concept names of the concept’s parents on the CT Condition and
CDR Chemical sets. The highest accuracy is achieved at 2 names of
the concept’s parents on other sets. As a result, we trained the

DILBERT model with Euclidean distance and the following
parameters: batch size is equal to 48, learning rate was set to 1e-5,
epsilon to 1.0.

We evaluate this solution in information retrieval (IR) scenario,
where the goal is to find within a dictionary of concept names and
their identifiers the top-k concepts for every entity mention in
texts. In particular, we use the top-k accuracy as an evaluation
metric, following the previous works (Phan et al., 2019; Pradhan et
al., 2014; Sung et al., 2020; Suominen et al., 2013; Tutubalina et al.,
2020; Wright et al., 2019). Let Acc@k be 1 if a right CUI is retrieved
at rank k, otherwise 0. All models are evaluated with Acc@1. For
composite entities, we define Acc@k as 1 if each prediction for a sin-
gle mention is correct.

5.5 Results
5.5.1 Concept normalization on clinical trials

RQ1 In contrast with the CDR sets, 30.4% and 1.8% of interven-
tion and condition mentions in the CT dataset are not appeared in
terminologies, respectively. We investigate different strategies for
the out-of-KB prediction (i.e. nil prediction) on clinical trials’ texts.

We tested three strategies for nil prediction on the dev set which
containing 100 randomly selected mentions and evaluated the
selected threshold values on the test set. This procedure was
repeated 20 times. For intervention normalization, the first strategy
showed an average accuracy of 79.41 with std of 3.5; second—
accuracy of 71.77 and std of 3.5; third—accuracy of 85.73,
std of 1.3.

In the first set of experiments, we evaluate the performance of
neural models on clinical trials in cross-domain setup.

Table 6 presents the performance of the DILBERT models
compared to BioSyn and BioBERT ranking on the datasets of clinic-
al trials. We test the DILBERT model’s transferability on two sets of
interventions and conditions where each mention is associated with
one concept only (see ‘single concept’ columns). We evaluate the
model on test sets with all mentions, including single concepts,
composite mentions and out-of-KB cases (see ‘full set’ columns).
Several observations can be made based on Table 6. First, DILBERT
outperformed BioSyn and BioBERT ranking. Adding randomly
sampled positive examples from parent-child relationships gives a
statistically significant improvement in 1-2% on the CT Condition
set while staying on par with random sampling on interventions.
Third, DILBERT models obtained higher results on test sets with
single concepts. Models achieve much higher performance for the
normalization of interventions rather than conditions.

5.5.2 Concept normalization on scientific benchmarks

RQ2 In Table 7, we present in-domain results of models evaluated
on the CDR data. In all our experiments when comparing DILBERT
and BioSyn models, we use paired McNemar’s test (McNemar,
1947) with a confidence level at 0.05 to measure statistical
significance. Table 7 shows that DILBERT outperformed BioSyn on

Table 6. Out-of-domain performance of the proposed DILBERT

model and baselines in terms of Acc@1 on the filtered test set of

clinical trials (CT)

Model CT condition CT intervention

Single concept Full set Single concept Full set

BioBERT ranking 72.60 71.74 77.83 56.97

BioSyn 86.36 – 79.58 –

DILBERT with different sampling strategies

Random sampling 85.73 84.85 82.54 81.16

Random þ 2 parents 86.74 86.36 81.84 79.14

Random þ 5 parents 87.12 86.74 81.67 79.14

Resampling 85.22 84.63 81.67 80.21

Resampling þ 5 siblings 84.84 84.26 80.62 76.16

Note: Highest score in a column is marked as bold.
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the CDR Disease test set staying on par with BioSyn on the CDR
Chemical test set. We compare results on refined test sets with results
on the CDR corpus’s official test set. We observe the significant
decrease of Acc@1 from 93.6% to 75.8% and from 95.8% to 83.8%
for DILBERT on disease and chemical mentions, respectively. Similar
to the CT dataset, models achieve much higher performance for the
normalization of chemicals rather than diseases.

5.5.3 Effect of dictionary size at the prediction time

RQ3 Both BioSyn and DILBERT models compute similarities be-
tween mentions and concept names at the subword- and word-
levels. This can help in linking mentions that look like existing terms
like ‘visual defects’ and ‘visual disorder’. However, these models
would link mentions to KB incorrectly in two major cases: (i) surface
forms of mentions and concept names are similar, yet have a differ-
ent meaning [e.g. ‘chlorfenac’ (C041190) and ‘chlorferon’
(C305311)], (ii) both expressions share the same meaning, yet are
different in surface form [‘metindol’ and ‘indomethacin’ are the
same anti-inflammatory drug (D007213)]. Moreover, KBs are could
be outdated, and their coverage of synonyms can be very
incomplete.

We performed a set of experiments with models trained on CDR
Disease & Chemical sets and fragmentary dictionaries at the predic-
tion time. This experiment aims to test how well the model remem-
bered concepts from the training dictionary. To create fragmentary
dictionaries, we grouped the initial versions of the dictionaries by
CUI and employed a random sample of items using a given fraction
of axis items to return. We note that if the number of concept names
after sampling turned out to be fractional, then we round the num-
ber down of concept names to the smallest integer. For instance,
95% of 10 concept names is 9. The number of fraction ranges from
0.95 to 0.20 with a -0.05 step. We carried out the procedure for
reducing the vocabulary, conducted experiments four times and
averaged the results. The results are shown in Figure 1. First, These
results in terms of Acc@1 demonstrate that degradation in the met-
rics from the full dictionary to a 30% of the dictionary is significant.
The models learned the similarities between mentions and most
similar concept names that may be missing at the time of predic-
tions. It is expected that the performance of drug normalization
models decreased more than disease normalization models since

drug names are highly heterogeneous (there are active compound
names, brand names, proprietary identifiers, etc). Second, in terms
of Acc@5, models show degradation is smaller. Finally, DILBERT
handled modification of the target dictionary without re-training
slightly better than other models.

5.6 Error analysis
The error analysis on the Clinical Trials set showed that the
DILBERT model incorrectly maps 98 mentions: 6 of them are linked
to the correct concept’s parent and 7 to the correct concept’s child.
In many cases, the correct concept is a broader version of the pre-
dicted concept. In particular, the entity ‘Brainstem Glioma’ is linked
to the concept D020339 (Optic glioma) whereas the correct concept
is D005910 (Gliomas). Moreover, the entity ‘Unspecified Adult
Solid Tumor, Protocol Specific’ is linked to D009382 (the unknown
primary tumor) but the correct concept is D009369 (neoplasms). It
should be noted that the mean length of incorrectly mapped entities
is 30.8 chars while the length of correctly mapped entities is 19.9.
The reason is that most of the mislinked entities contain some extra
information that doesn’t allow map the mention to the correct
concept (as in the ‘Brainstem Glioma’ example). Some errors occur
due to the model was not trained on structural information on
biomedical concepts. For instance ‘Advanced Urothelial Carcinoma’
is linked to D014571 (cancer of the urinary tract) but the actual
concept is D001749 (urinary bladder cancer). Here the model
correctly recognizes that the concept is related to the cancer disease,
but couldn’t relate it to the urinary bladder.

6 Discussion and limitations

DILBERT is a novel model that performs medical concept normal-
ization via deep neural networks, metric learning and negative
sampling. In our work, we evaluate how well the neural model
recognizes new concepts from a clinical domain that were not
present in the dictionary the model was trained with. Our cross-
domain experiments demonstrate that the proposed model performs
reasonably well and transfers knowledge from a scientific domain to
a clinical domain. We have shown how DILBERT improves upon
the current state of the art and analyzed the influence of dictionary
size, nil prediction cases on the results. We provide a tool for the
precise large-scale annotation of clinical records. However, there are
still interesting problems and limitations.

First, the model is dependent on concept names in a dictionary
used at the prediction time. The continuous flow of new molecular
entities coming in clinical trials creates the necessity of timely
dictionary updates for the model to be able to improve upon its
performance or at least preserve it. We intend to conduct further
research on concept discovery and dictionary completion which we
consider to be a valuable add-on to the model described.

Second, the model does not take into consideration parent-child
concept relations inherent to biomedical ontologies and in particular
to the disease ontologies. This leads to the mislabeling of the
entities with semantically similar concepts. In future work, it might
be interesting to incorporate information on an ontology hierarchy
or term co-occurrence graph based on a large collection of texts into

Table 7. In-domain performance of the proposed DILBERT model

in terms of Acc@1 on the refined test set of the Biocreative V CDR

corpus

Model CDR disease CDR chemical

BioBERT ranking 66.4 80.7

BioSyn 74.1 83.8

DILBERT, random sampling 75.5 81.4

DILBERT, random þ 2 parents 75.0 81.2

DILBERT, random þ 5 parents 73.5 81.4

DILBERT, resampling 75.8 83.3

DILBERT, resampling þ 5 siblings 75.3 82.1

Note: Highest score in a column is marked as bold.

Fig. 1. In-domain performance of the proposed DILBERT model in terms of Acc@1 on the refined test set of the Biocreative V CDR corpus using reduced dictionaries
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the neural models to explicitly introduce multimodal connections
between the concepts.

Third, zero-shot evaluation is still an open research direction.
Here we present a cross-terminology evaluation that is a more com-
plicated version of zero-shot evaluation due to a shift in domain and
dictionary. It would be interesting to investigate how joint training
on several entity types and dictionaries affects the MCN
performance.

7 Conclusion

In this article, we studied the task of drug and disease normalization
in clinical trials. We designed a triplet-based metric learning model
named DILBERT that optimizes to pull pairs of mention and con-
cept BioBERT representations closer than negative samples. We pre-
computed concept name representation for a given terminology to
allow fast inference. The model computed a Euclidean distance met-
ric between a given mention and concepts in a target dictionary to
retrieve the nearest concept name. The advantage of this architecture
is the ability to search for the closest concept in a different termin-
ology without retraining the model. In particular, we trained a
model on the CDR Chemical dataset with the CTD chemical dic-
tionary and used it to predict on our drug dictionary. We perform a
detailed analysis of our architecture that studies in-domain and
cross-domain performance across two corpora as well as the per-
formance on reduced disease and drug dictionaries. Extensive
experiments show the competitiveness of the proposed DILBERT
model. Moreover, we present an error analysis and discuss limita-
tions. This work suggests several interesting directions for future re-
search. We could train out models jointly on several entity types.
The most common entity types are disease, drugs, genes, adverse
drug reactions. Moreover, we could leverage an ontology hierarchy
or term co-occurrence graph to improve our model.
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