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Abstract

Summary: Clustering is a key step in revealing heterogeneities in single-cell data. Most existing single-cell clustering
methods output a fixed number of clusters without the hierarchical information. Classical hierarchical clustering
(HC) provides dendrograms of cells, but cannot scale to large datasets due to high computational complexity. We
present HGC, a fast Hierarchical Graph-based Clustering tool to address both problems. It combines the advantages
of graph-based clustering and HC. On the shared nearest-neighbor graph of cells, HGC constructs the hierarchical
tree with linear time complexity. Experiments showed that HGC enables multiresolution exploration of the biological
hierarchy underlying the data, achieves state-of-the-art accuracy on benchmark data and can scale to large datasets.

Availability and implementation: The R package of HGC is available at https://bioconductor.org/packages/HGC/.
Contact: zhangxg@tsinghua.edu.cn or stevenhuakui@gmail.com
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The development of single-cell RNA sequencing (scRNA-seq) and
bioinformatics technologies have accelerated the understanding of cell
heterogeneity (Aldridge and Teichmann, 2020). The current practice
for studying the multi-level cell heterogeneity is to first produce a fixed
number of clusters and then adjust the clustering resolutions in an ad
hoc manner (Hua and Zhang, 2019; Luecken and Theis, 2019). This
workflow loses the underlying hierarchical information and requires
multi-rounds of re-clustering to find a suitable resolution. Hierarchical
clustering (HC) enables direct multi-resolution exploration of the
heterogeneity, but classical HC methods are only suitable for small
datasets due to the high computational complexity.

We propose a fast Hierarchical Graph Clustering tool HGC for
large-scale single-cell data. The key idea of HGC is to construct a
dendrogram of cells on their shared nearest-neighbor (SNN) graph.
This combines the advantages of graph-based clustering and HC.
We applied HGC on both synthetic and real scRNA-seq datasets.
Results showed that HGC can recover the biological hierarchy
underlying the data, can achieve high clustering accuracy at fixed
resolution and can scale well to large datasets.

2 Materials and methods

HGC contains two major steps: graph construction and dendrogram
construction. For the graph construction step, HGC adopts the
standard procedure of building the SNN graph, which is to first

apply principal component analysis on the expression data and
then build the k& nearest neighbor graph and the SNN graph in the
PC space (Fig. 1a). For the step of dendrogram construction on
the graph, HGC uses a recursive procedure of finding the nearest-
neighbor node pairs and updating the graph by merging the node
pairs (Fig. 1a).

The key in finding the nearest-neighbor pair on a graph is
the distance measure. HGC uses the node-pair sampling distance
introduced in (Bonald et al., 2018). For a weighted, undirected
graph G = (V,E), let A be the weighted adjacent matrix. If we
sample node pairs or edges at random in proportion to their
weights, the probability that node pair or edge (i,j) being
sampled is:

Aif
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Similarly, sampling nodes in proportion to their weighted
degrees results in the probability of node i being sampled:

Aij -
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The node-pair sampling distance is defined as the ratio between
individual sampling and the pair sampling:
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Recovering the hierarchical structures

High accuracy at fixed resolutions

Good scalability to large datasets

Fig. 1. Overview of HGC. (a) Workflow of HGC, including the construction of SNN graph, and the recursive procedure for constructing dendrogram on the graph. (b)
Experiment of HGC on the PBMC dataset showing the recovery of the hierarchical structure underlying the data. (c) Benchmarking of 20 clustering methods on 6 datasets,
including HGC applied on different feature spaces, representative clustering methods designed for scRNA-seq data and some general clustering methods such as classical HC
and 5 graph-based clustering methods (CW, CFG, CLE, CI and CLP, Supplementary Material). HGC, Seurat and SC3 achieved comparable clustering accuracy and significant-
ly outperformed other methods. (d) Benchmarking of the scalability of HGC, HC, three graph-based methods and Seurat on datasets with different sizes. HGC is significantly

faster than other methods
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After finding two nearest-neighbor nodes, the graph is updated
by merging them into a new node (Fig. 1a). The weights of the new
nodes are the sum of weights of the original nodes. Weights of edges
between new nodes are the sum of weights of edges between original
nodes forming the two new nodes. The whole HC procedure can be
accelerated using the nearest-neighbor chain algorithm because the
node-pair sampling distance is reducible (Bonald et al., 2018).

We implemented HGC as a software in R, with the key function
written in Repp. It provides Seurat-style function to enable seamless-
ly usage in the popular pipeline. It also includes tools to assist down-
stream analysis such as dynamicTreeCut for cutting the dendrogram
into specific clusters and plotting functions for visualizing HC
results.

3 Results

3.1 HGC reveals hierarchical structure of cell

heterogeneity

We experimented HGC on two datasets with known hierarchical
structures (Supplementary Figs S1 and S7). We visualized the clus-
tering results with dendrograms and t-SNE plots. Results showed
that HGC well recovered the hierarchical structures (Fig. 1b and
Supplementary Figs S2, S3, S8 and S9). We cut the dendrogram
at certain level to get fixed-number clustering results, and used
adjusted rand index (ARI) to compare with known results on the
data. Clusters given by HGC agreed well with the known labels at
different levels (Supplementary Figs S2¢ and S8c).

3.2 Benchmarking at fixed resolutions

To further benchmark HGC’s performance on revealing cell hetero-
geneity at fixed levels, we collected 6 scRNA-seq datasets with
known labels and compared results of 20 clustering methods with
known labels using ARI and normalized mutual information.
Results showed that HGC, Seurat and SC3 achieved the best cluster-
ing accuracy and significantly outperformed other methods (Fig. 1c,
Supplementary Tables S3 and S4).

3.3 Scalability

We tested the time efficiency of HGC on datasets of different sizes
sampled from Mouse Cell Atlas dataset (Han et al., 2018). On the
data of 5000 cells, HGC was 33 times faster than HC (13s versus
434s on a laptop computer). Running HC on a laptop became in-
feasible on datasets with more than 10 000 cells. HGC completed
the HC on the data of 400 000 cells in 404s, ~70% faster even than
Seurat which only gives a fixed number of clusters and much faster
than some existing graph-based hierarchical methods (Fig. 1d and
Supplementary Fig. S15).

4 Conclusion

We developed a new method HGC and its R package for fast HC of
single-cell data. It can reveal the hierarchical structure underlying
the data, achieves state-of-the-art clustering accuracy and can scale
to very large single-cell datasets.
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