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Abstract

Summary: Genomic sequences are widely used to infer the evolutionary history of a given group of individuals.
Many methods have been developed for sequence clustering and tree building. In the early days of genome
sequencing, these were often limited to hundreds of sequences but due to the surge of high throughput sequencing,
it is now common to have millions of sampled sequences at hand. We introduce MNHN-Tree-Tools, a high perform-
ance set of algorithms that builds multi-scale, nested clusters of sequences found in a FASTA file. MNHN-Tree-Tools
does not rely on multiple sequence alignment and can thus be used on large datasets to infer a sequence tree.
Herein, we outline two applications: a human alpha-satellite repeats classification and a tree of life derivation from
16S/18S rDNA sequences.

Availability and implementation: Open source with a Zlib License via the Git protocol: https://gitlab.in2p3.fr/mnhn-
tools/mnhn-tree-tools.

Manual: A detailed users guide and tutorial: https://gitlab.in2p3.fr/mnhn-tools/mnhn-tree-tools-manual/-/raw/master/
manual.pdf.

Website and FAQ: http://treetools.haschka.net.

Contact: julien.mozziconacci@mnhn.fr or thomas.haschka@mnhn.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequences are slowly diverging in the course of evolution. The simi-
larity between genomic loci, as for instance specific gene sequences,
can in principle be used to infer the evolutionary relationship
between individuals. Clustering methods are often used to group
sequences together into species, genus, families, orders, class, phy-
lum’s, kingdoms and domains. Different experimental methods,
such as DNA barcoding (DeSalle and Goldstein, 2019; Hajibabaei
et al., 2007), are used to determine the set of sequences to be
clustered. Sequences are then often curated and gathered into large
databases (McDonald et al., 2012; Munoz et al., 2011). With the re-
cent advances in DNA high-throughput sequencing (Goodwin et al.,
2016), specimen collections and storage capacities, it is now com-
mon to deal with datasets with millions of entries. Several computa-
tional approaches have been developed to keep up with the size of
these datasets (Mahé et al., 2015; Rognes et al., 2016) but they all
provide clusters rather than trees. We propose here a new and fast
method that performs a multiple alignment free, multi-scale cluster-
ing of a set of sequences found in a FASTA (Lipman and Pearson,
1985) file, leveraging DBSCAN a density-based algorithm for

discovering clusters in large spatial databases with noise (Ester et al.,
1996). Nested clusters are then identified to build a tree.

Briefly sketched, the DBSCAN algorithm is a two parameter
algorithm requiring a radius � and a minimum number of objects
minpts, in our case sequences, to be found withing this radius. As
such, this algorithm finds density q ¼ nminpts

Vð�Þ connected regions, i.e.
clusters with a density > qðminpts; �Þ (Ester et al., 1996). The use of
DBSCAN has been proposed by others as a guide to phylogenetic in-
ference (Mahapatro et al., 2012; Ruzgar and Erciyes, 2012). The
novelty introduced by our multi-scale approach is that we perform
the DBSCAN algorithm at various densities, and use these layered
results to infer a clustering tree that can further be used as a guide
for phylogenetics. Clustering for different � values allows us to find
dense sequence clusters embedded into diffuse clusters (Fig. 1a). We
can then build a tree of density connected clusters by successive
DBSCAN runs with increased � parameters and cluster comparison
as outlined in Figure 1b and in the supplementary document. The
DBSCAN algorithm was chosen over newer density based methods
as, contrary to OPTICS (Ankerst et al., 1999), DBSCAN allows us
to control the density of the clusters found and thus allows us to pre-
cisely build trees from layers of specific densities. Further DBSCAN
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features a reduced algorithmic complexity and has a runtime advan-
tage over algorithms, such as SUBCLU (Kailing et al., 2004).

MNHN-Tree-Tools contains the utilities to cluster sequences using
two different distance measures:

• the L2-norm operating on a principal component analysis (PCA)

based subspace projection of the k-mer sequences representations

(Chatterji et al., 2008).
• The Smith–Waterman distance (Smith and Waterman, 1981), which

features parametric penalties for both substitutions and insertions.

In comparing the k-mer/PCA based approach to the use of the
Smith–Waterman distance, we show that a k-mer/PCA based dis-
tance can yield better clusters and trees due to the inherent feature

selection of the PCA (see supplementary document). The Smith–
Waterman distance computation was implemented in OpenCL
(Stone et al., 2010) allowing for execution on graphics processing

units (GPUs). We also used the message passing interface (MPI) li-
brary (Forum, 1994) to distribute the workloads across different

high performance computing cluster nodes.

2 Description of MNHN-Tree-Tools

MNHN-Tree-Tools is a modular suite of command line tools writ-

ten in the C language. In this section, we outline the core utilities,
which lead to a multilayered clustering with clusters organized into
a tree.

Input data: MNHN-Tree-Tools uses as input a FASTA file for-
mat that gathers sequences that do not need to be aligned. Typical

lengths can vary from 100 to 10000 bp, with length variations up to
10% within samples, but are ultimately only limited by k-mer length

or PCA information retention.
fasta2kmer A utility to transform FASTA files into a k-mer

representation.
kmer2pca Computes projections of a k-mer representation onto

its first principal components.

adaptive_clustering_PCA Performs clustering at different den-
sities, with the following variable input parameters: initial �, D� and
minpts. c.f. (Fig. 1b).

split_sets_to_newick Generates a Newick tree from the clusters
obtained.

3 Performance and accuracy

We evaluated the accuracy of the algorithm presented herein in three
different ways: at first, we compared our results to trees that were
annotated by experts and as such provided us with valuable ground
truth (see the case studies section below). We also compared the al-
gorithm to partitions found by the SWARM2 tool (Mahé et al.,
2015). Complementing these experiments we used MNHN-Tree-
Tools on simulated datasets. The comparison to ground truth trees
shows that our algorthim is able to find known partitions (see tables
provided in the supplementary document). . A comparison to
SWARM2 (Mahé et al., 2015) clearly shows that our tree based ap-
proach yields, as we search for clusters at different densities, a sweet
spot where the found partitions are in close correspondence to those
annotated by experts. Classical partitioning tools, such as
SWARM2 (Mahé et al., 2015), on the other hand, yield a single par-
tition that may not correspond, for the application presented herein,
to the expected results. We refer the reader to our Supplementary
for further details on the accuracy and performance of MNHN-
Tree-Tools where the outlined experiences are discussed in detail.

4 Case studies

Human alpha-satellites classification: Sequences were retrieved from
(Uralsky et al., 2019). Our algorithm reconstructed a tree (Fig. 1c)
from these 426 106 sequences which was colored according to their
family annotation.

The tree of life—the SILVA dataset: Ribosomal RNA sequences
from diverse species (2 225 272) were downloaded from (Munoz
et al., 2011). Our algorithm was used to reconstruct a tree of life
based on these sequences (Fig. 1d).

(a) (b) (c)

(d)

Fig. 1. Overview of MNHN-Tree-Tools. (a) Closely related sequences form dense clusters (in purple and green). These are embedded into a less dense cluster (in blue). The

DBSCAN algorithm applied at various radius values (�), can identify these nested clusters. A tree of the identified clusters can then be build. (b) Detailed computational work-

flow. (c) Tree build with human Alpha-satellites sequences. Colors correspond to the family annotations in the original dataset (Uralsky et al., 2019). (d) The tree of life built

from 16S/18S RNA sequences. Bacteria, Archaea and Eukaryota are highlighted, with the color intensity corresponding to a logarithmic gradient of the number of sequences

in the tree branches. A zoomed representation of Holozoa, clearly outlined as a subclass of Eukaryota, shows the Homo Sapiens branch
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For these two applications, the run time for one clustering step
ranges from 5 min (426 106 seq.) to 173 min (2 225 272 seq.) on a
single Intel(R)i7-4771 3.50 GHz core. The clustering for different
epsilon values can easily be run in parallel on several cores.
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