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Abstract

Motivation: A major goal of personalized medicine in oncology is the optimization of treatment strategies given
measurements of the genetic and molecular profiles of cancer cells. To further our knowledge on drug sensitivity,
machine learning techniques are commonly applied to cancer cell line panels.

Results: We present a novel integer linear programming formulation, called MEthod for Rule Identification with
multi-omics DAta (MERIDA), for predicting the drug sensitivity of cancer cells. The method represents a modified
version of the LOBICO method and yields easily interpretable models amenable to a Boolean logic-based interpret-
ation. Since the proposed altered logical rules lead to an enormous acceleration of the running times of MERIDA
compared to LOBICO, we cannot only consider larger input feature sets integrated from genetic and molecular
omics data but also build more comprehensive models that mirror the complexity of cancer initiation and progres-
sion. Moreover, we enable the inclusion of a priori knowledge that can either stem from biomarker databases or can
also be newly acquired knowledge gathered iteratively by previous runs of MERIDA. Our results show that this ap-
proach does not only lead to an improved predictive performance but also identifies a variety of putative sensitivity
and resistance biomarkers. We also compare our approach to state-of-the-art machine learning methods and dem-
onstrate the superior performance of our method. Hence, MERIDA has great potential to deepen our understanding
of the molecular mechanisms causing drug sensitivity or resistance.

Availability and implementation: The corresponding code is available on github (https://github.com/unisb-bioinf/
MERIDA.git).

Contact: klenhof@bioinf.uni-sb.de or len@bioinf.uni-sb.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a heterogeneous class of diseases that is characterized by
the so-called ‘Hallmarks of Cancer’ (Hanahan and Weinberg,
2011). This heterogeneity can be observed on different levels: in be-
tween different patients (inter-patient heterogeneity), in between dif-
ferent tumors (inter-tumor heterogeneity) and even within the same
tumor (intra-tumor heterogeneity). This heterogeneity of tumors
poses a challenge to cancer therapy optimization. In large scale proj-
ects such as ‘The Cancer Genome Atlas’ program, cancer cells from
human tumors were genetically and molecularly profiled to further
our understanding of cancer development and treatment (Campbell
et al., 2020). While this has proven extremely useful for various pur-
poses, the elucidation of predictive biomarkers for drug sensitivity
has mainly focused on analyses of large cancer cell line panels
(Costello et al., 2014; Iorio et al., 2016; Sharma et al., 2010). These

panels have been exposed to a variety of drugs. Two of the largest
publicly available cancer cell line panels to date are the ‘Genomics
of Drug Sensitivity in Cancer Database’ (GDSC) and the ‘Cancer
Cell Line Encyclopedia’(CCLE)/‘Cancer Therapeutics Response
Portal’(CTRP) (Ghandi et al., 2019; Iorio et al., 2016; Rees et al.,
2016). These databases provide molecular profiles as well as
pharmacological data of cell lines.

Machine learning methods have been applied to these panels in
order to (i) predict the drug response for cell lines and (ii) extract
features that link molecular characteristics to the drug response.
These two tasks are referred to as prediction and inference, respect-
ively. Ideally, a model offers both: good predictive performance and
well interpretable prediction models. A common drawback of many
machine learning methods is that their results are difficult to inter-
pret. Neural networks for example often deliver well performing
models in terms of statistical performance measures. However, the
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interpretation of complex prediction models with a high number of
features is often difficult.

In contrast, methods such as k-TSP (Tan et al., 2005), MOCA
(Masica and Karchin, 2013) and LOBICO (Knijnenburg et al.,
2016) aim at delivering models that give interpretable rules as out-
put. The k-TSP approach relies on observed rank differences of gene
expression values to formulate rules for drug sensitivity prediction.
In contrast, MOCA uses copy number variations, mutations and dis-
cretized gene expression values to iteratively combine them into one
many-gene-marker of drug response using a forward feature selec-
tion based on a statistical test. LOBICO (Knijnenburg et al., 2016)
pursues a similar strategy. In this approach, an integer linear pro-
gramming (ILP) formulation for the synthesis of a Boolean function
has been proposed to tackle the drug sensitivity prediction problem.
The output of this ILP is a logic formula in disjunctive normal form
that represents a rule for the prediction of sensitivity to a particular
drug. Due to its runtime, LOBICO is only suitable to construct mod-
els with a relatively small number of features.

While easily interpretable models, which reflect the molecular
mechanisms of drug sensitivity, are desirable, overly small models
may not suffice to mirror the complex molecular mechanisms that
induce cancer progression. Hence, larger, but yet easily interpretable
models are required for the analysis of cancer cell sensitivity.

To this end, we have developed MEthod for Rule Identification
with multi-omics DAta (MERIDA), a new ILP approach that is
based on the LOBICO method. Similar to LOBICO, our ILP relies
on binarized input and output features and generates a logic for-
mula, which can be interpreted as a rule that specifies under which
conditions a cell line is sensitive or resistant to a drug. Due to our
new ILP formulation, which represents a restricted Boolean function
synthesis problem, the runtime of our method is considerably
reduced in comparison to LOBICO (up to a factor of 1000).
Therefore, MERIDA is able to consider more input features and
build more comprehensive models in general. Moreover, we investi-
gated how the integration of a priori knowledge into the Boolean
formulas affects the prediction quality of our approach. To this end,
we leveraged information from various well-established cancer-
related databases: IntOGen (Gonzalez-Perez et al., 2013), COSMIC
(Tate et al., 2019), CIViC (Griffith et al., 2017), OncoKB
(Chakravarty et al., 2017) and the Cancer Genome Interpreter
(CGI) (Tamborero et al., 2018). Due to the improved runtime,
MERIDA can be iteratively applied, i.e. biomarkers (features)
detected in previous runs can be integrated as prior knowledge into
the next run. Our results show that the iterative approach does not
only improve the statistical performance but also identifies more
comprehensive sets of putative sensitivity biomarkers.

Amongst others, we applied MERIDA to all mTOR pathway
inhibitors of the GDSC database and report their performance in
terms of standard statistical performance measures in a 5-fold cross
validation as well as on a test set. We demonstrate that the perform-
ance of our method is similar or superior to LOBICO. Moreover, we
show that MERIDA clearly outperforms standard machine learning
approaches such as random forests (Breiman, 2001) and k-nearest
neighbors (Fix and Hodges, 1952). In addition, our models can give
novel insights into the molecular mechanisms causing sensitivity or
resistance to anti-cancer compounds.

2 Materials and methods

2.1 Data
For our analyses, we use data from the GDSC database, a large can-
cer cell line panel that has been thoroughly molecularly profiled and
screened with hundreds of different anti-cancer compounds. Based
on the used drug sensitivity assay, two sub datasets can be distin-
guished: GDSC1 (resazurin assay and Syto60 assay) and GDSC2
(CellTitreGlo). We downloaded the pre-processed mutation, copy
number variation (CNV), gene expression and drug sensitivity data
from the GDSC website. Further information on the data can be
found in Supplementary Material S1.

Information on predictive biomarkers of drug sensitivity as well
as information on the oncogenicity of mutations was downloaded
from the CIViC (Griffith et al., 2017), OncoKB (Chakravarty et al.,
2017), COSMIC (Tate et al., 2019) and CGI (Tamborero et al.,
2018) websites. A list of general cancer driver genes was retrieved
from the IntOGen (Gonzalez-Perez et al., 2013) website and a spe-
cific list of genes affected by copy number alterations was obtained
from the Supplementary Material of Sanchez-Vega et al. (2018).

2.2 Data processing
In the following, the processing of the data will be briefly summar-
ized. A more detailed description is given in Supplementary Material
S1. In particular, we will outline how we obtain binarized input and
output features for our method. An overview of the required steps is
provided in Figure 1.

Response vector: For each anti-cancer compound, we generate
one binarized drug response vector that specifies for each cell line
whether it is sensitive (1) or resistant (0). We obtain this vector by
binarizing the logarithmized IC50 values provided by the GDSC
database through usage of a threshold that divides the cell lines into
sensitive and resistant ones. To guarantee comparability of the
results to LOBICO, we calculate this threshold with the same pro-
cedure as described by Knijnenburg et al. using a custom R-script.

Input feature matrix: The binarized input feature matrix of di-
mension N�P contains gene expression, CNV and mutation fea-
tures. The N rows of this matrix correspond to the cell lines and the
P columns to the features, i.e. each feature is represented by a binary
vector of all considered cell lines.

Gene expression features: The gene expression features of the
matrix are obtained by performing the following steps:

• We consider only expression data of genes that belong to the

IntOGen cancer driver gene list (459 genes).
• For each of the selected genes, two binary vectors are added to the

feature matrix: one binary vector that specifies whether the gene is

up-regulated in the considered cell lines (1) or not (0) and one bin-

ary vector that specifies whether the gene is down-regulated (1) or

not (0). The binarization was accomplished by the calculation of

gene-wise z-scores and selection of the top 5% up- and down-

regulated cell lines per gene. Note that we used only the training

cell lines to determine the sample mean and standard deviation

and also use these values to obtain the z-score for the test set.

In summary, we obtain up to 918 gene expression features.
Copy number features: For the GDSC CNV data, we consider only

genes that are listed in the copy number driver list by Sanchez-Vega et al.
(2018) (140 genes). For each of these genes, two binary feature vectors
are added to the feature matrix: one vector that represents for each cell
line whether a copy number gain is present and one vector for copy num-
ber loss. Hence, this leads to a CNV feature list with up to 280 elements.

Mutation features: There exists a tremendous amount of putative
cancer-associated mutations. Using all these mutations as single fea-
tures in the matrix would lead to a very sparse, high dimensional
matrix on which statistical learning might be difficult. In order to
counteract this issue, we reduce the size of the matrix. First, we con-
sider only genes contained in the IntOGen driver list (459 genes) and
gather all mutations assigned to these genes in a filtered mutation
list. For each such gene, we combine mutations with similar func-
tional annotations into four composite feature vectors that represent
the four oncogenicity states: oncogenic gain-of-function, oncogenic
loss-of-function, neutral and status unknown. We use the annota-
tions from CGI, CIViC, COSMIC and OncoKB to obtain the com-
posite features by performing the steps described below:

• We annotate the alterations from the filtered mutation list with

an oncogenicity status from the four mentioned states.
• Afterwards, all mutations with the same annotation in one par-

ticular gene are merged into one binary feature vector.
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Consequently, the resulting feature vector contains a 1 iff at least

one of the alterations is present in a cell line and 0 otherwise.

Hence, we consider up to 1836 mutation features.
Integration of a priori knowledge: The previous explanations

outlined how a matrix for a drug without a priori knowledge is
built. If prior knowledge on predictive biomarkers for sensitivity or
resistance is available, we perform additional processing steps. We
first define a sensitivity status for the features in the filtered CNV
and mutation lists. This sensitivity status can have one of the follow-
ing states: sensitive (alteration is predictive of positive drug re-
sponse), resistant (alteration is predictive of negative drug response)
and status unknown. For all alterations with unknown status, we
perform the construction of the feature matrix as described above.
However, all sensitive alterations can be merged into one binary fea-
ture vector that contains a 1 iff at least one of the alterations is pre-
sent in the considered cell line and 0 otherwise. Analogously, a
composite vector for the resistant alterations is built.

Model training and testing: For each drug, we divide the whole
dataset into a test set (20% of the samples) and a training set (80%
of the samples) on which the 5-fold cross validation is performed.
The test set was chosen randomly while preserving the underlying
tissue distribution (stratified selection with respect to cancer tissue).
In general, our training matrices consist of approximately 650 cell

lines and 1500 features on average (see Supplementary Material S1

for the exact dimensions).
Note that we investigate only cell lines with full information for

all considered datasets.

2.3 MEthod for Rule Identification with multi-omics

DAta
Similar to LOBICO (Knijnenburg et al., 2016), the goal of our novel

approach is to generate an interpretable logic rule for each drug that
explains drug sensitivity and resistance. However, by reducing the

runtime, we enable the inclusion of far more input features and de-
rive larger rules. In addition, we provide the possibility to include
prior knowledge, which increases the comprehensiveness of the out-

put rules even more. To achieve these goals, we formulate an ILP
that aims at identifying two sets of features, a first set that causes or

increases sensitivity and a second set that causes or increases resist-
ance to a drug. In the following, we will briefly explain the objective
function and the constraints of the ILP summarized in Figure 1.

Given a specific drug and cell lines C ¼ fc1; . . . ; cNg, let Y 2 R
N

be the vector with the logarithmized IC50 values and y 2 f0; 1gN be

the binarized drug response vector (1: sensitive, 0: resistant)
obtained through comparison of Y with a drug-specific IC50 thresh-
old t calculated as described in Section 2.2. We define the sensitivity

Fig. 1. This figure depicts the processing pipeline and a summary of the ILP formulation. We focus on cancer-associated genes using literature annotations. In addition, we an-

notate the mutation and CNV data with oncogenicity information as well as sensitivity/resistance information and binarize all features appropriately. Our ILP formulation

then determines a set of sensitivity-associated and a set of resistance-associated alterations for prediction by deriving a logic rule from the binarized features
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prediction vector y0 by using an objective function that minimizes
the prediction error:

min
X

8cn :yn¼0

wn � y0n �
X

8cn :yn¼1

wn � y0n (1)

Here, the weights wn repesent a cell line specific importance fac-
tor that depends on the distance from the binarization threshold t.
Thereby, a part of the continuous information from the original
IC50 value can be kept in the model. Knijnenburg et al. calculate the
weights by applying the following formula

wn ¼
jYn � tj

2 �
P
8cm :ym¼yn

jYm � tj : (2)

The weight wn corresponds to the absolute difference of the loga-
rithmized IC50 value Yn from the threshold t normalized on a per
class basis (classes: sensitive, resistant) such that the sum of all
weights within the same class equals 0.5.

While LOBICO uses only linear weights, we also consider quad-
ratic and cubic weight functions:

wn ¼
jYn � tjv

2 �
P
8cm :ym¼yn

jYm � tjv (3)

with v 2 f2; 3g. The usage of a quadratic or cubic weight function
can be advantageous as such a function puts more emphasis on cell
lines that are further away from the threshold.

MERIDA determines the sensitivity vector y0 by deriving a logic-
al rule that consists of two main parts: a selection of sensitivity-
inducing features and a selection of resistance-inducing features that
together determine the drug response. We will first explain how se-
lection variables for the features can be defined. Afterwards, we will
describe how these can be combined into sensitivity- and resistance-
associated variables.

Let F ¼ ff1; . . . ; fPg be the set of all features, for each fi 2 F we
define selection variables that indicate whether a feature should be
regarded as sensitivity-associated or resistance-associated as follows:

ai ¼
(

1 iffeaturefiisselectedassensitivity� associated
0 else

(4)

and

bi ¼
(

1 iffeaturefiisselectedasresistance� associated
0 else

: (5)

We ensure that a feature cannot be part of the sensitivity- and
resistance-associated feature set simultaneously by the following
constraint

ai þ bi � 1; 8fi 2 F: (6)

Moreover, we restrict the total number of features to be selected:X
fi2F

ai þ bi � M: (7)

Note that M is the only parameter of our model that has to be
determined via hyperparameter tuning, e.g. through a cross
validation.

Moreover, we offer the possibility to integrate a priori
knowledge (predictive biomarkers) into the ILP formulation. This a
priori knowledge imposes constraints on the corresponding selection
variables, e.g. if it is known that a certain mutation feature fi is
responsible for the sensitivity to the investigated drug, ai will be
set to 1.

Based on all the selection variables ai and bi, we define two sum-
mary vectors that combine the sensitivity and resistance variables,
respectively. In our model, the binary vector s1; . . . ; sN represents
the summary of the sensitivity-associated selection variables ai

resulting from a logical OR between them. The vector components
sn can be calculated via a standard ILP formulation for logical ORs:

sn �
X
fi2Gn

ai � jGnj � sn; 8cn 2 C: (8)

Here, Gn is the set of features that is altered in cell line n. The lo-
gical OR ensures that sn is equal to 1 if at least one sensitivity-
associated alteration is contained in Gn, i.e.

P
fi2Gn

ai � 1.
Analogously, we calculate the binary vector r1; . . . ; rN that

depicts for each cell line n if at least one of the resistance-associated
features is present:

rn �
X
fi2Gn

bi � jGnj � rn; 8cn 2 C (9)

Finally, assuming that a cell line is only sensitive to a drug if a
sensitivity-inducing but no resistance-causing alteration is present,
we combine the vectors s and r to the binary prediction vector y0 by
a logical AND of the vector components of s and the negation of r:

0 � sn þ ð1� rnÞ � 2 � y0n � 1; 8cn 2 C: (10)

Here, y0n will be equal to 1 iff the cell line n is predicted to be sen-
sitive and 0 otherwise.

3 Results

The number of known cancer-associated genetic and molecular var-
iants is enormous (Chakravarty et al., 2017; Gonzalez-Perez et al.,
2013; Griffith et al., 2017; Tamborero et al., 2018; Tate et al.,
2019). Apparently, they do not only determine cancer development
and progression but also influence therapy responsiveness. Hence,
our major goal was the development of an efficient approach that is
able to handle this variety of features and also to generate compre-
hensive rules explaining drug sensitivity and resistance. For this pur-
pose, we developed MERIDA, a novel ILP formulation for drug
sensitivity prediction in cancer. While our approach is similar to
LOBICO (see Supplementary Material S3 for a detailed compari-
son), our method has a significantly reduced runtime, which allows
MERIDA to handle large feature sets and construct comprehensive
rules. In addition to that, MERIDA offers the possibility to include a
priori knowledge.

In the following sections, we will first discuss the runtime advan-
tages of our method in comparison to LOBICO. Then, we will
examine the statistical performance of both methods on 10 different
drugs. We also show that our method performs significantly better
than state-of-the-art machine learning methods such as random for-
ests and k-nearest neighbors using 41 drugs. Lastly, we show that
MERIDA is able to identify biomarkers for drug sensitivity.

3.1 Runtime analysis
The runtime experiment was conducted on a small dataset with 350
cell lines and a varying input matrix size in the range from 25 to 400
features (mutation features only) with a stepsize of 25. Each experi-
ment was repeated 10 times if not prohibited by a high runtime. The
calculations were performed on a compute server with four Intel(R)
Xeon(R) CPU E5-4657L v2 processors with 2.40 GHz clock
rate. For the ILP formulation and solution, IBM ILOG CPLEX
Optimization Studio V12.6.2 for Cþþ was employed. CPLEX
was run using 32 cores and a deterministic parallel mode. Further in-
formation on the preparation of the experiment is given in
Supplementary Material (see Supplementary Material S2).

We compared LOBICO and MERIDA with respect to the num-
ber of selectable features and the different weight functions. In par-
ticular, we varied the number of selectable features, i.e. the model
parameter M of MERIDA (cf. Section 2.3) and the model parame-
ters K and M of LOBICO. Here, K is the number of disjunctive
terms and M the number of elements per disjunctive term as defined
by Knijnenburg et al. In Figure 2, we show the results of the 4-fea-
ture sized model (K ¼ 2;M ¼ 2) for LOBICO, which is the largest
model with both M>1 and K>1 that we could solve in a reason-
able amount of time. In Supplementary Material, further parameter

3884 K.Lenhof et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/21/3881/6342406 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab546#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab546#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab546#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab546#supplementary-data


combinations and the influence of the two model parameters of
LOBICO are shown (cf. Supplementary Material S2).

In general, MERIDA (linear weight function) is considerably
faster than LOBICO (linear weight function). On average across the
different input matrix sizes (25–400 features with stepsize of 25),
MERIDA can obtain a 4-feature sized model (M¼4) 3.61 times
faster than LOBICO’s K ¼ 1;M ¼ 4 model, 71.79 times faster than
LOBICO’s K ¼ 4;M ¼ 1 model and 641.97 times faster than
LOBICO’s K ¼ 2;M ¼ 2 model. By using the quadratic or cubic
function for MERIDA, further speed-ups up to a factor of 1147.6
can be achieved (cf. Supplementary Material S2). The most extreme
values for speed-up can be observed when comparing LOBICO’s
K ¼ 2;M ¼ 2 model (linear weight function) with MERIDA’s M¼4
model (cubic weight function) for the input matrix size of 400 fea-
tures. Here, a speed-up factor of 5775 could be achieved. Hence, we
can consider more features in the input matrix and construct larger
models using our ILP formulation. Moreover, since MERIDA has
only one hyperparameter (cf. Section 2.3), fewer models need to be
fit during tuning in comparison to LOBICO with two
hyperparameters.

As expected, the runtime is dependent on the used weight func-
tion. The original linear weight function of LOBICO consistently
has the highest runtime for all tested parameter combinations. For a
4-feature sized model, the runtime of LOBICO can on average be
accelerated by a factor of 2.17 and 3.47 by using a quadratic or
cubic weight function, respectively. For MERIDA, the use of a quad-
ratic or cubic weight function is also advantageous. MERIDA with a
quadratic or cubic weight function is on average 1.35 and 1.65 times
faster, respectively. Furthermore, the runtime of MERIDA is rising
more slowly with the number of features for all used weight
functions.

For MERIDA, we additionally analyzed if the runtime can be
improved by iteratively increasing the model sizes, i.e. we add fea-
tures identified in previous runs of MERIDA as fixed a priori know-
ledge to the next model to be fitted. By the iterative application, we
can generate more comprehensive models with larger values of M
significantly faster than in one shot (by a factor of 25 on average). In
addition, the resulting models deliver similar features compared to
the models generated in one shot. The results and a detailed explan-
ation of this analysis are presented in Supplementary Material S2.

3.2 Statistical performance analysis
In order to show that MERIDA gains information on mechanisms
that determine drug sensitivity and resistance of cell lines, we con-
centrate our analyses on a specific drug class: mTOR pathway inhib-
itors. We focused on the mTOR pathway because it plays a pivotal
role in cancer development and progression (Sanchez-Vega et al.,
2018; Vogelstein et al, 2013). Moreover, there is already compre-
hensive knowledge on predictive biomarkers for some of the mTOR
inhibitors. Due to our ILP formulation, we can directly integrate this
information into our models. We predicted the drug response of all
mTOR pathway inhibitors in the GDSC dataset using our MERIDA
method (see Supplementary Material S2 for detailed results). In the
following, we present the results for 6 mTOR inhibitors: Rapamycin

(GDSC2), Temsirolimus (GDSC1), Omipalisib (GDSC1), AZD8055
(GDSC1), Dactolisib (GDSC2) and Voxtalisib (GDSC1).

For most of the drugs in the GDSC dataset and also for all of
the drugs mentioned above except for Omipalisib, there is an un-
favorable ratio between sensitive and resistant cell lines (see
Supplementary Figs S1 and S2 in Supplementary Material S1). More
precisely, with an average sensitive-to-resistant ratio of 1:10 per
drug, there are far more resistant than sensitive cell lines. This poses
a challenge to statistical learning methods for balancing the statistic-
al sensitivity and specificity measures and hence also for the identifi-
cation of drug sensitivity-associated factors. To investigate the
performance on a more balanced dataset, we decided to additionally
analyze the four drugs with the highest number of sensitive cell lines:
the p53 (R175) mutant reactivator NSC319726 (GDSC1), the
rRNA synthesis inhibitor CX-5461 (GDSC1), the selective PARP1/2
inhibitor Niraparib (GDSC2) and the PARP inhibitor Talazoparib
(GDSC2) (cf. Supplementary Figs S1 and S2 in Supplementary
Material S1).

In general, we prepared our multi-omics datasets as described in
Section 2.2, which means that we distinguish between drugs with
and without a priori knowledge. For drugs without prior biomarker
knowledge, we constructed one input feature matrix and conse-
quently train LOBICO and MERIDA on this matrix (Setting 1). For
drugs with prior knowledge (Rapamycin, Temsirolimus, Dactolisib,
CX-5461 and Talazoparib), we construct two feature matrices, one
without a priori knowledge and one with a priori knowledge, which
includes the sensitivity/resistance biomarkers as composite features
(cf. Section 2.2). A list of the included biomarkers for each drug can
be found in Supplementary Material (cf. Supplementary Material
S1). For the five drugs with a priori knowledge, we then trained and
tested MERIDA in several settings:

• Setting 1: the a priori knowledge is not included, i.e. the matrix

without a priori knowledge is used
• Setting 2: the information about the sensitivity biomarkers is

integrated in the input feature matrix as one specific composite

feature (cf. Section 2.2) and the value of the corresponding ILP

feature variable is fixed to 1
• Setting 3: the sensitivity information is integrated in the input

feature matrix but the value of the corresponding feature vari-

able is determined by the ILP

For the five drugs with a priori knowledge, we trained LOBICO
only in one setting (Setting 3) since calculating models for LOBICO
was very time-consuming and including fixed a priori knowledge in
the ILP formulation is theoretically possible, however, not imple-
mented. For all of the above mentioned settings, we investigated all
considered weight functions. Note that the original LOBICO func-
tion uses linear weights only.

In Figure 3, we present the averaged statistical performance
across (A) all drugs without a priori knowledge and (B) with a priori
knowledge for LOBICO and MERIDA. In Supplementary Material
S2, we also present the results for each drug separately. A direct

Fig. 2. The runtime analysis was conducted on a small dataset (350 samples) with varying feature set sizes in the range from 25 to 400 features and each experiment was

repeated 10 times if not prohibited by high runtime. The figure depicts the mean runtime of LOBICO and MERIDA for different numbers of input features, weight functions

and hyperparameters
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comparison between MERIDA and LOBICO in Settings 1 and 3
shows that MERIDA has a higher average sensitivity across all drugs
and lower average specificity. Hence, MERIDA results in a more
balanced overall model fit, which is of particular importance for
highly unbalanced datasets with a low amount of true positives.

The inclusion of the sensitivity biomarkers (Setting 2) should in
general improve the sensitivity of MERIDA even more. Actually, the
a priori knowledge improves the average CV sensitivity while
decreasing CV specificity. The average test sensitivity also slightly
increases. When considering the test sensitivity for the specific drugs,
we observed that it improved for Rapamycin, CX-5461 and
Talazoparib while it did not for Temsirolimus and Dactolisib.

We also tested whether the performance can be improved when
integrating the most informative features from previously calculated
models as a priori knowledge into new models. Here, we added the
features from the current best model as a priori knowledge to the
next model to be fitted. To this end, we fixed the corresponding ILP
variables to 1 and then solved the ILP again. The best model was
selected based on Youden’s J (sensitivity þ specificity - 1). We
observe that by iterative repetition of this process, the performance
can be improved for the tested drugs compared to the first applica-
tion of our method (cf. Supplementary Fig. S35 in Supplementary
Material S2). For example, the model after the fourth iteration has
the best performance for Niraparib across all tested settings.

In terms of the different weight functions, we could not identify
one weight function with the overall best performance. Considering
the fact that the cubic and quadratic weight function usually have a
significantly lower runtime, it is in general advantageous to use one
of these.

We also compared MERIDA to random forests and k-nearest
neighbors using 41 drugs including all mTOR inhibitors (see
Supplementary Material S2). Our results for random forests and
k-nearest neighbors confirm that standard machine learning
approaches do not really account for the class imbalance and gener-
ate models with a high specificity and a very low sensitivity (see
Supplementary Material S2).

In order to investigate the performance of MERIDA for
specific sub-groups of cell lines, we carried out analyses for two sub-
groups with a relatively high number of cell lines: haematological
cancer cell lines and non-haematological cancer cell lines (cf.
Supplementary Material S2). As expected, the statistical perform-
ance decreased for both groups in comparison to the pan-cancer
analysis, most likely because of the reduced number of cell lines.

3.3 Selected biomarkers
When analyzing the similarity of the selected feature sets between
LOBICO and MERIDA for each drug separately, it becomes appar-
ent that these sets resemble each other (see Supplementary Fig. S30
and Supplementary Table S18 in Supplementary Material S2) with a
significant overlap (Fisher’s P-value < 0.05) for each drug.
However, since MERIDA allows larger models, it detects additional
biomarkers that may have an influence on drug sensitivity. We also
analyzed the similarity of the models between the different weight
functions and observed that the selected feature sets are very similar

(cf. Supplementary Figs S31 and S32 and Supplementary Tables S16
and S17 in Supplementary Material S2).

Interestingly, neither LOBICO nor MERIDA selected the feature
with the a priori knowledge information from the sensitivity
biomarkers directly in Setting 3, which indicates that the known
sensitivity biomarkers are less important than the selected features
during model training (cf. Supplementary Tables S14 and S15 in
Supplementary Material S2 for all rules). To verify the relevance of
the features, we sorted the cell lines from most sensitive to most re-
sistant for each drug and indeed find that the selected features are
more strongly concentrated at the top of the sorted cell line lists
than the literature biomarkers (see Supplementary Figs S36–S42 in
Supplementary Material S2). Furthermore, we find that some pre-
dictive biomarkers from literature seem to be more informative than
others. For example, the well-studied PTEN loss and certain PTEN
loss-of-function mutations seem to be rather predictive for the sensi-
tivity of Rapamycin, while other features such as STK11 loss or
FBXW loss are predominantly present in the resistant group al-
though there exists literature evidence that these alterations support
sensitivity as well (Mao et al., 2008; Shaw et al., 2004). There are
various explanations for this phenomenon: There can be differences
in the strength of the predictive biomarkers as a result of differing
roles of distinct biomarkers in biological pathways. Furthermore,
the cell lines are usually affected by various mutations that typically
influence several biological pathways, which can in turn downgrade
the importance of a single predictive biomarker. However, it can
still be important to include these biomarkers into a model to com-
pare the newly detected ones with the literature biomarkers.

One sensitivity feature that was consistently selected across al-
most all mTOR inhibitors is low expression of the tight junction
protein 1 (TJP1), a member of the membrane-associated guanylate
kinase (MAGUK) family of proteins. It plays an important role in
cell-cell communication and it has recently also been shown to be
implicated in anti-cancer drug sensitivity (Lee et al., 2020).

To test whether this observation is specific to the drugs we inves-
tigated or a general feature of sensitive cell lines, we performed an
enrichment analysis with the GeneTrail 3 Cþþ library (Gerstner
et al., 2020) as follows: for each drug, we sorted the cell lines by
decreasing sensitivity, i.e. by increasing logarithmized IC50 values.
As a category, we define all cell lines for which TJP1 expression is
low (same z-score-based definition as described in Section 2.2) and
carry out an enrichment analysis, i.e. for each drug, we test for an
enrichment of this category at the top or bottom of the cell line list
using a Kolmogorov-Smirnov test. Astonishingly, we thereby identi-
fied low expression of TJP1 as a key sensitivity determinant for the
vast majority of drugs (258/320 drugs in GDSC1, 156/175 drugs in
GDSC2).

We repeated this type of analysis for all of the selected gene ex-
pression features and could identify several of the selected features
as being also of broad importance to a variety of drugs (for further
details and the results of this analysis, please refer to Supplementary
Tables S9 and S10 in Supplementary Material S2). For example,
NCKAP1 low expression (239/320 drugs in GDSC1, 156/175 drugs
in GDSC2) and PTPRF low expression (205/320 drugs in GDSC1,

Fig. 3. In this figure, we present the averaged statistical performance across all drugs (A) without a priori knowledge and (B) with a priori knowledge. Shown is the mean per-

formance and standard deviation during cross validation as well as the test error
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150/175 drugs in GDSC2) also seem to influence the sensitivity to
various drugs.

NCKAP1, whose low expression was detected as sensitivity-
associated for AZD8055 by our analysis, is part of the WAVE com-
plex that regulates actin filament organization. Moreover, NCKAP1
has been shown to promote tumor progression in specific mice mel-
anoma cells (Swaminathan et al., 2021). With this potential onco-
genic role, NCKAP1 expression might be a useful marker for the
malignancy grade of cell lines that influences the susceptibility to
drug treatments.

Similarly, PTPRF, which MERIDA identified as a sensitivity fac-
tor of Rapamycin, was recently found to promote tumor progression
by activation of WNT signaling in colorectal cancer (Gan et al.,
2020). Thus, low expression of PTPRF could classify cell lines as
less malignant and as a consequence might improve treatment out-
come prediction.

For AZD8055, MERIDA found that expression of FKBP5 might
determine the sensitivity toward this particular drug. For
Rapamycin, it is well-known that FK506-binding proteins, to which
FKBP5 belongs, are required for the formation of the complex be-
tween Rapamycin and the FRB-domain of mTOR (Hausch et al.,
2013). Although AZD8055 does not bind to the FRB-domain but is
an ATP-competitive inhibitor, it might be possible that the presence
of FKBP5 enhances the inhibitory effect or that AZD8055 also inter-
acts with FK506-binding proteins to exert its inhibitory effect.
However, this requires further experimental validation.

4 Discussion

A major goal of personalized medicine in cancer is the optimization
of treatment strategies given measurements of different genetic and
molecular characteristics of cancer cells. Here, the cancer heterogen-
eity poses a major challenge to statistical learning methods.
Therefore, methods for the prediction of drug response should ad-
dress this heterogeneity while still providing easily interpretable
results.

To this end, we have developed MERIDA, a novel statistical
learning approach for drug sensitivity prediction in cancer.
MERIDA is derived from the ILP formulation of LOBICO
(Knijnenburg et al., 2016). Our modified ILP formulation, which
represents a simplified Boolean function synthesis problem, reduces
the space of allowed logic combinations and, hence, accelerates the
runtime of the corresponding branch-and-cut algorithm tremen-
dously (up to a factor of 1000). In addition, we proposed two differ-
ent weighting schemes as importance measures for the cell lines in
the objective function, which both improved the runtime of
MERIDA (and LOBICO) even further. Despite the reduced space of
logic combinations, the statistical performance of MERIDA is simi-
lar or superior to LOBICO. In particular, MERIDA achieves super-
ior results with respect to the statistical sensitivity measure, which is
of particular importance for unbalanced datasets with a low amount
of true positives. Amongst others, for the small models LOBICO is
able to fit, MERIDA selects almost identical feature sets as
LOBICO. Due to the reduced runtime, MERIDA, however, is able
to handle considerably larger input feature sets and to construct
larger models.

We also investigated another option for improving the prediction
models: the integration of prior knowledge. While this could be
implemented for any logical model, the systemic integration of pre-
dictive biomarkers has not been conducted for previously published
logical models. This knowledge can stem from biomarker databases
or can even be newly acquired by our own method. By using know-
ledge from biomarker databases, we could improve the statistical
performance for some of the drugs. With growing knowledge on
predictive biomarkers, these may play a more important role. In
addition, we could enhance the statistical performance by iteratively
running our new method and adding biomarkers (features) identi-
fied by previous runs to the next model. Here, our results indicate
that the iterative application provides similar models compared to
the one-shot approach with a significant speed-up.

Nevertheless, the statistical performance should still be
improved. An important factor that influences the performance is
the choice of the used features. Feature selection or dimension reduc-
tion is usually indispensable to counteract the curse of dimensional-
ity present for such large multi-omics datasets as provided by the
GDSC. We decided to do a literature-driven feature selection with
curated cancer driver lists to focus on alterations that are most likely
involved in therapeutic responsiveness. However, other alterations
may also play a role in drug response. Here, MERIDA’s favorable
runtime can also facilitate the investigation of additional feature
types such as epigenetics data (e.g. DNA methylation or histone
modifications) or cancer-specific splicing variants in future work.

We verified the relevance of the newly detected biomarkers with
enrichment analyses. Interestingly, many of the selected features
seem to have a strong influence on the drug response of various
drugs. These compelling results also motivate us to select feature
sets using enrichment techniques in ongoing research.

The logical models discussed in this manuscript can be used to
identify effective drugs for a given cell line or tumor. However, a
central task in personalized medicine is to find the best drug or a
suitable combination of drugs for a specific cell line. To this end, the
effective drugs have to be prioritized. In ongoing research, we inves-
tigate the ability of statistical learning methods to prioritize different
drugs using regression approaches based on continuous drug sensi-
tivity values, such as IC50 values.

To conclude, we present MERIDA, a novel and fast method for
the prediction of drug response. We show that its performance is
similar or superior to the related LOBICO method. In addition, we
demonstrate that our models can give novel insights into the molecu-
lar mechanisms causing sensitivity or resistance to anti-cancer
compounds.

Funding

Funding for open access charge: Internal funds of Saarland University.

Conflict of Interest: none declared.

References

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Campbell,P.J. et al. (2020) Pan-cancer analysis of whole genomes. Nature,

578, 82–93.

Chakravarty,D. et al. (2017) OncoKB: a precision oncology knowledge base.

JCO Precis. Oncol., 1, 1–16.

Costello,J. et al.; NCI DREAM Community. (2014) A community effort to as-

sess and improve drug sensitivity prediction algorithms. Nat. Biotechnol.,

32, 1202–1212.

Fix,E. and Hodges,J.L. Jr. (1952) Discriminatory Analysis-Nonparametric

Discrimination: Small Sample Performance. California Univ Berkeley, Berkeley.

Gan,T. et al. (2020) Inhibition of protein tyrosine phosphatase receptor type F

suppresses Wnt signaling in colorectal cancer. Oncogene, 39, 6789–6801.

Gerstner,N. et al. (2020) GeneTrail 3: advanced high-throughput enrichment

analysis. Nucleic Acids Res., 48, W515–W520.

Ghandi,M. et al. (2019) Next-generation characterization of the Cancer Cell

Line Encyclopedia. Nature, 569, 503–508.

Gonzalez-Perez,A. et al. (2013) IntOGen-mutations identifies cancer drivers

across tumor types. Nat. Methods, 10, 1081–1082.

Griffith,M. et al. (2017) CIViC is a community knowledgebase for expert

crowdsourcing the clinical interpretation of variants in cancer. Nat. Genet.,

49, 170–174.

Hanahan,D. and Weinberg,R.A. (2011) Hallmarks of cancer: the next gener-

ation. Cell, 144, 646–674.

Hausch,F. et al. (2013) FKBPs and the Akt/mTOR pathway. Cell Cycle, 12,

2366–2370.

Iorio,F. et al. (2016) A landscape of pharmacogenomic interactions in cancer.

Cell, 166, 740–754.

Knijnenburg,T. et al. (2016) Logic models to predict continuous outputs based

on binary inputs with an application to personalized cancer therapy. Sci.

Rep., 6, 36812–36814.

MERIDA 3887

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/21/3881/6342406 by guest on 19 April 2024



Lee,E. et al. (2020) Targeting TJP1 attenuates cell–cell aggregation and modu-

lates chemosensitivity against doxorubicin in leiomyosarcoma. J. Mol.

Med., 98, 761–773.

Mao,J.H. et al. (2008) FBXW7 targets mTOR for degradation and cooperates

with PTEN in tumor suppression. Science, 321, 1499–1502.

Masica,D.L. and Karchin,R. (2013) Collections of simultaneously altered genes

as biomarkers of cancer cell drug response. Cancer Res., 73, 1699–1708.

Rees,M. et al. (2016) Correlating chemical sensitivity and basal gene expres-

sion reveals mechanism of action. Nat. Chem. Biol., 12, 109–116.

Sanchez-Vega,F. et al.; Cancer Genome Atlas Research Network. (2018)

Oncogenic signaling pathways in the cancer genome atlas. Cell, 173,

321–337.

Sharma,S. et al. (2010) Cell line-based platforms to evaluate the therapeutic ef-

ficacy of candidate anticancer agents. Nat. Rev. Cancer, 10, 241–253.

Shaw,R.J. et al. (2004) The LKB1 tumor suppressor negatively regulates

mTOR signaling. Cancer Cell, 6, 91–99.

Swaminathan,K. et al. (2021) The RAC1 target NCKAP1 plays a crucial role

in the progression of Braf; Pten-driven melanoma in mice. J. Invest.

Dermatol., 141, 628–637.

Tamborero,D. et al. (2018) Cancer Genome Interpreter annotates the

biological and clinical relevance of tumor alterations. Genome Med.,

10, 25.

Tan,A.C. et al. (2005) Simple decision rules for classifying human cancers

from gene expression profiles. Bioinformatics, 21, 3896–3904.

Tate,J.G. et al. (2019) COSMIC: the catalogue of somatic mutations in cancer.

Nucleic Acids Res., 47, D941–D947.

Vogelstein,B. et al. (2013) Cancer genome landscapes. Science, 339,

1546–1558.

3888 K.Lenhof et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/21/3881/6342406 by guest on 19 April 2024


