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Abstract

Motivation: Microbiome data have proven extremely useful for understanding microbial communities and their
impacts in health and disease. Although microbiome analysis methods and standards are evolving rapidly, obtaining
meaningful and interpretable results from microbiome studies still requires careful statistical treatment. In particular,
many existing and emerging methods for differential abundance (DA) analysis fail to account for the fact that micro-
biome data are high-dimensional and sparse, compositional, negatively and positively correlated and phylogenetic-
ally structured. To better describe microbiome data and improve the power of DA testing, there is still a great need
for the continued development of appropriate statistical methodology.

Results: In this article, we propose a model-based approach for microbiome data transformation, and a phylogenetical-
ly informed procedure for DA testing based on the transformed data. First, we extend the Dirichlet-tree multinomial
(DTM) to zero-inflated DTM for multivariate modeling of microbial counts, addressing data sparsity and correlation and
phylogeny among bacterial taxa. Then, within this framework and using a Bayesian formulation, we introduce poster-
ior mean transformation to convert raw counts into non-zero relative abundances that sum to one, accounting for the
compositionality nature of microbiome data. Second, using the transformed data, we propose adaptive analysis of
composition of microbiomes (adaANCOM) for DA testing by constructing log-ratios adaptively on the tree for each
taxon, greatly reducing the computational complexity of ANCOM in high dimensions. Finally, we present extensive
simulation studies, an analysis of HMP data across 18 body sites and 2 visits, and an application to a gut microbiome
and malnutrition study, to investigate the performance of posterior mean transformation and adaANCOM.
Comparisons with ANCOM and other DA testing procedures show that adaANCOM controls the false discovery rate
well, allows for easy interpretation of the results, and is computationally efficient for high-dimensional problems.

Availability and implementation: The developed R package is available at https://github.com/ZRChao/adaANCOM.
For replicability purposes, scripts for our simulations and data analysis are available at https://github.com/ZRChao/
Papers_supplementary.

Contact: hongyu.zhao@yale.edu or neowangtao@sjtu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

To better understand the role of microbiome for human health,
large-scale collaborative projects, including MetaHIT (Ehrlich et al.,
2011) and the Human Microbiome Project (Huttenhower et al.,
2012), have been carried out worldwide over the past 15 years.
Analyses of the large amounts of data generated from these projects
and other studies pose major computational and statistical chal-
lenges, and have spurred the development of numerous bioinformat-
ic tools (Bolyen et al., 2019). For example, following 16s rRNA

sequencing and quality checking, sequence reads are usually clus-
tered into Operational Taxonomic Units (OTUs), based on sequence
similarity. OTU picking is then followed by assigning representative
OTU sequences into taxonomic levels. In addition to an OTU table
and/or a taxonomy table, bioinformatic processing of micriobiome
data often provides a phylogenetic tree that reflects the evolutionary
relationships among bacterial taxa. After data preprocessing, differ-
ent statistical analyses can be conducted for different purposes
(Knight et al., 2018). This article concerns model-based
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transformation of microbiome abundance data and differential
abundance (DA) testing based on the transformed data.

Although microbiome data have proven extremely useful, obtain-
ing meaningful and interpretable results from microbiome studies
requires careful statistical treatment. In particular, intrinsic charac-
teristics of microbiome data can cause misleading results if not
addressed (Weiss et al., 2017). First, the microbiome represents hun-
dreds or even thousands of microbes, some of which are dominant
but most are rare, and hence microbiome abundance data (that is,
multivariate taxon counts) are high-dimensional, over-dispersed and
sparse with a large proportion of zeros. Second, the possible interac-
tions between microbes can be both competitive and synergistic, and
there is a phylogenetic tree relating all bacterial taxa. As a conse-
quence, microbiome taxon counts are both negatively and positively
corrected, and are phylogenetically structured. Third, due to tech-
nical reasons, microbiome data are compositional containing only
relative information. It is thus challenging to draw inferences on the
total abundance in the ecosystem based on specimen-level taxon
abundance data. This is known as the compositional bias (Kumar
et al., 2018; Lin and Peddada, 2020).

To address the deficiencies of traditional statistical methods, a
variety of methods have been proposed. In particular, popular mod-
els for describing multivariate taxon counts include the Dirichlet-
multinomial (DM) (La Rosa et al., 2012), the generalized DM
(GDM) (Zhang et al., 2017) and the zero-inflated GDM (ZIGDM)
(Tang and Chen, 2019), with increasing level of flexibility. To better
describe microbiome data, Wang and Zhao (2017) proposed an ex-
tension of DM, called the Dirichlet-tree multinomial (DTM), by
incorporating the phylogenetic tree information. It is worth noting
that GDM is a special case of DTM when the tree is completely
skewed binary. There are many other methods for phylogeny-aware
analyses of microbiome data (Washburne et al., 2018). For example,
UniFrac uses the phylogeny to construct distances between microbial
communities (Lozupone et al., 2011). Furthermore, procedures for
distance-based hypothesis testing, such as MiRKAT (Zhao et al.,
2015) and OMiAT (Koh et al., 2017), modulate relative contribu-
tions from microbial abundance and phylogenetic information. The
above phylogenetically informed methods either assess the overall
patterns in microbiome variation or explain the variation of a
phenotype, but, at individual taxon level, amending DA testing using
a phylogeny is less developed in the literature (Liu et al., 2020).

Identifying bacterial taxa that are differentially abundant be-
tween conditions of interest is challenging because of the compos-
itional nature of microbiome data. To correct for the compositional
bias, many of the methods for DA testing involve a scaling normal-
ization step by multiplying microbial counts by some scale factors,
such as trimmed mean of M-values (TMM) in edgeR (Robinson
et al., 2010), median of ratios in DESeq2 (Love et al., 2014) and
cumulative-sum scaling (CSS) in metagenomeSeq (Paulson et al.,
2013). However, they all implicitly assume that most taxa are not
differentially abundant. Furthermore, when the count matrix has a
high fraction of zeros, scaling can overestimate or underestimate the
community diversity, distort the correlations among taxa and even
fail to provide a solution (Kumar et al., 2018; Weiss et al., 2017).

An attractive alternative to scaling is log-ratio transformation
which is a starting point in traditional analysis of compositional
data. Often, the additive log-ratios, centered log-ratios and isometric
log-ratios are used (Egozcue et al., 2003). After a log-ratio trans-
formation is applied, standard statistical tests, such as the two sam-
ple t-test and Wilcoxon rank-sum test, can effectively detect for
differences between microbial communities in a compositionally
aware manner. Analysis of composition of microbiomes (ANCOM),
which was proposed specifically for microbiome datasets, is a rec-
ommended method for DA testing (Mandal et al., 2015). It carries
out tests by comparing the log-ratios of the abundance of each taxon
to the abundance of all the other taxa. As discussed in the next sec-
tion, however, ANCOM is computationally intensive and tends to
have a high false discovery rate. In this article, we propose a means
for improving ANCOM by incorporating the phylogenetic tree
information.

Like scaling, zero counts pose a challenge for methods that de-
pend on log-ratio transformation, because we cannot take the log of
zeros. One way to address this issue is to transform raw counts into
non-zero relative abundances using a Bayesian treatment. For ex-
ample, assuming a multinomial for counts and a Dirichlet prior for
the underlying proportions, the posterior means for the proportions
always sum to one and lie between the prior mean and the maximum
likelihood estimate corresponding to the relative frequencies
(Martı́n-Fernández et al., 2015; Liu et al., 2020). Posterior mean
transformation includes as a special case the pseudo count method,
which adds a small value (for example, 0.5) to all counts. In this
case, a uniform prior is implicitly used. In this article, we propose a
flexible Bayesian formulation to perform posterior mean and then
log-ratio transformation, taking account of high-dimensionality,
compositionality, data sparsity and correlation and phylogeny
among taxa.

In this article, we first extend DTM to zero-inflated DTM
(ZIDTM). We develop an efficient expectation-maximization algo-
rithm for maximum likelihood estimation. Within this framework,
we derive the posterior mean transformation at different levels of
granularity. Then, based on the transformed data, we propose adap-
tive ANCOM (adaANCOM) by constructing log-ratios adaptively
according to the tree for each taxon. Comparison with ANCOM
shows that adaANCOM scales better for high dimensions, allows
for easier interpretation of the results, and controls the false discov-
ery rate potentially better. Finally, we investigate the performance of
adaANCOM using extensive simulation studies and two real data
applications.

2 Materials and methods

2.1 Zero-inflated Dirichlet-tree-multinomial (ZIDTM)

distribution
The most often used multivariate distribution for over-dispersed
OTU counts is the Dirichlet-multinomial (DM), which is a com-
pound multinomial with probabilities from a Dirichlet prior (La
Rosa et al., 2012). Suppose y ¼ ðy1; . . . ; yKÞT is the count vector for
a sample with K OTUs. The probability mass function of the multi-
nomial is given as

fMðy; pÞ ¼ Cðyþ þ 1Þ
QK
k¼1

Cðyk þ 1Þ

YK
k¼1

pyk

k ;

where yþ ¼
PK
k¼1

yk; Cð�Þ is the gamma function, and p ¼ ðp1; . . . ;pKÞT

is the vector of OTU probabilities with pk > 0 and
PK
k¼1

pk ¼ 1. The

Dirichlet distribution for the underlying composition is indexed by a vec-

tor of positive parameters, a ¼ ða1; . . . ; aKÞT ; ak > 0, and has density
function

fDðp; aÞ ¼ CðaþÞ
QK
k¼1

CðakÞ

YK
k¼1

pak

k ;

where aþ ¼
PK
k¼1

ak. The Dirichlet-multinomial then takes the form

fDMðy; aÞ ¼
Ð

fMðy; pÞfDðp; aÞdp

¼ Cðyþ þ 1ÞCðaþÞ
Cðyþ þ aþÞ

YK
k¼1

Cðyk þ akÞ
Cðyk þ 1ÞCðakÞ

:

One can reparametrize DM as h ¼ 1=ð1þ aþÞ and
ða1=aþ; . . . ; aK=aþÞT . Hence, DM is multinomial augmented with
one additional parameter h. We call h the over-dispersion parameter.

We first extend DM to zero-inflated DM (ZIDM). There is an
important relation between the Dirichlet, the gamma and the beta
distribution. Suppose that Z1; . . . ;ZK are independent gamma
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variables with the same scale parameter, Zk � Gammaðak; kÞ, with
density function

fGðzk; ak; kÞ ¼
1

CðakÞkak
zak�1

k e�zk=k:

Let Xk ¼ Zk=
PK
j¼1

Zj;Wk ¼ Zk=
PK
j¼k

Zj, for k ¼ 1; . . . ;K� 1, and

let XK ¼ 1�
PK�1

j¼1

Xj. Then the joint distribution of X ¼

ðX1; . . . ;XKÞT is the Dirichlet distribution with parameter vector a,

and Wk are independent beta variables, Wk � Betaðak; a
þ
k Þ, with

density function

fBðwk; ak; a
þ
k Þ ¼

1

Bðak; a
þ
k Þ

wak�1
k ð1�wkÞa

þ
k
�1;

where aþk ¼
PK

j¼kþ1

aj, and Bð�; �Þ is the beta function. Furthermore,

X1 ¼ W1, and Xk ¼Wk

Qk�1

j¼1

ð1�WjÞ, for k ¼ 2; . . . ;K� 1. Denote

by hð�Þ the transformation from W to X. Then, we can rewrite

fDMðy; aÞ ¼
ð

fMðy; hðwÞÞ
YK�1

k¼1

fBðwk; ak; a
þ
k Þdw:

By introducing zero-inflation to Wk, we define ZIDM as

fZIDMðy; p; aÞ ¼
ð

fMðy; hðwÞÞ
YK�1

k¼1

fZIBðwk; pk; ak; a
þ
k Þdw;

where

fZIBðwk; pk; ak; a
þ
k Þ ¼ pkdð0Þ þ ð1� pkÞfBðwk; ak; a

þ
k Þ:

Here, pk is the probability of zero-inflation in the kth compo-
nent, and dð�Þ is the Dirac delta function. Replacing Betaðak; a

þ
k Þ by

Betaðak;bkÞ leads to the zero-inflated generalized DM (ZIGDM,
Tang and Chen (2019)), where bk > 0 are additional free parame-
ters. Note that, in contrast to DM, GDM and ZIDM are not ex-
changeable, in the sense that they depend on the ordering of the
OTUs. We call this the ‘matching problem’.

Now we extend DTM (Wang and Zhao (2017)) to ZIDTM.
Suppose the relationship among OTUs is encoded in a tree, T , com-
posing of an internal node set V and a leaf node set L. For each
v 2 V, let Cv be the set of child nodes of v, yv the vector of counts
corresponding to Cv and yþv ¼

P
u2Cv

yu. By assuming that yv condi-
tional on yþv are independent across the internal nodes, the DTM dis-
tribution is defined as the product of DM distributions that factorize
over the tree

fDTMðy; av; v 2 VÞ ¼
Y
v2V

fDMðyv; yþv ; avÞ;

where av are vectors of positive scalars. It is easy to see that GDM is
a special case of DTM, when the tree structure is restricted to a bin-
ary cascade. Note that incorporating the phylogeny posits an order-
ing of OTUs, and thus removes the matching problem for GDM.
Replacing DMs by ZIDMs then defines the ZIDTM:

fZIDTMðy; pv; av; v 2 VÞ ¼
Y
v2V

fZIDMðyv; yþv ;pv; avÞ

where pv are vectors with length jCvj � 1 for probabilities of zero-
inflation. Conceptually, ZIDTM inherits the matching problem
from ZIDM. However, computationally, the problem is alleviated
when the cardinality of Cv; jCvj, is small for each v 2 V. As we will
see, this is the case for binary trees.

Figure 1 illustrates the idea. As mentioned above, a distinctive
property of DTM (and hence ZIDTM) is that the correlations be-
tween counts on tree nodes can be simultaneously negative and posi-
tive; see Supplementary Figure S1.

2.1.1 Maximum likelihood estimation for ZIDTM

We estimate the unknown parameters of ZIDTM by maximum like-
lihood, using the expectation-maximization (EM) algorithm. Let
h ¼ fav;pv; v 2 Vg. Assume that Cv ¼ f1; . . . ;Kvg, where Kv ¼ jCvj.
With n observations, y1; . . . ; yn, the complete data log-likelihood
function, ignoring the constant terms, is given by

lðhÞ ¼
Xn

i¼1

X
v2V

XKv�1

k¼1

fl1ðdi
vk; pvkÞ þ l2ðdi

vk;w
i
vk; avk; a

þ
vkÞg;

where di
vk is the indicator of zero-inflation,

l1ðdi
vk; pvkÞ ¼ di

vk log pvk þ ð1� di
vkÞ logð1� pvkÞ;

and

l2ðdi
vk;w

i
vk; avk; a

þ
vkÞ ¼ ð1� di

vkÞf�logBðavk; a
þ
vkÞ

þðavk � 1Þ log wi
vk þ ða

þ
vk � 1Þ logð1�wi

vkÞg:

In the E-step, we compute the expectation of lðhÞ with respect to
the posterior distribution of ðdi

vk;w
i
vkÞjyi

v, which is indexed by the
current value of h, and get the Q-function

QðhÞ ¼
Xn

i¼1

X
v2V

XKv�1

k¼1

Efl1ðdi
vk;pvkÞ þ l2ðdi

vk;w
i
vk; avk; a

þ
vkÞg:

Define di�
vk ¼ Eðdi

vkjyi
vÞ; Ri�

vk ¼ Eðlog wi
vkjyi

v; d
i
vk ¼ 0Þ and

Si�
vk ¼ Ef logð1�wi

vkÞjyi
v; d

i
vk ¼ 0g. We have

di�
vk ¼

0; yi
vk > 0;

pvk

pvk þ 1� pvkð Þ
Bðai�

vk; a
i�þ
vk Þ

Bðavk; a
þ
vkÞ

; yi
vk ¼ 0;Ri�

vk ¼ wðai�
vkÞ � wðai�þ

vk Þ;

8>>><
>>>:

and

Si�
vk ¼ wðai�þ

vk Þ � wðai�
vk þ ai�þ

vk Þ;

where ai�
vk ¼ avk þ yi

vk; ai�þ
vk ¼

PKv

j¼kþ1

ai�
vk and wð�Þ is the digamma func-

tion. Hence,

QðhÞ ¼
Xn

i¼1

X
v2V

XKv�1

k¼1

fQ1ðpvk; d
i
vkÞ þQ2ðavk; a

þ
vk;R

i�
vk; S

i�
vkÞg;

where

Q1ðpvk; d
i
vkÞ ¼ di�

vk logðpvkÞ þ ð1� di�
vkÞ logð1� pvkÞ;

and
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Fig. 1. A binary tree with K¼ 10 leaves. Here L ¼ f1; 2; . . . ; 10g;
V ¼ f11; 12; . . . ; 19g. For illustration, C17 ¼ f18; 19g; y17 ¼ ðy18; y19ÞT and

yþ17 ¼ y18 þ y19. Given yþ17; y17 has a DM or ZIDM distribution. The factorization

over internal nodes means that these conditional distributions are independent
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Q2ðavk; a
þ
vk;R

i�
vk; S

i�
vkÞ ¼ ð1� di�

vkÞf�logBðavk; a
þ
vkÞ

þðavk � 1ÞRi�
vk þ ða

þ
vk � 1ÞSi�

vkg:

In the M-step, we maximize QðhÞ with respect to h. Clearly, parame-
ters in Q1 and Q2 can be optimized separately, and each can be car-
ried out in parallel. To address the matching problem, at each
internal node, we fit a separate ZIDM model for each possible order-
ing of the jCvj taxa, and select the best fitted model. Compared with
GDM or ZIDM, the computational cost for ZIDTM reduces from
OðjLj!Þ to Oð

P
v2V jCvj!Þ.

In the rest of this article, we restrict our attention to binary trees, in
which jCvj ¼ 2 for all v 2 V. In this case, the Dirichlet, the multinomial,
the DM and the ZIDM reduce to the beta, the binomial (BN), the beta-
binomial (BB) and the zero-inflated beta-binomial (ZIBB), respectively.
Then ZIDTM is a product of ZIBBs, and its computational burden
grows linearly in jLj, which is the fastest possible.

Note that, for an internal node, if the count for one of its children
is always non-zero, which often happens for a common taxon, then
the probability of zero-inflation for that child is zero. In the extreme
case, the ZIDM for an internal node reduces to a DM when the
counts for its children are all non-zero. In practice, the observed
counts for a child node are likely to be zero (that is, the correspond-
ing taxon be absent) in some samples, then our estimation procedure
provides an estimated probability of zero-inflation for this node. In
other words, the fitting algorithm for ZIDTM decides the level of
zero inflation adaptively from the data.

2.1.2 Posterior mean transformation

The Dirichlet prior is popular mainly because it is conjugate to the
multinomial distribution. This allows us to estimate the underlying
proportions from a Bayesian perspective. In the case of DM, the pos-
terior mean has the form

EDMðpkjyÞ ¼
ak þ yk

PK
j¼1

ðyj þ ajÞ
:

We can estimate the unknown parameters by maximizing the evi-
dence, that is, the data likelihood. The estimated parameters are
then converted into ‘pseudo data’ which can then be ‘merged’ with
the observed data. This method has the advantage of producing non-
zero proportions for zero counts. A related but ad hoc procedure is
to add a pseudo count (such as 0.5) to the raw counts, and use the
sample proportions.

The situation is much more complex in the presence of zero-
inflation. However, when the count vector has just two components
(K¼2), there is an explicit closed-form solution. It is easy to verify
that

EBBðp1jyÞ ¼
a1 þ y1

a1 þ a2 þ y1 þ y2
;

and

EZIBBðp1jyÞ ¼
ð1� B0ÞB1

B0Bða1; a2Þ þ ð1� B0ÞB2
;

where B0 ¼ pIðy1 ¼ 0Þ; B1 ¼ Bð1þ a1 þ y1; a2 þ y2Þ and
B2 ¼ Bða1 þ y1; a2 þ y2Þ.

For binary trees, these are naturally extended to DTM and
ZIDTM. At each internal node v 2 V, we have

EBBðpv1jyvÞ ¼
av1 þ yv1

av1 þ av2 þ yv1 þ yv2
; (1)

and

EZIBBðpv1jyvÞ ¼
ð1� Bv0ÞBv1

Bv0Bðav1; av2Þ þ ð1� Bv0ÞBv2
; (2)

where Bv0;Bv1 and Bv2 are similarly defined.

Correctly specifying the model at each internal node can have a large
effect on the quality of the posterior estimates. We propose a two-stage
likelihood-ratio test. First, we assume that count data at v 2 V are not
zero-inflated, fit a BB model and test for over-dispersion. For nodes with-
out over-dispersion, counts are transformed into sample proportions
after adding a common constant of 0.5, that is, using (1) with
av1 ¼ av2 ¼ 0:5. Second, nodes with over-dispersion are refitted by a
ZIBB model, and are tested for zero-inflation. Counts are then trans-
formed by (2) in the presence of zero-inflation, and (1) otherwise.
Denote by p̂v ¼ ðp̂v1;1� p̂v1Þ

T the chosen posterior estimate.
So far we have concentrated on individual internal nodes, but the

results can be extended to the path level. For each node u 2 L [ V, let
Au denote the ancestor node set of u, consisting all internal nodes in
the path from the root node to u, and Lu the set of leaves in the same
path. In Figure 1, for example, A1 ¼ A2 ¼ f11;12;13g;
A3 ¼ f11; 12g; L11 ¼ L; L12 ¼ f1; 2;3g; L13 ¼ f1; 2g. We define

qu ¼
Y

v2Au

p̂v: (3)

Suppose that U is a set of nodes such that [u2ULu ¼ L and
Lu \ Lu0 ¼1, for u 6¼ u0. Then, it is easy to see that

P
u2U qu ¼ 1. In

particular, we have
P

l2L ql ¼ 1. This is the so-called ‘phylogeny-
aware normalization’ (Liu et al., 2020).

2.2 adaANCOM
In this section, we introduce a novel method for detecting differentially
abundant (DA) OTUs at the ecosystem level. Although the goal is the
same as that for ANCOM, the difference being the incorporation of a
phylogenetic tree whose leaf nodes correspond to these OTUs. Consider
simply the two-group situation. We need to test the hypotheses

H0l : log l1
l ¼ log l2

l

for l 2 L ¼ f1; . . . ;Kg, where lg
l is the mean absolute abundance in

the ecosystem of the lth OTU from the gth group, g¼ 1, 2.
The main contribution of ANCOM is to use relative abundance data

to perform the tests. Specifically, for each H0l, ANCOM involves testing
K—1 hypotheses based on additive log-ratios, namely,

H0lm : logðl1
l =l

1
mÞ ¼ logðl2

l =l
2
mÞ

for all m 6¼ l. To decide whether the lth OTU is differentially abun-
dant or not, ANCOM counts the reject number among the K—1
hypotheses. It then computes the empirical distribution of these
numbers, and determines a suitable cut-off. When K is large, this
may result in a high false discovery rate (Weiss et al., 2017). Another
drawback of ANCOM is computational: the total number of tests
increases from K to KðK� 1Þ=2.

To speed up the computation of ANCOM while keeping its es-
sential feature, we propose adaptive ANCOM (adaANCOM) by
constructing log-ratios adaptively on the tree. The underlying as-
sumption is that abundance difference on the log scale at an internal
node passes down to its descendants. Loosely speaking,
adaANCOM consists of two steps. In the first step, we test the in-
ternal node-level hypotheses

H0v : logðl1
v1=l

1
v2Þ ¼ logðl2

v1=l
2
v2Þ

for v 2 V, where lg
v1 and lg

v2 are the mean absolute abundances in
the ecosystem of two children of v from the gth group. For a prede-
fined significance level a, e.g. 0.05, we obtain a set DV of internal
nodes for which the hypotheses are rejected.

Second, for each leaf node l 2 L, we calculate the log-ratio and
carry out the test as follows. Define refl to be the sibling node of l, if
Al \ DV ¼1, and the child node of v not in Al otherwise, where v is
the node in Al \ DV closest to the root node. Consider the null
hypothesis

Hada
0l : logðl1

l =l
1
refl
Þ ¼ logðl2

l =l
2
refl
Þ:

Then, adaANCOM rejects the hypothesis H0l if Hada
0l is rejected.

As an illustrative example, we consider Figure 1 and assume that
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DV ¼ f17g. Then we have ref1 ¼ 2; ref2 ¼ 1; ref3 ¼ 13; ref4 ¼ 16;
ref5 ¼ 6; ref6 ¼ 5; ref7 ¼ ref8 ¼ 19 and ref9 ¼ ref10 ¼ 18.

We test H0v and then Hada
0l based on log-ratios of qu’s for

u 2 L [ V. However, when many of the observed counts on yu are
zero, the corresponding log-ratios can occasionally take abnormal
values, and test statistics such as two-sample t-statistic are sensitive
to these ‘outliers’. To deal with this abnormality, for an internal
node v, we define /v to be the maximum of j logðp̂v1=p̂v2Þj overall
observations with yv1 > 0 and yv2 > 0. Data with yv1 ¼ 0 or yv2 ¼ 0
are then removed if j logðp̂v1=p̂v2Þj > /v.

Just as in ANCOM, adaANCOM uses relative abundance data,
constructs log-ratios and then performs t-tests or Wilcoxon rank-
sum tests. We adopt the ZIDTM framework and use the posterior
mean transformation to convert counts into non-zero relative abun-
dances. The algorithm for adaANCOM is summarized in Algorithm
1. The key advantage of adaANCOM over ANCOM concerns com-
putation. The required number of tests is reduced by a factor of jLj.
The second advantage of adaANCOM is its interpretability. The
testing process is guided by the tree, and both DA leaves (OTUs) and
DA internal nodes are detected. A third potential advantage is that,
as we will see, adaANCOM controls the false discovery rate better
than ANCOM. This is because, for each OTU, ANCOM has to ac-
count for multiplicity, which is not a concern for adaANCOM.
Furthermore, qu and its associated log-ratios are more accurate for u
closer to the root, because by definition, the estimation error of q̂v at
a node v is propagated down to all of its descendants.

3 Results

3.1 Simulation studies
We used simulated data to compare adaANCOM to existing DA
testing methods, including the t-test, Wilcoxon rank-sum test,

DESeq2, edgeR, metagenomeSeq and ANCOM. Note that tests
were performed on the leaf nodes. For DESeq2, edgeR and
metagenomeSeq, we applied the built-in library size normalization
and the default parameter values, and for t-test and ANCOM, we
transformed raw counts into sample proportions after adding a

pseudo count of 0.5. Also included is a simplified version of
adaANCOM, denoted by adaANCOM-S, in which counts at each
node were transformed via (1) with av1 ¼ av2 ¼ 0:5.

3.1.1 Simulation settings

For simplicity we considered the two-group problem with a binary
tree representing the relationships among K OTUs. For each
K 2 f10; 30;50;100g, we generated the tree randomly, which was

then fixed, and chose the sequence depth uniformly from 10K to
1000K. Then, taxa abundance data were generated from either of
BB and ZIBB at each split of the tree recursively in a top-down man-
ner. For BB and the BB part of ZIBB, we set the dispersion parameter

hv ¼ 1=ðav1 þ av2 þ 1Þ ¼ h 2 f0:05;0:1;0:2;0:3;0:4g and generated
av1 uniformly on ð0;1=h� 1Þ. Furthermore, for ZIBB we took
pv ¼ p 2 f0:05;0:1;0:2; 0:3; 0:4g. When K¼100, we also generated
abundance data with parameters estimated based on real data

(details below).
To define DA nodes between two groups, we randomly chose

some internal nodes, and then set av1 ¼ 0:5=h� 0:5 for one group
and av1 ¼ ð1þ bÞð0:5=h� 0:5Þ for the other group, where b 2
f0:1;0:2; . . . ; 0:8g is the effect size. We varied the tree structure and

the locations of DA nodes to explore the robustness of adaANCOM.
Finally, to mimic the process of extracting a specimen from the eco-
system, we divided counts in each sample by a number randomly
chosen from 1 to 10.

We adjusted P-values by the Benjamini-Hochberg procedure,
and used three measures to evaluate the performance: the precision,

the recall and the F1 score. The sample sizes of two groups were
both 50, and all results were based on 100 replications.

3.1.2 Simulation results

We first explored the behavior of model selection and outlier detec-
tion. The results are shown in Figure 2. As we can see from
Figures 2a and b, the likelihood-ratio test controlled type I error well
under the null hypothesis, and had the desired power under the alter-

native. Figure 2c shows that, using as the threshold the maximum of
j logðp̂1=p̂2Þj overall observations with y1 > 0 and y2 > 0, most of
the ‘outliers’ came from structural zeros as expected. From
Figure 2d, we see that the likelihood-ratio test was not immune to
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Fig. 2. Illustration of model selection and outlier detection. (a) Hypothesis testing of BB versus ZIBB and of BN versus BB. Data were generated from the BB distribution as the

over-dispersion parameter h varied from 0 to 0.5. The dashed horizontal line indicates the nominal significance level 0.05; (b) power of the likelihood-ratio test. Data were gen-

erated from ZIBB as h and p were both varied; (c) outlier detection. Data were generated from ZIBB with h ¼ 0:1 and p ¼ 0:1. The solid black horizontal line indicates the

threshold for identifying outliers; (d) the effect of outlier detection on the power. Data from two groups were generated from ZIBB with h ¼ 0:1; p ¼ 0:1 and a1 ¼
0:5=h� 0:5 ¼ 4:5 for one group and a1 ¼ 4:5ð1þ bÞ for the other group, as the effect size b varied

Algorithm 1: adaANCOM

Input: A binary tree T ¼ ð‘;VÞ, posterior-mean-transformed data

fp̂v; v 2 Vg, group information, and a testing procedure;

Output: DA internal nodes DV , and DA leaf nodes D‘;
Step 1:

Set DV ¼1, for v 2 V do

Construct the log-ratios logðp̂v1=p̂v2Þ, and remove the outliers;

Test H0v, and if rejected, update DV ¼ DV [ fvg;
end

Step 2:

Set D‘ ¼1, for l 2 ‘ do

Search refl, compute ql and qrefl
;

Construct the log-ratios logðql=qrefl
Þ, and remove the

outliers;

Test Hada
0l , and if rejected, update D‘ ¼ D‘ [ flg;

end
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the effect of outliers, while removal of the them greatly improved its
performance.

Next we compared the performance of adaANCOM and other
DA testing methods. Figure 3 shows the simulation results when the
generating distribution was DTM or ZIDTM with the tree and DA
pattern displayed in Supplementary Figure S2. For DTM, all meth-
ods except ANCOM and edgeR had the desired precision which
means they could control the false discovery rate (FDR) at 0.05. As
shown in the lower panel of Figure 3a, adaANCOM and
adaANCOM-S performed similarly and both were superior to others
especially for moderate to large values of b. For ZIDTM, we see
from Figure 3b that the overall conclusion is the same as for DTM,
except that adaANCOM-S was inferior to adaANCOM. This high-
lights the importance of model selection in the presence of over-
dispersion and zero-inflation. Supplementary Figure S3 shows that,
the performance of adaANCOM deteriorated as the degree of over-
dispersion increased, but it still was the best performer. The FDR
of ANCOM was high because it uses the reject number among the
K—1 hypotheses to decide whether or not a taxon is differentially
abundant. Previous studies have found that ANCOM has an inflated
FDR (Weiss et al., 2017) which is consistent with our results. One
reason for the poor performance of edgeR and DESeq2 is that the

underlying scaling normalization was unreliable, especially when the
zero proportion was large. We note that DESeq2 may fail to provide
a solution in situations with a larger proportion of zeros. The poor
performance of t-test results from the compositionality and large
proportion of zeros. Since the Wilcoxon rank-sum test applied dir-
ectly to the raw counts, its performance was strongly affected by the
sequence depth and fraction of zeros.

Then we explored the robustness of adaANCOM with more
complex DA patterns and tree structures (Supplementary Figs S4–
S12). adaANCOM was the clear overall winner. It was robust to the
specification of DA pattern (Supplementary Figs S4–S9), and was in-
sensitive to the tree size (Supplementary Figs S10–S12).

We also simulated a tree with K¼ 100 leaves (Supplementary
Figs S13). To mimic real data, we generated data from ZIDTM using
parameters learned based on the HMP dataset, as detailed in
Supplementary Figure S14. On the tree, we randomly set some nodes
to be differentially abundant, and highlighted three subtrees with
different colors (Supplementary Figs S13). We would like to com-
pare the results at both the whole tree and subtree levels, using either
the full dataset or subsets of data corresponding to subtrees. The
results are shown in Figures 4 and Supplementary Figure S15.
adaANCOM had the highest recall and comparable precision, and

(a)

(b)

Fig. 3. Precision and recall comparison of different DA testing methods. (a) Data were generated from DTM with varying values of dispersion parameter hv ¼ h and effect size

b, and with the tree and DA pattern displayed in Supplementary Figure S2; (b) data were generated from ZIDTM with varying values of zero-inflation proportion pv ¼ p and a

fixed dispersion hv ¼ 0:1, and again with the tree and DA pattern displayed in Supplementary Figure S2. The testing method in adaANCOM and adaANCOM-S was t-test

Whole tree & full data Subtree 1 & full data Subtree 2 & full data Subtree 3 & full data Subtree 1 & data subset Subtree 2 & data subset Subtree 3 & data subset
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Fig. 4. F1 score comparison of different DA testing methods. Data were generated from ZIDTM with parameters estimated based on the HMP dataset, and with the tree and

DA pattern depicted in Supplementary Figure S13. ‘Whole tree’ refers to results calculated based on all leaves while ‘subtree’ refers to results summarized for leaves correspond-

ing to each subtree, with parameters estimated using either the full data or data subsets
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hence the highest F1 score, across all scenarios. This type of coherence
is highly desirable, as it indicates that adaANCOM is in some sense
robust to tree pruning and OTU screening or preprocessing. In con-
trast, some methods, such as edgeR, were sensitive to the size of the
OTU set, partly because of their built-in normalization processes.

3.1.3 Additional simulation settings and results

It seems as if t-test and Wilcoxon rank-sum test had higher precision val-
ues than ANCOM and edgeR. This is contradictory to common sense
(Mandal et al., 2015; Weiss et al., 2017). There were two reasons for the
unusual behavior of t-test and Wilcoxon rank-sum test in the above
simulation studies. First, for both groups the sequencing depth was gen-
erated from the same distribution. Second, simulated data were gener-
ated at each split of the tree recursively in a top-down and
compositionally aware manner. To better demonstrate how t-test and
Wilcoxon rank-sum test control the FDR, we explored a simple data
generating mechanism as follows. We first generated the sequencing
depth uniformly from 10K to 1000K for one group, and from 10K to
100K for the other group. We then generated data from DTM (or
ZIDTM) with the same parameters for the two groups. Finally, we
selected a subset of leaf nodes and multiplied their counts by some ran-
dom effect size for one group, so that they were differentially abundant.
The log effect size was drawn uniformly from –5 to 5. Note that, in this
case, an increase in counts of one or more OTUs necessarily implies an
increase in relative abundance of them and a concomitant decrease in
relative abundance of the other OTUs and vice versa. The results are
shown in Supplementary Table S1. We can see that t-test, Wilcoxon
rank-sum test and edgeR had low precision across all settings, and that
DESeq2, ANCOM and metagenomeSeq inflated the FDR in some cases.
Again, adaANCOM and adaANCOM-S controlled the FDR better than
other methods, and adaANCOM had the overall best performance.

So far, the simulated settings give advantages to adaANCOM. As
suggested by a referee, we considered a new data generating mechanism
by using the upcoming software SparseDOSSA 2 (https://huttenhower.
sph.harvard.edu/sparsedossa2). Specifically, we simulated abundances
of each taxon by SparseDOSSA 2 and aggregated them along a tree.
However, since SparseDOSSA 2 requires an input count matrix for
learning and setting its parameters, we used synthetic data generated
from the DTM (or ZIDTM) distribution using the same tree. This
makes some sense, because otherwise the tree is arbitrary and the
results based on adaANCOM are not meaningful and not interpretable.
The results are shown in Supplementary Figure S16. As we can see, all
methods had comparable precision score, while adaANCOM got
higher recall and F1. Thus, to some degree, the information aggregated
from leaf nodes to internal nodes was helpful for boosting the detection
power of adaANCOM. We also considered the setting in which the
tree is arbitrary or misspecified, and in such a case adaANCOM did
not outperform others. This is as expected, because adaANCOM is a
tree-based extension of ANCOM, and when the tree is misspecified or
unavailable, it is better to use ANCOM or metagenomeSeq, which are
designed specifically for microbiome data.

3.2 Real data examples
3.2.1 HMP data

In this section, we applied the posterior mean transformation to the
HMP data. HMP, launched in 2007, is a two-phase project aiming
to facilitate characterization of the microbiota to understand the
role of microbiome in human health and disease. In our analysis the
data come from the first phase, in which 300 healthy individuals
were recruited to investigate whether there is a core healthy micro-
biome. For each individual, microbial samples were collected from
at most 18 different sites of human body across 3 visits, and these
body sites belong to 4 major regions (oral cavity, gut, vagina and
skin). The microbial samples were then sequenced at four sequencing
centers (Lloyd-Price et al., 2017).

To illustrate the effect of model selection and data transform-
ation, we extracted data from 16S rRNA sequencing of all body sites
and the first two visits. We restricted attention to data processed by
the Washington University Genome Center, which had the largest
number of samples, to reduce the batch effect. Using the tax_glom

function in the R package phyloseq, we consolidated taxa at differ-
ent taxonomic levels for each body site. We also filtered samples
with total reads less than 1000 and taxa with prevalence less than
20%. After data preprocessing, the sample sizes ranged from 52 to
112 and the numbers of species from 341 to 1513 (Supplementary
Table S2). In addition, there was a phylogenetic tree showing the
relationships among these taxa.

Before proceeding, we investigated the necessity of model selec-
tion by applying likelihood-ratio tests at each internal node to taxa
abundance data separately for each body site and each visit. The
results are shown in Figure 5 and Supplementary Table S3. As we
can see, at the genus level the proportion of selected models being
BB is the largest across all sites, indicating that taxa counts were
over-dispersed, as expected. Furthermore, the proportion of ZIBB
ranges from 2.63% to 41.2% and from 3.45% to 46.9% for two vis-
its respectively, and hence model selection is essential. There is clear
evidence that the composition of taxa varies widely across body
sites, and that the within-individual variation is also evident but is
much smaller.

For each sample, we normalized the counts based on the poster-
ior mean transformation, calculated the Shannon’s index and the
Simpson’s index, and then compared each index between the two
visits. We see that, using the Wilcoxon rank-sum test and the
Bonferroni bound, there is no significant difference in alpha diversity
between the two visits for all taxonomic levels (Supplementary Figs
S17). We then combined the values for each index from the two vis-
its, and compared each body site to others. From Figure 6 and
Supplementary Figure S18, we can see that the alpha diversity values
within the same major region was more similar to each other than
those in different regions (Lloyd-Price et al., 2017).
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We then used the transformed stool data for DA analysis be-
tween two visits at the species level without removing the taxa with
prevalence less than 20%. After pre-processing, 6965 species of 108
samples were left and the zero proportion was about 90%. The
results are shown in Supplementary Table S4. Note that an error
occurred for running DESeq2 to estimate the size factor. For most
methods, species were not significantly differentially abundant be-
tween two visits, which was as expected and consistent with the
results in Supplementary Figure S17. edgeR stood out as an excep-
tion, and species detected by it were likely false discoveries. We fur-
ther carried out DA analysis between gut and other body sites at the
species level. The results are summarized in Supplementary Table
S5. We can see that t-test tends to detect more differentially abun-
dant species in most cases, followed by Wilcoxon rank-sum test, and
then by ANCOM and metagenomeSeq. There were some errors
occurred when running DESeq2 and edgeR.

3.2.2 Gut microbiota and malnutrition

Gut microbiota play an important role in malnutrition, especially
for children (Blanton et al., 2016). Using the random forest algo-
rithm, researchers identified a set of 60 bacterial taxa at the OTU
level that exhibited the highest power of predicting malnutrition for
Bangladeshi children (Subramanian et al., 2014). In this section, we
revisited this dataset and applied adaANCOM and other methods to
detect DA taxa between healthy and malnourished children.
Following Liu et al. (2020), we built a phylogenetic tree using repre-
sentative sequences for the 60 taxa (Supplementary Figure S19), and
treated the relative importance of these taxa assessed by random for-
est as the gold standard.

We focused on the 22 normal and 40 malnutrition subjects, all
aged from 12 to 18 months. As in Subramanian et al. (2014), we
rarefied the 62 samples to the lowest depth by the rarefy function in
the R package GUniFrac. To evaluate the performance of a DA test-
ing method, for each t 2 f5;10;15;20;25g, we calculated the F1
score, F1ðtÞ, by comparing the t taxa having the smallest P-values
with the top-t taxa ranked by random forest. The results are shown
in Figure 7. We can see that adaANCOM performed well overall.

We then compared the DA testing results for adaANCOM and
those for its competitors on the tree. Since all the 60 taxa were pre-
dictive of the malnutrition status, the larger the number of identified
taxa, the better the DA testing method. adaANCOM detected a total
of 38 taxa, of which 21 were unique. Supplementary Figure S20
shows a tree-based visualization of the outcomes. We can see that
differentially abundant taxa identified by our method tend to be
more similarly related to each other. For example, the most signifi-
cant taxon found exclusively by adaANCOM, OTU 189827
(Rumicnococcus_sp_5_1_39BFAA, P-value¼3:54� 10�15), was
ranked the second by random forest, and its sibling, OTU 364234,
was also significant (Rumicnococcus_sp_5_1_39BFAA, P-val-
ue¼2:62� 10�13) and ranked the 10th by random forest. The spe-
cies Rumicnococcus_sp_5_1_39BFAA was discovered to be depleted
in malnourished children (Million et al., 2017). OTU 48207
(Dialister, P-value¼2:66� 10�4) and its slibling OTU 259261
(Megamonas, P-value¼4:14� 10�5) were also uniquely identified
by adaANCOM. The genus Dialister was experimentally verified to

be positively correlated to severity of functional intestinal disorders,
which are frequently observed in malnourished patients with ano-
rexia nervosa (Mouna et al., 2019), and the genus Megamonas was
shown to be more abundant in malnourished children than in
healthy children (Subramanian et al., 2014).

4 Discussion

In the first part of the article, we proposed an extension of DTM,
called ZIDTM, for modeling microbial abundance data. By defin-
ition, the probability mass function of ZIDTM is the product of
probability mass functions of ZIDMs that factorize over the tree. To
our knowledge, ZIDTM is the most flexible multivariate distribution
for count data that simultaneously takes into account over-
dispersion, data sparsity, complex inter-taxon dependencies and
phylogenetic structure among taxa. We developed an expectation-
maximization algorithm for maximum likelihood estimation, which
can be implemented efficiently on a parallel architecture computer.
To address the matching problem, for each internal node and each
possible ordering of its child nodes, a separate ZIDM model is fitted
and the best-fitting model is selected. Incorporating the phylogeny
greatly alleviates the matching problem of GDM and ZIDM in high
dimensions. To further address the compositionality problem, we
proposed an empirical Bayes approach to transform microbial
counts into non-zero relative abundances, by plugging the maximum
likelihood estimates under ZIDTM into the posterior mean. To im-
prove the quality of posterior mean transformation, at each internal
node, model selection is conducted based on a two-stage likelihood-
ratio test. It is worth noting that ZIDTM also allows one to study
the effects of covariates, such as dietary nutrients on microbial com-
position, although computational tractability is a concern when
both the number of covariates and the number of taxa are large.
One limitation of ZIDTM is the conditional independence assump-
tion across internal nodes. It is interesting and important to relax
this assumption. Work along this line is in progress.

In the second part, using the posterior-mean-transformed data
(that is, estimated compositions), we proposed an extension of
ANCOM, called adaANCOM, for DA testing. adaANCOM consists
of two steps. First, it tests the hypotheses at the internal node level.
Then, based on the results in the first step, it builds log-ratios adap-
tively on the tree for each leaf node, and tests for DA for the corre-
sponding taxon. To prevent log-ratios from taking abnormal values,
an additional step of outlier detection is conducted. adaANCOM
greatly reduces the computational complexity of ANCOM in high
dimensions from OðjLj2Þ to OðjLjÞ, controls the false discovery rate
better than ANCOM, and allows for a tree-based visualization of
the results. Our work connects to the recent interest in phylogenetic-
ally informed analysis of microbiome data. However, as mentioned
previously, most of the phylogeny-aware testing procedures concern
the overall significance of the association between the microbiome
and an outcome variable. For example, the phylogenetic tree-based
microbiome association test of Kim et al. (2020) is also composed of
two steps, with the same first step as that of adaANCOM. However,
the results in the first step are combined in the second step to carry
out a global association test, rather than testing associations with
each individual taxon. We have implemented our methodology in
the R package adaANCOM, and demonstrated its good perform-
ance using extensive simulation studies and two real data applica-
tions. adaANCOM implicitly assumes that data are generated at
each split of the tree recursively in a top-down manner. However,
there are situations in which this assumption could be violated.
Extensions of adaANCOM to handle top-down, bottom-up or
mixed cases would be an interesting area for future research.
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