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Abstract

Motivation: Phosphate binding plays an important role in modulating protein–protein interactions, which are ubiqui-
tous in various biological processes. Accurate prediction of phosphate binding sites is an important but challenging
task. Small size and diversity of phosphate binding sites lead to a substantial challenge for developing accurate pre-
diction methods.

Results: Here, we present the phosphate binding site predictor (PBSP), a novel and accurate approach to identifying
phosphate binding sites from protein structures. PBSP combines an energy-based ligand-binding sites identification
method with reverse focused docking using a phosphate probe. We show that PBSP outperforms not only general
ligand binding sites predictors but also other existing phospholigand-specific binding sites predictors. It achieves
�95% success rate for top 10 predicted sites with an average Matthews correlation coefficient value of 0.84 for suc-
cessful predictions. PBSP can accurately predict phosphate binding modes, with average position error of 1.4 and
2.4 Å in bound and unbound datasets, respectively. Lastly, visual inspection of the predictions is conducted. Reasons
for failed predictions are further analyzed and possible ways to improve the performance are provided. These results
demonstrate a novel and accurate approach to phosphate binding sites identification in protein structures.

Availability and implementation: The software and benchmark datasets are freely available at http://web.pkusz.edu.
cn/wu/PBSP/.

Contact: wuyd@pkusz.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions play fundamental roles in various bio-
logical processes such as signal transduction, cell cycle regulation,
metabolic regulation, immune response and gene expression regula-
tion (Braun and Gingras, 2012; Humphrey et al., 2015; Keskin
et al., 2016). Their spatial and temporal regulations are essential for
the survival at the cellular and organism levels. Phosphorylation
(Singh et al., 2017), one of the most pervasive and best-studied post-
translational modifications (Gokirmak et al., 2010), can modulate
the nature and the strength of protein–protein binding (Nishi et al.,
2011). Indeed, adding or removing a dianionic phosphate group
somewhere on a protein might change its physicochemical proper-
ties, folding stability, kinetics and dynamics (Johnson, 2009).
Phosphorylation can also provide diverse and selective recognition
sites for the binding of proteins containing phosphate-binding
domains (Nishi et al., 2014). Numerous studies have identified and
investigated various phosphate-binding domains, such as 14-3-3,

WW, FHA, SH2, BRCT and WD40 domains (Jin and Pawson,
2012; Pawson et al., 2001; Reinhardt and Yaffe, 2013; Yaffe and
Smerdon, 2001). However, the details of phosphate binding sites
and recognition mechanisms are difficult to obtain because of diffi-
culties and high costs in experiments. Thus, reliably predicting the
region of phosphate binding sites can be useful in guiding mutagen-
esis experiments and protein functional annotation, and in the mod-
eling of a phosphorylation-related protein complex structures.

In recent years, a variety of methods have been developed for
binding sites prediction, such as MIB (Lin et al., 2016), ConCavity
(Capra et al., 2009), MSPocket (Zhu and Pisabarro, 2011), LISE
(Xie and Hwang, 2012), COACH (Yang et al., 2013), AutoSite
(Ravindranath and Sanner, 2016), DeepSite (Jimenez et al., 2017)
and P2Rank (Krivak and Hoksza, 2018). However, researches on
the prediction of phosphate-binding sites are limited. Joughin et al.
(2005) developed a method in which physical and chemical proper-
ties of nine phosphopeptide-binding domains were used to character-
ize the phosphopeptide-binding region on protein surface. Sanchez
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et al. (Ghersi and Sanchez, 2009; Hernandez et al., 2009) developed

an energy-based approach called SiteHound, which determines mo-

lecular interaction fields for a protein structure using a phosphate

oxygen probe in order to identify the potential binding sites for
phosphorylated ligand. In fact, the two methods are developed to de-

tect favorable binding regions instead of pinpointing the position in

space of the phosphate group. Parca et al. (2011) developed Pfinder,
a comparative method for the identification of binding sites for

phosphate groups, both in the form of ions or as parts of other non-

peptide ligands. This method relies heavily on template library, and

it is unable to predict truly novel sites that have no analogues in tem-
plate library. SiteHound performs much better than Pfinder in the

identification of binding sites for phosphate group in both protein–

protein interactions and protein-small molecule interactions, likely

due to Pfinder relying on matching to existing phospholigand bind-
ing sites (Ghersi and Sanchez, 2012).

Small size and diversity of phosphate binding sites lead to a sub-

stantial challenge for developing accurate prediction methods. Most

of the ligand-binding sites often locate among the largest pockets on
protein surface (London et al., 2010; Nayal and Honig, 2006).

However, the phosphate group is much smaller than general ligands,

and in many instances the phosphate-binding sites may not locate in

the largest pockets. The diversity of phosphate binding sites repre-
sent a second challenge to their prediction. Phosphate groups are

ubiquitous in biology and nearly half of known proteins have been

shown to interact with partners containing such a group (Hirsch

et al., 2007). As phosphorylation occurs in such a diverse range of
contexts, it is not surprising that the domains involved in its selective

recognition are often unrelated from an evolutionary or structural

standpoint. Although the residues preferentially bound to phosphate
groups are somewhat conserved, in fact in many instances the bind-

ing site is not the region of most positive electrostatic potential on

the protein surface (Ghersi and Sanchez, 2012). All in all, proteins

interacting with phosphate are highly heterogeneous, and no single
property can be used to reliably identify the phosphate binding sites.

Here, we present the phosphate-binding site predictor (PBSP), a

method to predict phosphate binding sites given a protein 3D struc-

ture. PBSP combines a modified energy-based binding sites identifi-
cation method with reverse focused docking to improve accuracy

and selectivity. We show that PBSP outperforms other representative

methods, and achieved �95% success rate for top 10 predicted sites

with an average Matthews correlation coefficient values of 0.84 for
successful predictions. Furthermore, PBSP can also provide phos-

phate binding modes at atomic resolution.

2 Materials and methods

2.1 Phosphate binding site definition
The phosphate binding site is defined as the spherical region of 7 Å

surrounding the phosphorous atom of PO4 moiety in previous stud-

ies (Brakoulias and Jackson, 2004; Kinoshita et al., 1999). However,

it yields larger binding sites than the actual ones, and some residues
in the sites are not interacting with phosphate groups. In order to de-

fine the phosphate binding site more accurately, the distances be-

tween all heavy atoms in a receptor protein and phosphorus atom in
its ligand were calculated across the whole Protein Data Bank (PDB)

(Berman et al., 2000) (Supplementary Fig. S1a). The main peak in

the normalized-distance distribution is mainly distributed within

4.7 Å. The P–O bond length in phosphate group is about 1.5–1.6 Å,
thus most distances between the oxygen atoms in phosphate groups

and the heavy atoms in receptors are within 3.2 Å, which is suitable

for the formation of hydrogen bond. Therefore, receptor residue in

which at least one heavy atom is within 4.7 Å from phosphorus
atom is defined as phosphate-binding residue (Supplementary Fig.

S1b). In order to make sure that phosphorylation plays important

role in the interaction, one phosphate binding site should be com-
posed of more than two phosphate binding residues.

2.2 Datasets
All the crystal structures in PDB (Berman et al., 2000) with reso-
lution �3 Å and at least two chains were downloaded on July 06,
2020, and filtered for the presence of at least one phosphoresidue as
indicated by the names ‘PTR’ (phosphotyrosine), ‘SEP’ (phosphoser-
ine) or ‘TPO’ (phosphothreonine). Structures in which small mole-
cules occur in the binding sites and affect the interactions were
filtered out. Then the phosphate binding sites defined above were
extracted from the crystal structures, and the chains containing
phosphate binding sites were designated as phosphate binding pro-
teins. Redundancy is removed by using PISCES (Wang and
Dunbrack, 2003), a protein sequence culling server, with a sequence
identity cutoff of 50%. It yielded a non-redundant bound dataset of
97 chains containing 106 phosphate binding sites. The detailed in-
formation of the phosphate binding sites and corresponding PDB
entries is summarized (Supplementary Table S1). A corresponding
dataset of unbound phosphate binding proteins was also generated
by carrying out a BLAST (Camacho et al., 2009) search (default
parameters) using the bound chain sequences against the entire PDB.
Hits with sequence identity or coverage � 98% were excluded. The
structures with an empty binding sites and with the highest reso-
lution were retained. Finally, this protocol yielded a non-redundant
unbound dataset of 63 chains containing 67 phosphate binding sites
(Supplementary Table S2).

2.3 PBSP
PBSP relies on and contains third-party software called AutoDockFR
(Ravindranath et al., 2015) and AutoSite (Ravindranath and Sanner,
2016) with slight modification. As shown in Figure 1, the workflow of
PBSP contains the following three steps:

(i) Potential phosphate binding pockets identification. A few
studies show that focused docking produce more accurate docking
poses than blind docking (Ban et al., 2018; Ghersi and Sanchez,
2009; Liu et al., 2020). Thus, we first identify potential binding
pockets for subsequent reverse focused docking. The first step
requires the computation of a 1 Å resolution oxygen (AutoDock
atom type OA, hydrogen bond acceptor) affinity map with
AutoGrid4 (Huey et al., 2007) in AutoDock (Morris et al., 2009),
using a box enclosing the entire protein. The map contains evenly
spaced grids where each grid point yields the sum of the pairwise
interaction energies between an oxygen-atom with all protein atoms.
A predefined energy cutoff (-0.32 kcal/mol for all cases,
Supplementary Fig. S2) is applied to filter out all the grid points with
unfavorable interaction energies. Subsequently, the remaining grid
points are clustered using a DBSCAN algorithm which was devel-
oped in AutoSite (Ester et al., 1996; Ravindranath and Sanner,
2016). The potential phosphate binding pocket is defined as the clus-
ter generated by the clustering algorithm. In order to obtain more
potential binding pockets, cVolcut which is a cutoff to filter small
clusters in the clustering algorithm is set to 10 in PBSP.

(ii) Reverse focused docking. A phosphate probe (CH3PO2
4

-) was
created and geometry optimization was carried out using Gaussian
16 (Baboul et al., 1999; Frisch et al., 2016; Grimme et al., 2010;
Rassolov et al., 2001). For every potential phosphate binding pocket
identified above, the probe is docked to a box encompassing the
pocket using AutoDockFR (Ravindranath et al., 2015) with default
parameters. Here, we developed two PBSP models, PBSP/R by rigid
docking and PBSP/F by flexible docking. In PBSP/F, side chains of ar-
ginine, lysine, serine, threonine, histidine and tyrosine in the

Fig. 1. Flowchart of PBSP for phosphate binding site prediction
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potential binding pocket are made flexible, and the docking box is

large enough to allow side chains to rotate freely inside. This is be-

cause these six residues (Arg, Lys, Ser, Thr, His, Tyr) occur most fa-

vorably in phosphate binding sites (Supplementary Fig. S1).
(iii) Ranking of sites. We assume that the true phosphate-binding

site would exhibit stronger binding free energies to the phosphate-

probe than other sites. AutoDockFR (Ravindranath et al., 2015)

scoring function, which is based on AutoDock (Huey et al., 2007)
energy function, is used to rank all binding modes generated during

docking. The AutoDock energy function (1) is a weighted sum of

terms representing van der Waals, hydrogen bond, electrostatic and

desolvation contributions, which are calculated between pairs of
atoms.
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The AutoDockFR score (Ravindranath et al., 2015) (2) uses this

energy function to independently score the interactions between the
following three groups of atoms: Ligand atoms (L), Rigid Receptor

atoms (RR) and Flexible Receptor atoms (FR). The total score is the

sum of these interaction terms:

AADFR ¼ EL�L þ EL�RR þ EL�FR þ EFR�FR þ EFR�RR (2)

In the case of PBSP/R, only the first two terms (i.e. EL-L or ligand

intra-molecular and EL-RR or ligand-rigid receptor inter-molecular
interactions) are considered. The additional terms (EL-FR, EFR-FR and

EFR-RR) are automatically included in the scoring functions in PBSP/

F. The EL-RR and EFR-RR terms are efficiently obtained by interpolat-

ing values in affinity maps. The remaining terms (EL-L, EL-FR, EFR-

FR) are computed using explicit atom pairs for every non-bonded

pair of atoms excluding 1-3 interactions, and 1-4 interactions not

mediated by a rotatable bond (Ravindranath et al., 2015).

2.4 Evaluation
The ligand binding sites predictions are mainly evaluated by sensitiv-
ity (Sen), accuracy (Acc), specificity (Spe), precision (Prec) and

Matthews correlation coefficient (MCC) (Matthews, 1975), which

are defined as below:

Sen ¼ TP

TPþ FN
(3)

Acc ¼ TPþ TN

TPþ FNþ TNþ FP
(4)

Spe ¼ TN

TNþ FP
(5)

Prec ¼ TP

TPþ FP
(6)

MCC ¼ ðTP� TNÞ � ðFP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p (7)

where TP (FP) is the number of true (false) phosphate binding resi-

dues in the prediction, and TN (FN) is the number of true (false)
non-phosphate binding residues. In general, the MCC (ranging from

-1 to 1) represents a score combining both the accuracy and coverage

of the prediction which has a better balance of both aspects. It was

also used in CASP official evaluation for protein-ligand binding site
prediction (Schmidt et al., 2011). The MCC can be directly related

to chi-squared test applied to the 2�2 contingency matrix containing

the TP, TN, FP and FN by using the following equation (Baldi et al.,
2000; Ghersi and Sanchez, 2012):

x2 ¼ N �MCC2 (8)

where N is the total number of residues (sum of TP, TN, FP and
FN). The average N of the proteins in the dataset is 232, and an
MCC of 0.3 in this case would correspond to P-values � 10�4. Thus
a predicted phosphate binding site with an MCC � 0.3 was consid-
ered as a successful site.

3 Results

3.1 Comparison with other methods
An energy-based phospholigand-specific binding-site predictor
SiteHound (OP probe) (Hernandez et al., 2009) was chosen for com-
parison against PBSP, as well as four general ligand-binding sites
prediction methods: a knowledge-based predictor LISE (Xie and
Hwang, 2012), a geometry-based predictor MSpocket (Zhu and
Pisabarro, 2011), a machine learning-based predictor P2Rank
(Krivak and Hoksza, 2018) and a geometry-based predictor Fpocket
(Le Guilloux et al., 2009). Figure 2 presents success rates of different
methods for phosphate-binding site prediction in both bound and
unbound datasets from top 1 to 10 predictions. A protein with at
least one successful site (successful prediction) in top X (1�X� 10)
predictions is considered as a successful protein. And the success rate
is defined as the proportion of the number of successful proteins to
the total number of all proteins in the dataset. The two PBSP predic-
tors have better performance than other methods, including
SiteHound. For the bound dataset, PBSP/R and PBSP/F achieve
89.6% and 85.6% success rate in top 5 predictions, and 93.4% and
95.3% success rate in top 10 predictions, respectively. While
SiteHound makes 72.6% and 86.6% success rate in top 5 and 10
predictions, respectively. And for the unbound dataset, PBSP/R and
PBSP/F achieve 85.1% and 79.1% success rate in top 5 predictions,
and 95.5% and 95.5% success rate in top 10 predictions, respective-
ly. While SiteHound makes 67.2% and 86.6% success rate in top 5
and 10 predictions, respectively. The average values of MCC, Sen,
Spe, Acc and Prec of successful sites in top 10 predictions of success-
ful proteins in the dataset are given in Table 1. The results show
that, for both PBSP/R and PBSP/F methods and in both bound and
unbound datasets, MCC, Specificity, Accuracy and Precision of
PBSP are higher than those of other methods. Only Sensitivity of
PBSP is slightly lower than that of SiteHound. That is because
SiteHound identifies large putative binding sites, while PBSP identify
small sites with high precision. As shown in Table 2, the putative
sites predicted by SiteHound are about three times larger than that
of crystal structure and PBSP. SiteHound uses a phosphate oxygen
probe to identify favorable energy grid points, and then grid points
are clustered to form the putative binding sites. While PBSP uses
oxygen atom to identify potential phosphate binding pockets, and
then a phosphate probe is docked to the pocket to generate an opti-
mal conformation from which phosphate binding site is extracted.
For a range of applications such as guiding biochemical experiments,

Fig. 2. Success rate comparison of different methods for phosphate binding site pre-

diction in both bound and unbound dataset from top 1 to 10 prediction. A protein

with at least one successful site (successful prediction) in top X (1�X� 10) predic-

tions is considered as a successful protein. And the success rate is defined as the pro-

portion of the number of successful proteins to the total number of all proteins in

the dataset
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it is important to keep the predicted site as small as possible without
compromising accuracy (Laurie and Jackson, 2005).

Among the above methods, only PBSP uses molecular docking.
To assess the importance of docking, we compare the prediction
results of PBSP and AutoSite in both clustering stage and docking
stage. In fact, PBSP clustering stage is a variation of the AutoSite al-
gorithm. AutoSite uses three atom types (carbon, oxygen and hydro-
gen) with a cVolcut of 50 to identify binding sites, while PBSP only
uses oxygen atom with a cVolcut of 10. The comparison betwen
AutoSite (cVolcut ¼ 50), AutoSite (cVolcut ¼ 10), PBSP clustering
stage, AutoSite (cVolcut ¼ 50) þ CH3PO42- rigid docking, AutoSite
(cVolcut ¼ 10) þ CH3PO42- rigid docking, PBSP/R and PBSP/F is
shown in Supplementary Figure S3. AutoSite (cVolcut ¼ 10) þ
CH3PO2

4
- rigid docking is comparable with PBSP/R in bound data-

set, but slightly worse in unbound dataset. AutoSite (cVolcut ¼ 50)
and AutoSite (cVolcut ¼ 10) are also slightly worse than PBSP clus-
tering stage. The average numbers of potential binding pockets per
protein identified by AutoSite (cVolcut ¼ 50), AutoSite (cVolcut ¼
10) and PBSP clustering stage are shown in Supplementary Tables S3
and S4. PBSP clustering stage produces more potential binding pock-
ets than AutoSite. From those results, we can conclude three points.
First, CH3PO2

4
- docking is very important in identifying phosphate

binding sites, which can be used to improve the performances of
other methods. Second, it is necessary to provide enough potential
binding pockets to ensure that the correct site is in them. Third, the
choice of atom type in predicting the binding sites also affects the
results. In fact, docking also has been used to predict ligand-binding
site in other studies (Fukunishi and Nakamura, 2011; Heo et al.,
2014; Hetenyi and van der Spoel, 2011; Wu et al., 2018). However,
those methods mainly focus on small molecule binding, and the
whole ligand is docked to the receptor, which are not suitable for
protein–protein binding systems because of the complexity of pro-
tein–protein docking. Here, we assume the phosphate group contrib-
ute significantly to the binding of the whole phosphopeptide or
phosphoprotein, and used a small phosphate probe instead of the
whole phospholigand to identify potential binding sites by reverse
focused docking, which significantly reduces the amount of
calculation.

Compared with other methods, PBSP is relatively time-
consuming because of the use of docking (Supplementary Table S5).
However, PBSP performs much better than other methods, and the
prediction speed is acceptable in practical application. In this article,

the default number of evaluations of the scoring function is used in
PBSP docking stage. So most dockings fail to converge
(Supplementary Table S6), but it doesn’t affect the performance of
PBSP (Supplementary Fig. S4).

3.2 Phosphate binding modes prediction
PBSP not only predicts the phosphate binding sites precisely but also
provides structural information of the binding modes. As shown in
Figure 3, we calculated the distributions of distances between the
position of phosphate atom in crystal structures and that in pre-
dicted phosphate binding modes, for all successful cases. The distan-
ces are mainly distributed within 4 Å, and the average of distances
are 1.4 and 2.4 Å in bound and unbound dataset, respectively.
Compared with Pfinder, in which the average of distances are 5 Å in
holo dataset (Parca et al., 2011), PBSP is more reliable and accurate.
This may be due to the use of reverse focused docking, which is ori-
ginally used for identifying potential protein targets for a small-
compound ligand (Xu et al., 2018). However, because of the use of
docking, PBSP is more sensitive to the conformational changes of
protein structures than other methods. In Table 1, other methods
give similar performances (eg. MCC) for bound and unbound data-
sets, while PBSP gives much better MCC for bound dataset. For
binding modes predictions (Fig. 3), the performance of PBSP in un-
bound dataset is also worse than that in bound dataset.
Nevertheless, when considering top 10 predictions for each case, the
successful rate from unbound dataset can reach �95%, as high as

Table 1. Performance comparison of different methods on both bound and unbound datasets

Method Bound Unbound

MCC Sen Spe Acc Prec MCC Sen Spe Acc Prec

PBSP/R 0.920 0.913 0.999 0.997 0.937 0.779 0.760 0.996 0.991 0.822

PBSP/F 0.868 0.872 0.997 0.994 0.878 0.794 0.792 0.996 0.991 0.821

SiteHound 0.559 0.988 0.948 0.949 0.343 0.556 0.966 0.949 0.950 0.346

LISE 0.644 0.700 0.989 0.983 0.631 0.661 0.731 0.988 0.981 0.636

MSpocket 0.467 0.904 0.921 0.921 0.281 0.460 0.886 0.930 0.929 0.279

Fpocket 0.619 0.883 0.97 0.968 0.468 0.566 0.844 0.966 0.963 0.416

P2Rank 0.586 0.858 0.968 0.966 0.443 0.549 0.814 0.962 0.958 0.431

Note: The values are the average values of the successful sites in top 10 predictions of successful proteins in the dataset. Bold values denote the best performance

in each category.

Table 2. Average number of residues in successful predicted binding sites

Method In crystal structure PBSP/R PBSP/F SiteHound LISEa MSpocket Fpocketb P2Rank

Number 4.3 4.1 4.2 13.0 4.7 17.9 5.1 10.4

aLise outputs the centers of the predicted site, from which the residues within a sphere of default 5.5 Å are extracted and considered as putative binding

residues.
b972 sets of parameters of Fpocket were tested, and performance of the best set of parameters is shown.

Fig. 3. Distribution of distances between the position of phosphate atom in crystal

structures and the corresponding predicted positions for all successful cases in both

bound and unbound datasets
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that from bound dataset. Therefore, our PBSP can be well applied in
real applications when the complex structure is unknown, although
the true binding mode may not be captured in the top-1 prediction.

We use flexible docking in PBSP/F, to try to improve the performance
on unbound form structures. And it works well in some cases. In bound-
state structure of human p56lck SH2 domain (Tong et al., 1996), both
PBSP/R and PBSP/F can predict the position of phosphate accurately (Fig.
4a, b). In the unbound-state structure, the conformation of the loop con-
taining phosphate-binding residues E157 and S158 are located changes
greatly, which make it hard to predict the site. Compared with PBSP/R,
PBSP/F utilizing flexible docking improves the prediction performance of
the unbound form of this protein (Fig. 4c, d).

Although PBSP/F improves the performance in some cases, overall
PBSP/F performs slightly worse than PBSP/R. The reason lies in the differ-
ences in the rankings of phosphate binding sites between PBSP/R and
PBSP/F. There are about 53 putative phosphate binding pockets and only
one true phosphate binding pocket per protein in PBSP (Supplementary
Table S3 and S4). If the phosphate probe finds a more comfortable pose
in the putative pockets than in the true pocket, the true pocket will be
ranked behind the putative pockets. This is more likely to happen in
PBSP/F than in PBSP/R because flexible docking improves the pose of the
phosphate probe not only in the true pocket but also in other putative
pockets. In PBSP/F, the phosphate probe is in a more comfortable pose in
the pockets, and the corresponding docking scores of pockets are lower
than that in PBSP/R.

3.3 Analysis of unsuccessful cases
As listed in Supplementary Table S7, unsuccessful cases are different
between PBSP/R and PBSP/F predictions. Further analysis by visual
inspection of the unsuccessful cases is conducted, and these cases can
be classified into four different categories:

(i) The phosphate binding pocket has been identified as the one
in crystal structure, but not the precise binding residues. For ex-
ample, protein tyrosine phosphatase 10D (Madan and Gopal,
2011), whose prediction result is shown in Figure 5a. Phosphate
binding residues in crystal structure are K154, A244 and Q286,
while K154, C242, S243 and R248 are predicted by PBSP/R. The
phosphate atom has been shifted by only 3.3 Å comparing crystal
structure and the predicted binding mode. Interestingly, in crystal
structure, the interaction between the phosphate group and the re-
ceptor protein is mediated by two water molecules. However, the ef-
fect of water molecules is not taken into account in PBSP.

(ii) The true phosphate binding site does not rank in the top 10
predictions. There are two possible reasons, inaccuracy of scoring
function and too many putative phosphate binding sites. It is
assumed that the true phosphate binding site would exhibit stronger
affinity to the phosphate probe than the other sites. However, PBSP
uses a semiempirical free energy force field to score the predictions,
which make it hard to accurately calculate the binding affinities.
Conservative information can be added into PBSP to improve the
performance of scoring function as other method did (Ghersi and
Sanchez, 2012). Another reason may be that there are too many pu-
tative phosphate binding sites with the potential to bind phosphate.
However, which one bind to phosphate in crystal structure depends
on not only the binding of phosphate but also the other part of the
phospholigand. Based on this work, our further research will
focused on predicting the binding of entire phosphopeptide.

(iii) Conformational changes during phosphate binding. Ligand
binding can involve a wide range of induced conformational changes
in proteins, such as loop or domain movements. In some cases, PBSP
correctly predicts the phosphate binding sites in the bound form
structure, but not the unbound form structure. As shown in Figure
5b, the conformation of the unbound form structure of thrombin
(Lechtenberg et al., 2014) changes greatly, which make it hard for
PBSP/R to predict the phosphate binding sites. Although flexible
side-chain docking is used in this article to try to improve the per-
formance and it works well in some specific cases, overall the per-
formance in unbound dataset is not improved. Since the beginning
of the field of docking, conformational changes in proteins induced
by binding have confounded protein docking algorithms by greatly
increasing the degrees of freedom to be sampled (Marze et al.,
2018). While rotamer libraries have alleviated the sampling chal-
lenges for surface sidechains (Krivov et al., 2009), backbone flexibil-
ity remains the principal challenge in protein docking. In order to
tackle backbone flexibility, molecular dynamics, Monte Carlo
approaches and even machine learning have steadily advanced to-
ward reliably capturing large conformational changes in protein
docking (Harmalkar and Gray, 2021).

(iv) A small phosphate binding site. Some small phosphate bind-
ing sites can be missed in the energy-based phosphate binding pock-
ets identification in PBSP, because they are too small to contribute
significant interaction energies. In order to solve this problem, differ-
ent docking box identification methods can be combined to generate
enough docking boxes on the protein surface to encompass the
missed small phosphate binding sites.

4 Conclusion

In this article, we present a novel and accurate approach for predict-
ing phosphate binding sites in phosphorylation-dependent protein–
protein interactions: PBSP. Firstly, candidate ligand-binding sites are
identified from a calculated oxygen-atom affinity map using a prede-
fined energy cutoff and DBSCAN clustering analysis. The results are
then used to guide reverse focused dockings of a phosphate probe, to
obtain predictions with improved accuracy and selectivity. PBSP not

Fig. 4. Comparison of predicted phosphate binding modes and experimentally deter-

mined structures. The phosphate binding protein in bound form crystal structure

(1lkk) and that in predicted binding modes are shown in green and cyan, respective-

ly. And phosphopeptides in bound form crystal structures and phosphate probes in

predicted binding modes are shown in magenta and yellow, respectively. The distan-

ces between phosphate atom in bound form crystal structure and the phosphate

atom in predicted binding mode are indicated as d. For (a) and (b), the bound form

structure was used to predict the binding mode by PBSP, and for (c) and (d), the un-

bound form structures (1bhh) was used

Fig. 5. (a) The bound form structure (3s3h) in green was used to predict phosphate

binding site by PBSP/R, and phosphopeptide in bound form structures and phos-

phate probe in predicted binding mode are shown in magenta and yellow, respective-

ly. (b) The bound form (4ch2) and the unbound form (4nzq) structure are shown in

green and cyan, respectively. The phosphopeptide in bound form structure is shown

in magenta
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only can identify phosphate binding sites more accurate and precise
than other methods but also can provided structural information of
phosphate binding modes. Average distances between the phosphate
atoms in crystal structures and that in predicted binding modes are
1.4 and 2.4 Å in bound and unbound dataset, respectively. Analysis
of unsuccessful cases implies that there are some aspects that affect
the performance of PBSP, such as conformational changes of un-
bound form structure, the ranking of the putative phosphate binding
sites and the binding free energy contribution from other parts of the
phospholigand. In conclusion, PBSP performs much better than
other methods, which suggests that it can be useful in guiding muta-
genesis experiments, protein functional annotation, and in the mod-
eling of a phosphorylation-related protein complex structures.
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