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Abstract

Motivation: The advancement in technologies and the growth of available single-cell datasets motivate integrative
analysis of multiple single-cell genomic datasets. Integrative analysis of multimodal single-cell datasets combines
complementary information offered by single-omic datasets and can offer deeper insights on complex biological
process. Clustering methods that identify the unknown cell types are among the first few steps in the analysis of
single-cell datasets, and they are important for downstream analysis built upon the identified cell types.

Results: We propose scAMACE for the integrative analysis and clustering of single-cell data on chromatin accessibil-
ity, gene expression and methylation. We demonstrate that cell types are better identified and characterized through
analyzing the three data types jointly. We develop an efficient Expectation–Maximization algorithm to perform statis-
tical inference, and evaluate our methods on both simulation study and real data applications. We also provide the
GPU implementation of scAMACE, making it scalable to large datasets.

Availability and implementation: The software and datasets are available at https://github.com/cuhklinlab/
scAMACE_py (python implementation) and https://github.com/cuhklinlab/scAMACE (R implementation).

Contact: zhixianglin@cuhk.edu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent developments in single-cell technologies enable multiple
measurements of different genomic features (Lahnemann et al.,
2020). Sequencing technologies include single-cell RNA sequencing
(scRNA-seq) which measures transcription, single-cell ATAC
sequencing (scATAC-seq) and the assay based on combinatorial
indexing (sci-ATAC-seq) (Cusanovich et al., 2018b) that measure
chromatin accessibility, and single-nucleus methylcytosine sequenc-
ing (snmC-seq) (Luo et al., 2017) which measures methylome at the
single-cell resolution. High technical variation is presented in single-
cell datasets due to the limited amount of genomic materials and the
experimental procedures to amplify the signals (Lahnemann et al.,
2020).

Because cell types are usually unknown beforehand, clustering
methods are needed to identify the cell types. Majority of existing
clustering algorithms only take one single dataset as input. Beside
the widely used K-Means clustering algorithm, hierarchical cluster-
ing (Ward, 1963) forms hierarchical groups of mutually exclusive
subsets on the basis of their similarity with respect to specified char-
acteristics by considering the union of all possible kðk�1Þ

2 pairs and

accepting the union with which an optimal value of the objective
function is associated. Spectral Clustering (Ng et al., 2001) uses the
top k eigenvectors of a matrix derived from the distance between
points simultaneously for clustering. Several algorithms are devel-
oped specifically for scRNA-seq data. SC3 (Kiselev et al., 2017)
combines multiple clustering outcomes through a consensus ap-
proach. SIMLR (Wang et al., 2017) learns a distance metric by mul-
tiple kernels and clusters with affinity propagation. CIDR (Lin et al.,
2017) imputes the gene expression profiles, calculates the dissimilar-
ity based on the imputed gene expression profiles for every pair of
single cells, performs principal coordinate analysis using the dissimi-
larity matrix, and finally performs clustering using the first few prin-
cipal coordinates. SOUP (Zhu et al., 2019) semi-softly classifies
both pure and intermediate cell types: it first identifies the set of
pure cells by special block structure and estimates a membership ma-
trix, then estimates soft membership for the other cells. For the ana-
lysis of single-cell chromatin accessibility data, scABC
(Zamanighomi et al., 2018) first weights cells and applies weighted
K-medoids clustering, then calculate landmarks for each cluster, and
finally clusters the cells by assignment to the closest landmark based
on Spearman correlation. Cusanovich (Cusanovich et al., 2018a)
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makes use of singular value decomposition on TF-IDF transformed
matrix and density peak clustering algorithm. cisTopic (Bravo
González-Blas et al., 2019) uses latent Dirichlet allocation with a
collapsed Gibbs sampler to iteratively optimize the region-topic dis-
tribution and the topic-cell distribution. SCALE (Xiong et al., 2019)
combines the variational autoencoder framework with the Gaussian
Mixture Model which extracts latent features that characterize the
distributions of input scATAC-seq data, and then uses the latent fea-
tures to cluster cell mixtures into subpopulations. Clustering meth-
ods are also developed for single-cell methylation data. BPRMeth
(Kapourani and Sanguinetti, 2016) uses probabilistic machine learn-
ing to extract higher order features across a defined region and to
cluster promoter-proximal regions by Binomial distributed probit
regression (BPR) and mixture modeling. PDclust (Hui et al., 2018)
leverages the methylation state of individual CpGs to obtain pair-
wise dissimilarity (PD) values, and calculates Euclidean distances be-
tween each pair of cells using their PD values and performed
hierarchical clustering. Melissa (Kapourani and Sanguinetti, 2019)
implements a Bayesian hierarchical model that jointly learns the
methylation profiles of genomic regions of interest and clusters cells
based on their genome-wide methylation patterns. pCSM (Yin et al.,
2019) implements a semi-reference-free procedure to perform virtual
methylome dissection using the non-negative matrix factorization al-
gorithm. It first determines putative cell-type-specific methylated
loci and then clusters the loci into groups based on their correlations
in methylation profiles.

Studies based on single-omic data provide only a partial land-
scape of the entire cellular heterogeneity (Ma et al., 2020). High
technical noise and the growth of available datasets measuring dif-
ferent genomic features encourage integrative analysis (Lahnemann
et al., 2020). By combining complementary information from mul-
tiple datasets, the cell types may be better separated and character-
ized (Corces et al., 2016; Duren et al., 2017). The integrative
analysis of gene expression and chromatin activity may better define
cell types and lineages, especially in complex tissues (Duren et al.,
2018). Seurat V3 (Stuart et al., 2019) uses Canonical Correlation
Analysis (CCA) to reduce the dimension of the datasets. It identifies
the pairwise correspondences of single cells across datasets, termed
‘anchors’, and then transfers labels from a reference dataset onto a
query dataset. coupleNMF (Duren et al., 2018) is based on the cou-
pling of two non-negative matrix factorizations, where a ‘soft’ clus-
tering can be obtained following the matrix factorizations. It
enables integrative analysis of scRNA-seq and scATAC-seq data.
LIGER (Welch et al., 2019) integrates multimodal datasets via inte-
grative non-negative matrix factorization (iNMF) to learn a low-
dimensional space defined by dataset-specific factors and shared fac-
tors across datasets, and then build a neighborhood graph based on
the shared factors to identify joint clusters by performing commu-
nity detection on this graph. scACE (Lin et al., 2020) is a model-
based approach that jointly analyzes single-cell chromatin accessibil-
ity and scRNA-Seq data, and it quantifies the uncertainty of cluster
assignments. MAESTRO (Wang et al., 2020) integrates scRNA-seq
and scATAC-seq data from multiple platforms. It also provides
comprehensive functions for pre-processing, alignment, quality con-
trol and quantification of expression and accessibility. coupleCoC
(Zeng et al., 2020) performs co-clustering of the cells and the fea-
tures simultaneously in the source data and the target data, and it
also matches the cell clusters between the source data and the target
data through minimizing the distribution divergence. scMC (Zhang
and Nie, 2021) integrates multiple scRNA-Seq datasets or multiple
scATAC-Seq datasets, where it learns biological variation via vari-
ance analysis to subtract technical variation inferred in an unsuper-
vised manner. The three data types, including gene expression,
chromatin accessibility and methylation, have distinct characteristics
and complex relationships with each other. The aforementioned
methods for integrative analysis are not designed to integrate all
three data types. Moreover, these methods (except scACE) do not
provide statistical inference on the cluster assignments, which may
be important when there are cells at the intermediate stages during
development.

In this work, we extend scACE (Lin et al., 2020) to scAMACE
(integrative Analysis of single-cell Methylation, chromatin
ACcessibility and gene Expression). scAMACE considers the bio-
logical and technical variabilities when integrating multiple data
types, and it can provide statistical inference on the assignment of
clusters. We reason that by combining complementary biological in-
formation from multiple data types, better cell type separation can
be achieved. We present our model in Section 2, and statistical infer-
ence using the Expectation–Maximization (EM) algorithm in
Section 3. Simulation study and real data applications are presented
in Sections 4 and 5, respectively. The conclusion is presented in
Section 6.

2 Materials and methods

An overview of scAMACE is presented in Figure 1.

2.1 Model for scRNA-Seq data
The model specification for scRNA-Seq data is as the following.

xrna
kg !

zlk
ulg ! vlg ! ylg 8g;

Pðzlk ¼ 1Þ ¼ wrna
k ;

ulgjzlk ¼ 1 � Bernoulliðxrna
kg Þ;

vlgjulg � ulgBernoulliðpl1Þ þ ð1� ulgÞBernoulliðpl0Þ;
pl0 � Betaða ¼ 1;b ¼ 1Þ;pl1 � 1ðpl1 � pl0ÞBetaða ¼ 1;b ¼ 1Þ;
pðylgjvlgÞ ¼ vlgg1ðylgÞ þ ð1� vlgÞg0ðylgÞ:

We assume that there are K cell clusters in total, the random
variable zlk denotes whether cell l belongs to cluster k 2 f1; . . . ;Kg
and zl� follows categorical distribution with probability wrna

k for clus-
ter k.

xrna
kg denotes the probability that gene g is active in cluster k. ulg

is a binary latent variable representing whether gene g is active in
cell l and ulg ¼ 1 represents that it is active. vlg denotes whether gene
g is expressed in cell l and vlg ¼ 1 represents that it is expressed.

When gene g is active in cell l (ulg ¼ 1), the probability that gene
g is expressed in cell l (vlg ¼ 1) is pl1, while the probability that gene
g is expressed is pl0 if the gene is not active (ulg ¼ 0). Since genes are
more likely to be expressed when they are active, we assume that
pl1 � pl0 and the prior distributions of pl1 and pl0 are assumed to be
flat.

Let ylg denote the observed gene expression for gene g in cell l
(after normalization to account for sequencing depth and gene
length), and we assume that ylgjvlg follows a mixture distribution,

Fig. 1. Graphical representation of scAMACE
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where g1ð:Þ and g0ð:Þ are density functions of the expression level
conditional on vlg.

2.2 Model for single-cell chromatin accessibility (scCAS)

data
The model specification for scCAS data is as the following.

xacc
kg !

zlk
uig ! oig ! xig 8g;

Pðzik ¼ 1Þ ¼ wacc
k ;

uigjzik ¼ 1 � Bernoulliðxacc
kg Þ;

oigjuig � uigBernoulliðpi1Þ þ ð1� uigÞBernoulliðpi0Þ;
pi1 � Betaðaacc ¼ 1; bacc ¼ 1Þ; set pi0 ¼ 0;

pðxigjoigÞ ¼ oigf1ðxigÞ þ ð1� oigÞf0ðxigÞ;
xacc

kg jxrna
kg � Betaðlacc

kg ;/
accÞ; logitðlacc

kg Þ ¼ f ðxrna
kg Þ:

The random variables xacc
kg , zik, wacc

k and uig have similar interpre-
tations to their corresponding variables in the model for scRNA-Seq
data. We use a different notation i to represent that the cells in the
scCAS data are different from the cells in the scRNA-Seq data.

xig denotes the observed gene score for gene g in cell i. The gene
score summarizes the accessibility of the regions around the gene
body (Cusanovich et al., 2018a). We model it by a mixture distribu-
tion with density functions f1ð:Þ; f0ð:Þ and binary latent variable oig.
oig ¼ 1, and 0 represent the mixture components with high (f1) and
low (f0) gene scores, respectively. Accessibility tends to be positively
associated with activity of the gene. We model this positive relation-
ship by the distribution oigjuig. When gene g is active in cell i (uig ¼
1), the probability that it has high gene score (oig ¼ 1) is pi1; When
gene g is inactive in cell i (uig ¼ 0), the probability that it has high
gene score (oig ¼ 1) is pi0. We assume that pi1 � pi0 to represent the
positive relationship. In practice, we found that fixing pi0 ¼ 0 leads
to good real data performance, and we set pi0 ¼ 0 by default. The
prior distribution pi1 � Betaða ¼ 1; b ¼ 1Þ. In real data example 1,
the observed data is promoter accessibility and we use the same
model as that for gene score.

We assume that xacc
kg follows Beta distribution with mean lacc

kg

and precision /acc. The variable lacc
kg is connected with xrna

kg in
scRNA-Seq data through the logit function: logitðlacc

kg Þ ¼ f ðxrna
kg Þ.

Details on the specification of f ð�Þ are presented in Section 2.6.

2.3 Model for single-cell methylation data
The model specification for sc-methylation data is as the following.

xmet
kg !

zdk
udg ! mdg ! tdg 8g;

Pðzdk ¼ 1Þ ¼ wmet
k ;

udgjzdk ¼ 1 � Bernoulliðxmet
kg Þ;

mdgjudg � udgBernoulliðpd1Þ þ ð1� udgÞBernoulliðpd0Þ;
pd0 � Betaða ¼ 1;b ¼ 1Þ;pd1 � 1ðpd1 � pd0ÞBetaða ¼ 1; b ¼ 1Þ;
pðtdgjmdgÞ ¼ mdgh1ðtdgÞ þ ð1�mdgÞh0ðtdgÞ;
xmet

kg jxrna
kg � Betaðlmet

kg ;/
metÞ; logitðlmet

kg Þ ¼ gðxrna
kg Þ:

The random variables xmet
kg , zdk, wmet

k and udg have similar inter-
pretations to their corresponding variables in the model for scRNA-
Seq data. We use a different notation d to represent that the cells in
the sc-methylation data are different from the cells in the scRNA-
Seq data.

The binary random variable mdg denotes whether gene g is
methylated in cell d, and mdg ¼ 1 represents that it is methylated.
Methylation of a gene (promoter methylation/gene body methyla-
tion) tends to be negatively associated with activity of the gene, and
we model this negative relationship with the model mdgjudg: when

the gene g is active in cell d (udg ¼ 1), it is less likely to be methylated
(mdg ¼ 1), as we assume that pd1 � pd0.

tdg denotes the observed methylation level for gene g in cell d,
and we assume that tdgjmdg follows a mixture distribution, where
h1ð:Þ and h0ð:Þ are density functions conditional on mdg. The tech-
nologies/features differ for the two real data applications to be pre-
sented: promoter methylation for the gene (Pott, 2017), and gene
body methylation at non-CG sites (Luo et al., 2017).

Similar to scCAS data, we connect lmet
kg , which is the mean of

xmet
kg , and xrna

kg through the logit function: logitðlmet
kg Þ ¼ gðxrna

kg Þ.
Details on specification of gð�Þ are presented in Section 2.6.

2.4 More on model specification
Methylation and chromatin accessibility regulate gene expression
biologically. Our model is specified in the reverse order, so gene ex-
pression plays a central role. This is because scRNA-Seq data is usu-
ally less noisy compared with scCAS data and sc-methylation data,
the model specified this way will improve the clustering perform-
ance of scCAS data and sc-methylation data, without sacrificing
much the clustering performance of scRNA-Seq data.

2.5 Prior specifications
We assume the following priors for wacc;wrna;wmet;xrna

kg .

wacc � Dirð2; . . . ;2Þ;wrna � Dirð2; . . . ; 2Þ;wmet � Dirð2; . . . ;2Þ;

xrna
kg � Beta ða1 ¼ 2; b1 ¼ 2Þ

The prior specification Beta ða ¼ 2; b ¼ 2Þ improves the stability
of the EM algorithm in Section 3 over uniform distritbution.

2.6 Determination of f ðxrna
kg Þ; gðxrna

kg Þ; /acc and /met

We assume that f ðxrna
kg Þ ¼ gþ cxrna

kg þ sðxrna
kg Þ

2 and

gðxrna
kg Þ ¼ dþ hxrna

kg . The parameters fg; c; s; d; h;/acc;/metg are esti-

mated empirically from the datasets. We first set the number of clus-
ters K¼1 and use the model to estimate xrna

kg ; xacc
kg and xmet

kg

separately without considering the links on x across the three data-

sets, and then fix x̂rna
kg ; x̂acc

kg and x̂met
kg to estimate

fg; c; s; d; h;/acc;/metg by beta regression (Silvia and Francisco,
2004). The rationale for fixing K¼1 to estimating the parameters in
the functions f ð:Þ and gð:Þ that link the three modalities is that the
majority of the features may not change much across the cell types.

We fix fĝ; ĉ; ŝ; d̂; ĥ; /̂acc
; /̂

metg when implementing the EM algo-

rithm in Section 3. Estimating fg; c; s; d; h;/acc;/metg separately
from the EM algorithm improves computational efficiency and
avoids problematic local modes. Distributions of x̂rna

kg v.s. x̂acc
kg and

x̂rna
kg v.s. x̂met

kg for the two real data applications are presented in

Supplementary Figures S4 and S5, we can see from Supplementary
Figures S4 and S5 that the linear and quadratic models capture the

trends on how x̂acc
kg and x̂met

kg changes with x̂rna
kg .

2.7 The mixture components
For scCAS data, we apply f1ðxÞ ¼ 0; f0ðxÞ ¼ 1 if x¼0 and f1ðxÞ ¼
1; f0ðxÞ ¼ 0 if x>0, due to the sparsity of the data matrix.

For scRNA-Seq data, we first normalize read counts to TPM
(transcripts per million) or FPKM (fragments per kilobase of exon
model per million reads mapped) to account for sequencing depth
and gene length, then fit a two-component gamma mixture model
for the non-zero entries, through pooling ln(TPMþ1) or
ln(FPKMþ1) over all the samples, and then the remaining zero
entries are merged with the mixture component that has a smaller
mean. The log transformation takes into account the very large val-
ues in the data matrix.
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sc-methylation data represents the proportion of methylated sites
within a given genomic interval, where the entries in the data matrix
take values between 0 and 1. In the two real data applications, ma-
jority of entries in the data matrix take small values, for the methyla-
tion data in each cell, we first divide the entries by ð1� entriesÞ to
map them into ½0;1Þ. We then normalize the entries by dividing the
median of non-zero entries in each cell, and then take square of the
entries to boost the signals. This transformation helps to align the
three modalities and it improves the clustering results significantly
(Supplementary Tables S5 and S6). Because the transformed entries
represent the relative evidence of the methylation status, we input
the transformed entries directly as the ratio h1ð�Þ

h0ð�Þ in the EM algorithm.
Histograms for the distributions of the sc-methylation data are pre-
sented in Supplementary Figure S1.

2.8 Feature selection
scRNA-Seq data is usually the least noisy data type, compared with
scCAS and sc-methylation data. We use scRNA-Seq data for feature
selection before implementing scAMACE. We first cluster scRNA-
Seq data with SC3 and then use the cluster assignments to select top
1000 features with large mean shift across different clusters. More
specifically, denote the data matrix as Xn�p (xij denotes the observa-
tion for the ith cell and jth feature), the cluster assignments as Ln�1

(li ¼ k denotes that the ith cell belongs to the kth cluster) and total
number of clusters as K. For feature j, we first calculate the differ-
ence between the mean of the cells within one cell type and the
mean of cells in other cell types; the differences are represented as
DðjÞ ¼ ðd1j; . . . ;dKjÞ, where dkj ¼ meani:li¼kðxijÞ �meani:li 6¼kðxijÞ.
We take the maximum entry in D(j): mðjÞ ¼ maxk DðjÞ. When m(j)
is large, it represents that feature j has high expression in one cluster,
compared with all other clusters. Finally, we select the top 1000 fea-
tures with highest values in m(j).

2.9 Determination of the number of clusters K
We determine the number of clusters K for the three single-cell data-
sets separately before we apply scAMACE. We first run K-Means
for each K and calculate the average silhouette width of observations
(Kaufman and Rousseeuw, 1990). Silhouette width measures how
well an observation has been classified. For each observation i, the
silhouette value s(i) is calculated as follows. First denote by A the
cluster to which observation i has been assigned and then calculate

aðiÞ ¼ average Euclidean distance of i to all other objects of A:

Now consider any cluster C different from A and define

dði;CÞ ¼ average Euclidean distance of i to all objects of C:
bðiÞ ¼ minC 6¼A dði;CÞ:

Then sðiÞ ¼ bðiÞ�aðiÞ
maxðbðiÞ;aðiÞÞ. When cluster A contains only a single ob-

servation, we simply set s(i) ¼ 0. The average of s(i) for i ¼
1; 2; . . . ; n is denoted by sðkÞ, and it is called the average silhouette
width for the entire dataset. sðkÞ is used for the selection of K.
Higher value in sðkÞ indicates better clustering outcome. We select
K that has the maximum average silhouette width. Details for select-
ing K in the two real data applications are presented in
Supplementary Figures S2 and S3. When the similarity of the cell
types is high, the Silhoutte method may choose a smaller K than the
number of cell types (Supplementary Fig. S3), and we may choose a
larger K instead.

3 Statistical inference: EM algorithm

Given the observed scCAS data X , scRNA-Seq data Y , and sc-
methylation data T, we treat the latent variables
C ¼ fZ;U ;O;V ;Mg as missing data, and use the EM algorithm to
estimate the parameters U ¼ fwacc;xacc;pi;w

rna;
xrna; pl;w

met;xmet;pdg. The Q-function is QðUjUoldÞ ¼
EoldðlnðPðU;Cjobs:ÞÞÞ, where the expectation is over C under distri-
bution PðCjUold; obs:Þ.

In the M-step, we maximize QðUjUoldÞ with respect to U and
update parameters as follows.

wacc
k ¼ 1þ

P
i EoldðzikÞ

Kþ nacc
;

wrna
k ¼ 1þ

P
l EoldðzlkÞ

Kþ nrna
;

wmet
k ¼ 1þ

P
d EoldðzdkÞ

Kþ nmet
;

pi1 ¼
P

k

P
g EoldðzikuigoigÞ þ aacc � 1P

k

P
g EoldðzikuigÞ þ aacc þ bacc � 2

;

pl1 ¼
P

k

P
g EoldðzlkulgvlgÞP

k

P
g EoldðzlkulgÞ

;

pl0 ¼
P

k

P
g Eold½zlkð1� ulgÞvlg�P

k

P
g Eold½zlkð1� ulgÞ� � 1

;

pd1 ¼
P

k

P
g EoldðzdkudgmdgÞP

k

P
g EoldðzdkudgÞ

;

pd0 ¼
P

k

P
g Eold½zdkð1� udgÞmdg� � 1P

k

P
g Eold½zdkð1� udgÞ� � 1

;

xacc
kg ¼

P
i EoldðzikuigÞ þ lacc

kg /acc � 1P
i EoldðzikÞ þ /acc � 2

;

xmet
kg ¼

P
d EoldðzdkudgÞ þ lmet

kg /met � 1P
d EoldðzdkÞ þ /met � 2

:

We use grid search to update xrna
kg because its optimal value does

not have an explicit form.
We iterate between E-step and M-step until converge.

EðZi:Þ; EðZl:Þ and EðZd:Þ in the last iteration are used for clustering.
Details for the derivations are presented in Supplementary
Materials.

4 Simulation studies

To validate scAMACE, we generated three different types of simu-
lated data x; y and t following the model assumption. In the simu-
lated data, the sample sizes nx ¼ 900, ny ¼ 1100 and nt ¼ 1000. The
number of features p¼1000. The number of clusters

Kx ¼ Ky ¼ Kt ¼ 3, and wx ¼ wy ¼ wt ¼ 1
3 ;

1
3 ;

1
3

� �
. f ðxy

kgÞ ¼

gþ cxy
kg þ s ðxy

kgÞ
2 ¼ �1þ 7xy

kg � 2ðxy
kgÞ

2; gðxy
kgÞ ¼ dþ hxy

kg ¼
�2þ 5xy

kg; /x ¼ 10 and /t ¼ 10. The detailed simulation scheme is

presented in Supplementary Materials.
For the first data type, x, we set f1ðxÞ ¼ 0 if x¼0, and f0ðxÞ ¼ 0

if x¼1. We fit a two-component gamma mixture model for y using
‘gammamixEM’ in R (Young et al., 2019) and beta mixture model
for t using ‘betamix’ in R (Cribari-Neto and Zeileis, 2010; Grun
et al., 2012) to estimate the mixture densities. We apply the method
in Section 2.6 to estimate parameters in f ðxy

kgÞ and gðxy
kgÞ. We then

implement scAMACE using the estimated densities and
ĝ; ĉ; ŝ; /̂

x
; d̂; ĥ; /̂

t
.

We use purity, rand index, adjusted rand index and normalized
mutual information to evaluate the clustering results. We implement
scAMACE either on the three data types separately [‘scAMACE
(separate)’] without borrowing information or jointly [‘scAMACE
(joint)’]. Table 1 presents the simulation results. We also compared
scAMACE with other existing methods under four additional simu-
lation schemes: imbalanced datasets where the number of cells varies
across the three datasets (Supplementary Table S1), unequal num-
bers of clusters in the three datasets (Supplementary Table S2),
imbalanced cluster sizes (Supplementary Table S3) and smaller num-
ber of features (Supplementary Table S4). scAMACE performs the
best compared with the other methods in the above simulation set-
tings. This is likely due to integration of information from all three
datasets.

In the following two real data applications, we apply methods
mentioned in Section 2.7 instead of fitting a beta mixture model to
sc-methylation data.
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5 Application to real data

5.1 Application 1: K562 and GM12878 scRNA-Seq,

scATAC-Seq and sc-methylation data
We evaluate scAMACE by jointly clustering scRNA-Seq, scATAC-
Seq and sc-methylation data generated from two cell types, K562
and GM12878 (Buenrostro et al., 2015; Li et al., 2017; Pott, 2017).
We set K¼2, and use the true cell labels as a benchmark to evaluate
the performance of the clustering methods. Tables 2 and 3 presents
the clustering results. scAMACE performs well in seperating the cell
types. scRNA-Seq is perfectly separated, while there are only three
cells that are not classified correctly in the sc-methylation dataset
and eleven misclassifications in the scATAC-Seq dataset. In add-
ition, the two cell types are correctly matched across the three data-
sets. Compared with the clustering results given by implementing
scAMACE separately on the three datasets, jointly clustering the

three datasets improves the overall clustering performance, especial-
ly for scATAC-Seq data, which is likely due to the integration of in-
formation across the three datasets.

We compared scAMACE with Seurat V3 (Stuart et al., 2019),
LIGER (Welch et al., 2019) and scMC (Zhang and Nie, 2021),
which are methods for integrative analysis of single-cell data.
Examples were presented in Seurat V3 (Stuart et al., 2019) where
scRNA-Seq and scATAC-Seq data were integrated. So we imple-
mented Seurat V3 to integrate these two data types. Seurat V3 did
not perform well for scATAC-Seq data (Table 2). Seurat V3 is not
applicable to integrate sc-methylation data with the other two data-
sets. Examples were presented in LIGER (Welch et al., 2019) where
scRNA-Seq data and sc-methylation data were integrated. So we
implemented LIGER to integrate these two data types. LIGER did
not perform well on sc-methylation data (Table 2). We also imple-
mented LIGER to integrate all three datasets, and LIGER still did
not perform well on sc-methylation data (Supplementary Tables S7
and S8), this may be due to the small sample size in sc-methylation
data. scMC (Zhang and Nie, 2021) was developed for the integra-
tive analysis of multiple single-cell datasets with the same data type.
Since the features in scATAC-Seq data, scRNA-Seq data and sc-
methylation data are linked, scMC can be implemented in principle.
scMC did not perform well on scATAC-Seq data and sc-methylation
data (Supplementary Tables S7 and S8). This may be due to the fact
that the characteristics of different data types are very different, and
ignoring the difference leads to suboptimal performance.

5.2 Application 2: mouse neocortex scRNA-Seq, sci-

ATAC-Seq and sc-methylation data
In this example, we evaluate scAMACE for the joint analysis of
single-cell datasets where the cell types are different across the
datasets.

We collected single-cell datasets generated from mouse neocor-
tex. There are five cell types in scRNA-Seq data (Tasic et al., 2018),
including astrocytes (Astro), glutamatergic neurons in layer 4 (L4),
corticothalamic glutamatergic neurons in layer 6 (L6 CT), oligoden-
drocytes (Oligo) and Pvalbþ GABAergic neurons (Pvalb). There are
three cell types in sci-ATAC-Seq data (Cusanovich et al., 2018b),
including astrocytes (Astro), excitatory neurons CPN (Ex. neurons

Table 1. Mean and SD (in parentheses) of purity, rand index, adjusted rand index (ARI) and normalized mutual information (NMI) for 50

independent runs are shown

Data type Purity Rand index ARI NMI

x 0.690(0.025) 0.683(0.018) 0.288(0.041) 0.245(0.035)

scAMACE (joint) y 0.897(0.009) 0.874(0.010) 0.716(0.022) 0.637(0.022)

t 0.704(0.021) 0.693(0.016) 0.310(0.034) 0.265(0.030)

x 0.659(0.028) 0.662(0.018) 0.241(0.041) 0.205(0.034)

scAMACE (separate) y 0.838(0.012) 0.810(0.012) 0.573(0.028) 0.498(0.026)

t 0.643(0.020) 0.651(0.012) 0.216(0.028) 0.185(0.024)

x 0.383(0.020) 0.558(0.004) 0.007(0.008) 0.008(0.007)

K-means y 0.714(0.036) 0.702(0.026) 0.331(0.058) 0.283(0.049)

t 0.388(0.021) 0.560(0.004) 0.010(0.008) 0.106(0.008)

x 0.360(0.011) 0.488(0.047) 0.001(0.001) 0.003(0.002)

Hierarchical clustering y 0.366(0.011) 0.520(0.026) 0.002(0.002) 0.003(0.002)

t 0.360(0.010) 0.532(0.022) 0.001(0.001) 0.002(0.001)

x 0.395(0.020) 0.561(0.004) 0.012(0.009) 0.013(0.008)

Spectral clustering y 0.722(0.018) 0.708(0.018) 0.344(0.041) 0.295(0.034)

t 0.400(0.025) 0.562(0.005) 0.014(0.012) 0.015(0.011)

Table 2. Clustering tables for K562, GM12878 scRNA-Seq, scATAC-

Seq and sc-methylation data

scAMACE (joint) scAMACE (separate)

1 2 1 2

scATAC-Seq GM12878 368 5 254 119

K562 6 660 171 495

scRNA-Seq GM12878 128 0 128 0

K562 0 73 0 73

sc-methyl GM12878 16 3 7 12

K562 0 11 11 0

Seurat V3 LIGER

1 2 3 1 2 3

scATAC-Seq GM12878 346 27

K562 499 167

scRNA-Seq GM12878 101 2 25 127 0 1

K562 0 73 0 10 63 0

sc-methyl GM12878 19

K562 11

Table 3. Comparison of the performance of different methods on the K562, GM12878 dataset by adjusted rand index

scAMACE (joint) scAMACE (separate) Seurat V3 LIGER scMC

scATAC-Seq 0.958 0.192 0.033 0.000

scRNA-Seq 1.000 1.000 0.713 0.800 0.771

sc-methyl 0.628 0.260 0.000 0.000
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CPN) and oligodendrocytes (Oligo). There are three cell types in sc-
methylation dataset (Luo et al., 2017), including excitatory neurons
in layer 4 (L4), excitatory neurons in layer 6 [labeled as L6-2 in
(Luo et al., 2017)] and Pvalbþ GABAergic neurons (Pvalb). In the
three datasets, the optimal numbers of clusters chosen by the
Silhoutte method, K̂ ¼ 2, tend to be smaller than the numbers of cell
types, which is likely due to the similarity of the neuronal subtypes.
We set K¼5 when we implement scAMACE, instead of the value
given by the Silhoutte method. The true cell labels are used as a bench-
mark for evaluating the performance of the clustering methods.

The clustering results are presented in Tables 4 and 5. Even
though K is larger than the number of cell types in sci-ATAC-Seq
data and sc-methylation data, scAMACE still determines the correct
number of cell types in sci-ATAC-Seq data. Although the cells in sc-
methylation data fall into four clusters, there are only seven cells in
cluster 4. Cell types in all three datasets are well separated. Astrocytes
and oligodendrocytes are matched across scRNA-Seq data and sci-
ATAC-Seq data. Excitatory neurons CPN in sci-ATAC-Seq data are
matched with glutamatergic neurons in layer 4 in the scRNA-Seq
data. We note that most excitatory neurons are glutamatergic neurons.
Excitatory neurons in layers 4 and 6, and Pvalbþ GABAergic neurons
are matched between scRNA-Seq data and sc-methylation data.

Compared with implementing scAMACE on the three datasets
separately, the joint analysis leads to improvement in clustering, es-
pecially for sc-methylation dataset. This is likely because the joint
model borrows information across the three datasets. Similar to ap-
plication 1, we implemented Seurat V3 to integrate scRNA-Seq and

sci-ATAC-Seq data. Seurat V3 (Stuart et al., 2019) does not perform
well on sci-ATAC-Seq data (Table 4). We implemented LIGER
(Welch et al., 2019) to integrate scRNA-Seq and sc-methylation
data. LIGER does not separate excitatory neurons in layer 4 and
layer 6 in sc-methylation data (Table 4). We also integrated all three
datasets by LIGER (Welch et al., 2019) and scMC (Zhang and Nie,
2021). LIGER and scMC did not perform well (Supplementary
Tables S9 and S10). Overall, scAMACE performed the best com-
pared with the other methods.

5.3 Computational cost
LIGER, Seurat V3 and scMC only provide the versions that are
implemented on CPU, while scAMACE can be implemented on both
CPU and GPU. We summarized the computational time for
scAMACE (CPU version and GPU version in python), LIGER
(Welch et al., 2019), Seurat V3 (Stuart et al., 2019) and scMC
(Zhang and Nie, 2021) (Supplementary Tables S11–S13). We imple-
mented scAMACE, LIGER and scMC to cluster the three types of
data simultaneously, and we implemented Seurat V3 to cluster
scCAS data and scRNA-Seq data.

On real data application 2 (�8000 cells), the computational time
for scAMACE are 418.858 s on one 3.4 GHz Intel Xeon Gold CPU
and 69.652 s on one 3.1 GHz Dual Intel Xeon Gold GPU.
Compared with LIGER (80.389 s on one 3.4 GHz Intel Xeon Gold
CPU), scMC (372.323 s on one 3.4 GHz Intel Xeon Gold CPU) and
Seurat V3 (116.688 s for scRNA-Seq and sci-ATAC-Seq data on one

Table 4. Clustering tables for the mouse neocortex scRNA-Seq, sci-ATAC-Seq and sc-methylation data

scAMACE (joint) scAMACE (separate)

1 2 3 4 5 1 2 3 4 5

sci-ATAC-Seq Astro 550 0 1 550 0 1

Ex. neurons CPN 0 1391 0 1 1390 0

Oligo 0 1 457 0 0 458

scRNA-Seq Astro 368 0 0 0 0 368 0 0 0 0

L4 0 1401 0 0 0 0 1401 0 0 0

L6 CT 0 0 960 0 0 0 0 960 0 0

Oligo 25 0 0 66 0 27 0 0 64 0

Pvalb 0 0 0 0 1337 0 0 0 0 1337

sc-methyl L4 411 1 0 0 412

L6-2 20 703 6 0 729

Pvalb 0 0 1 153 154

Seurat V3 LIGER

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7

sci-ATAC-Seq Astro 296 29 1 2 223

Ex. neurons CPN 110 461 243 0 577

Oligo 64 90 1 0 303

scRNA-Seq Astro 0 0 0 0 0 368 0 0 0 6 0 0 362 0

L4 1028 0 0 0 373 0 0 0 0 0 1401 0 0 0

L6 CT 0 960 0 0 0 0 0 0 0 2 0 958 0 0

Oligo 0 0 0 0 0 0 0 60 31 31 0 0 0 60

Pvalb 0 0 647 498 0 0 192 0 0 1337 0 0 0 0

sc-methyl L4 0 11 679 0

L6-2 0 13 399 0

Pvalb 68 0 0 86

Table 5. Comparison of the performance of different methods on the mouse neocortex dataset by adjusted rand index

scAMACE (joint) scAMACE (separate) Seurat V3 LIGER scMC

sci-ATAC-Seq 0.998 0.998 0.058 0.019

scRNA-Seq 0.997 0.997 0.697 0.983 0.145

sc-methyl 0.932 0.000 0.316 0.001
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3.4 GHz Intel Xeon Gold CPU), scAMACE has competitive compu-
tational speed, especially the GPU version.

Next, we generated a dataset with sample size¼30,000
(nacc ¼ nrna ¼ nmet ¼ 10 000) by sampling the cells with replacement
from real data application 2. The computational time for scAMACE
are 1534.631 s on one 3.4 GHz Intel Xeon Gold CPU and 250.089 s on
one 3.1 GHz Dual Intel Xeon Gold GPU. Compared with LIGER
(555.574s on one 3.4 GHz Intel Xeon Gold CPU), scMC (3667.878 s
on one 3.4GHz Intel Xeon Gold CPU) and Seurat V3 (290.640 s for
scRNA-Seq and sci-ATAC-Seq data on one 3.4 GHz Intel Xeon Gold
CPU), scAMACE has competitive computational speed on datasets
with larger scale.

6 Conclusion

Unsupervised methods including dimension reduction and clustering
are essential to the analysis of single-cell genomic data as the cell
types are usually unknown. We have developed scAMACE, a
model-based approach for integratively clustering single-cell data on
chromatin accessibility, gene expression and methylation.
scAMACE provides statistical inference of cluster assignments and
achieves better cell type separation combining biological informa-
tion across different types of genomic features. In the two real data
applications, the scRNA-Seq data are generated from the SMART-
Seq platform (Li et al., 2017; Tasic et al., 2018). To implement
scAMACE on UMI-based scRNA-Seq data (10x data), we may need
to modify the distributions of the mixture components g0ð�Þ and
g1ð�Þ. The cells in our real data examples are differentiated and ma-
ture cells. In the future, we will investigate the performance of
scAMACE on immature cells undergoing differentiation.

Data availability

Real data application 1 human K562-GM12878 scRNA-Seq data was
retrieved from NCBI Gene Expression Omnibus (GEO) with the acces-
sion number GSE81861, scATAC-Seq data was collected from GEO
with the accession number GSE65360, and sc-methylation data is avail-
able at GEO with the accession number GSE83882. Real data applica-
tion 2 mouse neocortex scRNA-Seq data are available at GEO with the
accession number GSE115746, scATAC-Seq datasets were downloaded
from https://atlas.gs.washington.edu/mouse-atac/data/, and sc-methyla-
tion data are available at GEO with the accession number GSE97179.
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