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Abstract

Summary: The ability of a T cell to recognize foreign peptides is defined by a single a and a single b hypervariable
complementarity determining region (CDR3), which together form the T-cell receptor (TCR) heterodimer. In �30–
35% of T cells, two a chains are expressed at the mRNA level but only one a chain is part of the functional TCR. This
effect can also be observed for b chains, although it is less common. The identification of functional a/b chain pairs is
instrumental in high-throughput characterization of therapeutic TCRs. TCRpair is the first method that predicts
whether an a and b chain pair forms a functional, HLA-A*02:01 specific TCR without requiring the sequence of a rec-
ognized peptide. By taking additional amino acids flanking the CDR3 regions into account, TCRpair achieves an AUC
of 0.71.

Availability and implementation: TCRpair is implemented in Python using TensorFlow 2.0 and is freely available at
https://www.github.com/amoesch/TCRpair.

Contact: d.frishman@wzw.tum.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

T cells are a key element of the adaptive immune system because they
can detect infected or aberrant cells through their receptors T-cell re-
ceptor (TCR). The TCR is a heterodimer composed of one a and one
b chain. Each chain contains a hypervariable complementarity deter-
mining region (CDR3), which interacts with a peptide bound to the
human leukocyte antigen (HLA), the human version of the major
histocompatibility complex, expressed on the surface of an antigen
presenting cell. Since the CDR3a and CDR3b regions are highly vari-
able due to the V(D)J recombination, peptide recognition is very spe-
cific and each TCR only binds to one or just a few peptides presented
by an HLA allele (Hughes et al., 2003; Lu et al., 2019). The peptide
specificity is controlled by the process of thymic selection, which only
allows T cells that do not recognize peptides of the healthy peptide
repertoire to circulate in the body. Most of the positively selected T
cells express a single unique TCR on the cell surface, for which only
one transcript of an a and one of a b chain is present. However, it has
been shown that �30–35% of T cells express two a chains on the
mRNA level and some T cells also express two b chains, although
their number is significantly lower due to transcriptional allelic exclu-
sion and other mechanisms (Dupic et al., 2019; Redmond et al.,

2016; Schuldt and Binstadt, 2019; Stubbington et al., 2016). If two a
or two b chains can be detected by RNA sequencing of clones or sin-
gle cells, two surface TCRs might be present but more often only one
of the two chains from the same locus is part of the functional TCR
(Schuldt and Binstadt, 2019). Identifying the functional a/b TCR
combination is crucial for the assessment of suitable TCRs for cancer
immunotherapy (Parkhurst et al., 2017; Shitaoka et al., 2018).
Current methods to identify a/b pairing require specific experimental
setups and are more geared toward the identification of a/b chain
pairs in T-cell repertoires (Egorov et al., 2015; Holec et al., 2019;
Howie et al., 2015; Lee et al., 2017). Here, we present TCRpair, a
deep learning algorithm to predict functional pairs of a/b TCRs recog-
nizing HLA-A*02:01 restricted peptides. TCRs are reconstructed
from the CDR3 sequence and the V/J gene annotation, which repre-
sents the minimum annotation of a TCR in publicly available data-
bases (Bagaev et al., 2020; Dhanda et al., 2019; Shugay et al., 2018;
Vita et al., 2019). TCRpair can be instrumental in speeding up TCR
sequence verification if RNA sequencing data does not yield un-
equivocal results. Additionally, TCRpair supports input from
MiXCR (Bolotin et al., 2015), including filtering for possible a/b
combinations by clonotype frequency.
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2 Materials and methods

Pairs of CDR3a and CDR3b sequences with their respective V and J
allele annotation as well as information on the recognized peptide
and the HLA-A allele were downloaded from IEDB (Dhanda et al.,
2019; Vita et al., 2019) and VDJdb (Bagaev et al., 2020; Shugay
et al., 2018), which predominantly consists of single cell sequencing
data. In total we obtained 21 715 unique TCRs, of which 3250
HLA-A*02:01 restricted TCRs were used for model training/testing
and validation (Supplementary Table S1). A negative dataset
(n¼2209) was generated by randomly combining CDR3a and
CDR3b chains and then selecting only those chain pairs, for which
the CDR3a chain originates from a TCR recognizing a different pep-
tide as the TCR from which the CDR3b chain originates
(Supplementary Fig. S1). For each TCR, the full TCR sequence was
reconstructed by aligning CDR3 sequences to the sequences of their
respective V and J alleles from the IMGT/LIGM database
(Giudicelli, 2006). Nine different sequence types were used as model
inputs: CDR3 region only, CDR3 region with 3, 5, 7, 9, 11, 13 or
15 flanking amino acids and the full TCR sequence (Fig. 1A). For
each TCR, a and b chain sequences were concatenated to be used as
single sequence input and BLOSUM62 encoded (Henikoff and
Henikoff, 1992; Nielsen et al., 2003) (Fig. 1B and Supplementary
Information S1). The dataset was randomly split into 80% training
and 20% validation data. For each input type, a model was trained
for 20 epochs with batch size 50 using the Adam optimization algo-
rithm (Shao et al., 2020).

An independent dataset of 11 HLA-A*02:01-restricted TCRs
with two a or two b chains detected at the RNA level was used to
test whether TCRpair can identify the functional chain by compar-
ing likelihood scores. RNA sequencing data of T-cell clones was

processed by MiXCR (Bolotin et al., 2015), whereas for 10 clones
two CDR3a chains and for 1 clone two CDR3b chains showed a
clone fraction of at least 0.35. The functional chain for each TCR
was experimentally identified by expressing the b chain in combin-
ation with both a chains (or in one case the a chain in combination
with both b chains) and comparing their cytotoxicity in vitro by
coculturing with peptide-presenting cells. All 11 TCRs recognize
peptides for which no TCRs are present in the training data. The dif-
ferences between validation dataset and independent dataset are
described in Supplementary Information S2.

3 Results and discussion

TCRpair can predict whether a pair of a and b chains has the ten-
dency to form a functional TCR and assists with the identification of
the chain that is part of the functional TCR if two a or two b chains
are detected at the RNA level for HLA-A*02:01 restricted TCRs
(Supplementary Fig. S2). The models using flanking amino acid
sequences performed better than models using only the CDR3 se-
quence or the full TCR sequence, which includes CDR1 and CDR2
sequences that show a limited diversity compared to the highly vari-
able peptide binding CDR3 sequence (Arden, 1998). On the valid-
ation dataset, the models with 5 and 7 flanking amino acids both
achieved an area under the receiver operating characteristic curve
(AUC) of 0.71 and an average precision of 0.80 (Fig. 1C). The model
with 7 flanking amino acids correctly identified 7 out of 11 TCRs
from the independent dataset (Fig. 1D and Supplementary Table S2).
Both models with 9 and 11 flanking amino acids performed compar-
ably well. All these four models showed improved prediction

Fig. 1. Workflow and performance of TCRpair. (A) TCR reconstruction with IMGT V and J allele sequences and varying model inputs: CDR3 regions only, CDR3 regions

with n flanking amino acids, where n is 3, 5, 7, 9, 11, 13 or 15, as well as full TCR sequences. (B) TCRpair model workflow with input as described in A, model with layers

and two possible types of output. (C) Area under the ROC curve and average precision performance of models using different input sequences (CDR3 only, CDR3 with flank-

ing sequences and full TCR sequence) on the validation dataset. (D) Comparison of the likelihood scores for the model using as input CDR3 regions with flanking sequences of

length 7 on the independent dataset. For each TCR, likelihood scores of a/b chain pairs to be functional are represented by orange triangles facing up while scores of nonfunc-

tional a/b chain pairs are represented by blue triangles pointing down
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performance compared to the model using only the CDR3 sequences
and the model using the full TCR sequence. These observations also
hold true when comparing AUCs for individual peptides
(Supplementary Table S3). Furthermore, we observed higher differen-
ces between the likelihood scores of real and perturbed amino acid in-
put vectors for regions with a higher amino acid variation such as the
V region compared to more conserved positions such as the first two
positions of the CDR3 regions (Supplementary Information S3 and
Table S5) (Yu et al., 2019). These results demonstrate that TCRpair
learned to identify the features of the TCR’s a and b chain sequences,
which ultimately determine functional pairing and thus TCR specifi-
city, without the need to know the sequence of the recognized pep-
tide. TCRpair performs comparably to NetTCR 2.0 (https://services.
healthtech.dtu.dk/service.php?NetTCR-2.0; Jurtz et al., 2018), which
in contrast requires one of three possible peptides as additional input
(Supplementary Table S4). Additionally, TCRpair demonstrates that
sequence context can improve performance for sequence-based ma-
chine learning algorithms using LSTM layers, which might apply to
similar prediction problems.

The current version of TCRpair is limited to the TCRs recognizing
peptides presented by HLA-A*02:01, which is the most common allele
in Caucasian populations (Gonzalez-Galarza et al., 2015). It does not
work for other HLA restrictions (see Supplementary Table S2) or naı̈ve
T-cell repertoires (see Supplementary Information S1), for which
frequency-based methods relying on the distribution of T-cell clones
over multiple samples of the same repertoire are more suitable (Holec
et al., 2019; Howie et al., 2015; Lee et al., 2017). However, the grow-
ing amount and quality of TCR sequencing data especially from single
cells will allow the addition of further HLA alleles and the training of a
general HLA-independent model in the future.
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