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Abstract

Summary: CONSTAX—the CONSensus TAXonomy classifier—was developed for accurate and reproducible taxo-
nomic annotation of fungal rDNA amplicon sequences and is based upon a consensus approach of RDP, SINTAX
and UTAX algorithms. CONSTAX2 extends these features to classify prokaryotes as well as eukaryotes and incorpo-
rates BLAST-based classifiers to reduce classification errors. Additionally, CONSTAX2 implements a conda-instal-
lable command-line tool with improved classification metrics, faster training, multithreading support, capacity to in-
corporate external taxonomic databases and new isolate matching and high-level taxonomy tools, replete with
documentation and example tutorials.

Availability and implementation: CONSTAX2 is available at https://github.com/liberjul/CONSTAXv2, and is pack-
aged for Linux and MacOS from Bioconda with use under the MIT License. A tutorial and documentation are avail-
able at https://constax.readthedocs.io/en/latest/. Data and scripts associated with the manuscript are available at
https://github.com/liberjul/CONSTAXv2_ms_code.

Contact: liberjul@msu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput sequencing has revolutionized metagenomics and
microbiome sciences (Di Bella et al., 2013). These culture-independ-
ent methods have revealed previously unrecognized microbial diver-
sity and has allowed researchers to detect organisms occurring at
extremely low abundances (Brown et al., 2015). Amplicon-based
sequencing, which relies on amplification and sequencing of genetic
markers such as the rRNA operon or protein-coding genes, is an ex-
tremely popular technique for studying microbiomes and microbial
communities. Following sequencing, quality control and demultiplex-
ing, amplicon reads are clustered and representative sequences are
classified taxonomically. Many algorithms have been developed to
conduct the task of assigning taxonomy to environmental sequences.
Some of the most popular include BLAST-based tools (Altschul et al.,
1997; Bokulich et al., 2018), the Ribosomal Database Project (RDP)
naive Bayesian classifier (Wang et al., 2007) and the USEARCH algo-
rithms SINTAX (Edgar, 2016) and UTAX (Edgar, 2013).

While each of these tools can be implemented independently to
assign taxonomy, a consensus-based approach was demonstrated to
increase the accuracy and number of sequences with taxonomic
assignments (Gdanetz et al., 2017). Since the original release of the
CONSTAX (CONSensus TAXonomy) classifier, we have found the

need for improved ease of use, updated software compatibility, sim-
pler installation, improved accuracy and adaptability and applica-
tion to bacteria and other organisms. To address these needs, an
updated version, CONSTAX2, has been developed.

2 Implementation

CONSTAX2 (referred to hereafter as ‘CONSTAX’) is released as a
conda-installable command-line tool, available from the bioconda
installation channel (Grüning et al., 2018) for Linux, MacOS and
WSL systems. It is installed with the command ‘conda install -c bio-
conda constax’, see https://github.com/liberjul/CONSTAXv2.
CONSTAX requires two files: (1) ‘-d, –db’ a reference database file
in FASTA format (Pearson and Lipman, 1988) with header lines
containing taxonomy of the sequences in the SILVA (Glöckner
et al., 2017) or UNITE (Nilsson et al., 2019) format and (2) ‘-i, –in-
put’ an input file of user-submitted query sequences in the FASTA
format. This version implements a BLAST classification algorithm
instead of the legacy UTAX classifier if the ‘-b, –blast’ flag is used.

The user may designate several additional parameters, including
confidence threshold for assignment (‘-c, –conf’), BLAST classifier
parameters, and whether to use a conservative consensus rule (‘–
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conservative’), which requires agreement of two (instead of one)
nonnull assignments to assign a taxonomy at the given rank.
CONSTAX offers multithreaded classification with the argument, ‘-
n, –num_threads’.

CONSTAX generates three directories while running: (1) train-
ing files directory (‘-f, –trainfile’), (2) taxonomy assignments direc-
tory (‘-x, –tax’) and (3) an output directory (‘-o, –output’). Prior to
classifying sequences, training must be performed on any newly used
database file with the ‘-t, –train’ flag. After initial training, generated
training files can be used in any later run by specifying the same
training files directory. When training is performed, CONSTAX will
automatically generate the formatted database files required by each
classifier, as long as the supplied database has SILVA or UNITE
header formatting. Following training, the classification or search
command is performed for each classifier, and files are output to the
taxonomic assignments directory. Finally, each classification output
is reformatted and used to generate a consensus hierarchical tax-
onomy, then each classifier’s result and the consensus result are
stored in the output directory as tab-delimited value files with each
row corresponding to a query sequence and values as the hierarchic-
al taxonomy assigned to each query.

CONSTAX2 offers two additional features: (1) the ability to
match input sequences to isolates using the ‘–isolates’ option and (2)
the ability to determine higher-level taxonomy using representative
databases with the ‘–high_level_db’ option. Both approaches imple-
ment the BLAST algorithm to associate input sequences with hits
from the respective databases, returning a single best hit with a de-
fault threshold of query cover �75% and E value �10. Cutoffs for
query coverage and percent identity can be specified. Isolate match-
ing is designed to find best matches to sequenced organisms in pure
culture or any known reference sequences, which may streamline
culture-dependent and culture-independent analyses, and can also
be used to implicate potential contamination by association with
known isolates previously worked with in the laboratory or
sequencing facility where the samples were processed. Higher-level
taxonomy designations are also useful in filtering host, organelles or
nontarget taxa, which may show up in rDNA surveys. For 16S
rDNA prokaryote datasets, the latest SILVA SSURef NR99 database
is recommended, while the latest UNITE Eukaryotes database is rec-
ommended for ITS studies of Fungi.

3 Results

3.1 Algorithm speed and memory usage
The implementation of the BLAST algorithm as a third classifier and
replacement of UTAX provides crucial speedup of the training step
(Fig. 1A), facilitating the use of the much larger SILVA database. For
16 000 sequences randomly sampled from the SILVA database, the
BLAST implementation (including SINTAX, RDP and BLAST)
trained 370 6 32.1 sequences * s�1 (mean 6 SD), while the UTAX im-
plementation (including SINTAX, RDP and UTAX) trained
41.96 0.911 sequences * s�1, an �9-fold improvement. Furthermore,
the BLAST implementation trains faster per sequence at larger data-
base sizes.

Although the BLAST implementation is faster for training, classifica-
tion is faster with the UTAX implementation (Fig. 1B). The maximum
classification speed was achieved at 32 threads for the BLAST imple-
mentation and between 4 and 8 threads for the UTAX implementation,
depending on the number of query sequences classified, which minorly
affected per-sequence rates. At 4000 query sequences, the BLAST imple-
mentation classified at a speed of 16.36 0.298sequences* s�1 on 32
threads, while the UTAX implementation classified at a speed of
34.46 0.611 sequences* s�1 on 4 threads.

Training with bacterial records in the SILVA 138 SSU release
(1 983 818 sequences, 2.8 Gb) with the BLAST implementation used
102.96 GB of RAM, while the fungal UNITE database (95 481
sequences, 60 Mb) used 15.24 GB for BLAST and 12.72 GB for
UTAX implementations. Classification with the SILVA database
with 16 threads used 28.16 GB for 500 sequences and 30.88 GB for

1000 sequences, while the UNITE database used 6–7 GB, regardless
of implementation, threads or number of query sequences.

3.2 Algorithm performance
Clade partitioned cross-validation and classification metrics from
SINTAX (Edgar, 2016) were used (Supplementary Data) on the tax-
onomy assignments of each classifier and the consensus, which were
compared for genus and family-level partitions as well as for full
length ITS1-5.8S-ITS2 or 16S regions (accounting for the commonly
used subregions ITS1, ITS2, V4 and V3–4) with errors per query
(EPQ; sum of false negative and false positive rates), over-classifica-
tion (false positive rate of unknown taxa) and misclassification (false
positive rate of known taxa), for five query-reference paired datasets
(Fig. 1C and D, Supplementary Table S1). The popular mothur knn
and Wang classifiers (Schloss et al., 2009), qiime q2-feature-classi-
fier plugin (Bokulich et al., 2018), Kraken 2 (Wood et al., 2019) and
SPINGO (Allard et al., 2015) classifiers were compared using the
same protocol. CONSTAX with the nonconservative consensus
with BLAST had the fewest EPQ for any classifier (0.236–0.248,
95% CI for all regions and partition levels), or tied for fewest with
the UTAX consensus, across the UNITE dataset. Alternatively,
CONSTAX with the conservative consensus with BLAST had the

Fig. 1. Performance of the CONSTAX algorithm. (A) Reference sequences parsed

per second for training of the CONSTAX implementation with BLAST and UTAX,

as a function of the size of the training set. (B) Sequences classified per second with

BLAST and UTAX implementations, as a function of query set size and threads used

for parallelization. (C and D) Classification performance resulting from clade-parti-

tion cross-validation, at genus and family partition ranks, for full and extracted

regions, corresponding to each CONSTAX classifier and other common classifica-

tion tools, for (C) bacteria in the SILVA SSURef release 138 dataset and (D) fungi in

the UNITE RepS February 4, 2020 general release. EPQ, misclassification rate and

over-classification rate are defined by Edgar (2016) and in Supplementary Data.

CB—CONSTAX with BLAST, CBC—CONSTAX with BLAST and conservative

rule, CU—CONSTAX with UTAX, CUC—CONSTAX with UTAX and conserva-

tive rule
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fewest errors for all classifications in the SILVA dataset
(EPQ¼0.214–0.259). The BLAST implementation was valuable in
decreasing misclassifications for the UNITE dataset compared to
UTAX, but this was generally associated with increased (erroneous)
over-classifications.

4 Conclusion

The newest implementation of CONSTAX offers improvement over
its predecessor by ease of use and improved applicability and accur-
acy. Hierarchical taxonomy classification accuracy by a consensus
approach in CONSTAX2 is demonstrated to outperform commonly
used classifiers while remaining computationally feasible.
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