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Abstract

Motivation: Quantification of isoform abundance has been extensively studied at the mature RNA level using RNA-
seq but not at the level of precursor RNAs using nascent RNA sequencing.

Results: We address this problem with a new computational method called Deconvolution of Expression for Nascent
RNA-sequencing data (DENR), which models nascent RNA-sequencing read-counts as a mixture of user-provided
isoforms. The baseline algorithm is enhanced by machine-learning predictions of active transcription start sites and
an adjustment for the typical ‘shape profile’ of read-counts along a transcription unit. We show that DENR outper-
forms simple read-count-based methods for estimating gene and isoform abundances, and that transcription of mul-
tiple pre-RNA isoforms per gene is widespread, with frequent differences between cell types. In addition, we provide
evidence that a majority of human isoform diversity derives from primary transcription rather than from post-
transcriptional processes.

Availability and implementation: DENR and nascentRNASim are freely available at https://github.com/CshlSiepelLab/
DENR (version v1.0.0) and https://github.com/CshlSiepelLab/nascentRNASim (version v0.3.0).

Contact: asiepel@cshl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

For about the last 15 years, most large-scale transcriptomic studies have
relied on high-throughput short-read sequencing technologies as the
readout for the relative abundances of RNA transcripts (Wang et al.,
2009). In species with available genome assemblies, these sequence
reads are generally mapped to assembled contigs, and then the ‘read
depth’, or average density of aligned reads, is used as a proxy for the
abundance of RNAs corresponding to each annotated transcription
unit. The approach is relatively inexpensive and straightforward, and,
with adequate sequencing depth, it generally leads to accurate estimates
of abundance (Conesa et al., 2016; Corchete et al., 2020).

A fundamental challenge with this general paradigm, however, is
that transcription units frequently overlap in genomic coordinates—i.e.
the same segment of DNA often serves as a template for multiple dis-
tinct RNA transcripts. As a result, it is unclear which transcription unit

is the source of each sequence read. While this problem can occur at
the level of whole genes that contain overlapping segments, it is most
prevalent at the level of multiple isoforms for each gene, owing to alter-
native transcription start sites (TSSs), alternative polyadenylation and
cleavage sites (PASs) and alternative splicing (Wang et al., 2008). These
isoforms often overlap heavily with one another, and differ on a scale
that is not well described by short-read sequencing. This problem is
critical because the existence of multiple isoforms per gene is the rule
rather than the exception in most eukaryotes. For example, more than
90% of multi-exon human genes undergo alternative splicing (Wang
et al., 2008), with an average of more than seven isoforms per protein-
coding gene (Zhang et al., 2017); in plants, up to 70% of multi-exon
genes show evidence of alternative splicing (Chaudhary et al., 2019).

In the case of RNA-seq data, the problem of isoform-abundance
estimation from short-read sequence data has been widely studied
for more than a decade (Jiang and Wong, 2009; Katz et al., 2010;
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Trapnell et al., 2010). Several software packages now address the
problem efficiently and effectively, including ones that make use of
fully mapped reads (Li and Dewey, 2011; Roberts and Pachter,
2013) and others that substantially boost speed by working only
with ‘pseudoalignments’ at remarkably little (if any) cost in accuracy
(Bray et al., 2016; Patro et al., 2014, 2017). These computational
methods differ in detail but they generally work by modeling the
observed sequence reads as an unknown mixture of isoforms at each
locus. They estimate the relative abundances (mixture coefficients)
of the isoforms from the read-counts, relying in particular on the
subset of reads that reflect distinguishing features, such as exons or
splice junctions present in some isoforms but not others. Because
RNA-seq libraries are typically dominated by mature RNAs, intron-
ic reads tend to be rare and splice junctions provide one of the stron-
gest signals for differentiation of isoforms. Altogether, these isoform
quantification methods work quite well, with the best methods
exhibiting Pearson correlation coefficients of 0.95 or higher with
true values in simulation experiments, and similarly high concord-
ance across technical replicates for real data (Zhang et al., 2017).

In recent years, another method for interrogating the transcrip-
tome, known as ‘nascent RNA sequencing’, has become increasingly
widely used. Instead of measuring the concentrations of mature
RNAs, as RNA-seq effectively does, nascent RNA-sequencing proto-
cols isolate and sequence newly transcribed RNA segments, typically
by tagging them with selectable ribonucleotide analogs or through
isolation of polymerase-associated RNA (Churchman and
Weissman, 2011; Core et al., 2008; Duffy et al., 2018; Kwak et al.,
2013; Mayer et al., 2015; Michel et al., 2017; Schwalb et al., 2016).
In this way, they provide a measurement of primary transcription,
independent of the RNA decay processes that influence cellular con-
centrations of mature RNAs. In addition, nascent RNA-sequencing
methods have a wide variety of other applications, including identifi-
cation of active enhancers (through the presence of eRNAs) (Core
et al., 2014; Danko et al., 2015; Michel et al., 2017), characteriza-
tion of promoter-proximal pausing and divergent transcription
(Churchman and Weissman, 2011; Core et al., 2008), estimation of
elongation-rates (Danko et al., 2013; Jonkers et al., 2014) and esti-
mation of relative RNA half-lives (Blumberg et al., 2021). In this art-
icle, we focus in particular on the Precision Run-On sequencing
(PRO-seq) protocol, which allows engaged polymerases to be
mapped genome-wide at single-nucleotide resolution.

In nascent RNA sequencing, the isolated RNAs have generally
not yet been spliced; therefore, they represent the entire transcribed
portion of the genome, including introns. As a result, the problem of
distinguishing alternative splice forms is largely irrelevant. On the
other hand, the data typically still reflect a mixture of precursor
RNA (pre-RNA) isoforms, having different TSSs and/or PASs.
Moreover, the problem of decomposing this mixture can be more
challenging than for RNA-seq in some respects, both because pre-
RNA isoforms have fewer differentiating features than mature RNA
isoforms, and because nascent RNA read depths tend to be substan-
tially reduced, since introns as well as exons are sequenced.
Distinguishing among pre-RNA isoforms in nascent RNA sequence
data can be critical for a wide variety of downstream analyses
(Blumberg et al., 2021; Dukler et al., 2017; Siepel, 2021).
Nevertheless, to our knowledge, only one computational tool has
been developed to address this problem—a program called
TuSelector that was introduced by Dukler et al. (2017)—and it has
never been packaged for use by other research groups or rigorously
evaluated for accuracy. In most analyses of nascent RNA-sequencing
data, the isoform deconvolution problem is either ignored or
addressed by simple heuristics, such as assuming each gene is repre-
sented by the longest annotated isoform (Vaid et al., 2020; Xiao
et al., 2019).

In this article, we introduce a new computational method and
implementation in R, called Deconvolution of Expression for
Nascent RNA-sequencing data (DENR), that addresses the problem
of isoform-abundance quantification at the pre-RNA level. DENR
also solves the closely related problems of estimating abundance at
the gene level, summing over all isoforms, and identifying the ‘dom-
inant isoform’, i.e. the one exhibiting the greatest abundance. DENR

makes use of a straightforward non-negative least-squares strategy
for decomposing the mixture of isoforms present in the data, but
then improves on this baseline approach by taking advantage of
machine-learning predictions of TSSs and an adjustment for the typ-
ical shape-profile in the read-counts along a transcription unit. We
show that the method performs well on simulated data, and then use
it to reveal a high level of diversity in the pre-RNA isoforms inferred
from PRO-seq data for several human cell types, including K562,
CD4þ T-cells and CD14þmonocytes.

2 Materials and methods

2.1 Estimating isoform abundance
DENR estimates the abundance of each isoform by non-negative
least-squares optimization, separately at each cluster. For a given
cluster of n isoforms spanning m genomic bins, let b ¼ ðb1; . . . ;bnÞ0
be a column vector representing the coefficients (weights) assigned
to the isoforms, let Y ¼ ðy1; . . . ; ymÞ0 be a column vector represent-
ing the read-counts in the bins, and let X be an m � n design matrix
such that xi;j ¼ 1 if isoform j spans bin i and xi;j ¼ 0 otherwise
(Supplementary Fig. S1). DENR estimates b such that,

b̂ ¼ arg min
b

ðY�XbÞTðY�XbÞ; (1)

subject to the constraint that bi � 0 for all i 2 f1; . . . ; ng. If the op-
tion to apply a log-transformation is selected, then the transform-
ation is applied to both the elements of Y and those of b, and the
optimization otherwise proceeds in the same manner. In either case,
DENR optimizes the objective function numerically using the BFGS
algorithm with a boundary of zero for the bi values. Notice that,
when the shape-profile correction is applied, the non-zero values in
the design matrix X are adjusted upward and downward from 1 (see
below).

After obtaining estimates for all isoform abundances bi, we nor-
malize them by the total library depth to facilitate comparisons be-
tween samples. Isoform-level abundances are then converted to
gene-level abundances by summing over all isoforms associated with
each gene.

2.2 Machine-learning predictor for active TSSs
To distinguish active and inactive TSSs based on patterns of bidirec-
tional transcription in nascent RNA-sequencing data, we imple-
mented a convolutional neural network (CNN) classifier using the
Keras interface to TensorFlow (Gulli and Pal, 2017). While other
tools exist for this purpose (Azofeifa and Dowell, 2017; Danko
et al., 2015), we sought to integrate a lightweight predictor directly
into DENR. We trained the CNN on previously published PRO-seq
data from K562 cells (Dukler et al., 2017), using matched GRO-cap
data to identify positive and negative examples (Core et al., 2014).
GRO-cap is an adaptation of Global Run-On sequencing that
enriches for 50-7meGTP-capped RNAs and identifies active TSSs
with high sensitivity and precision. We conservatively defined candi-
date TSSs as ‘active’ if they overlapped GRO-cap peaks from the
HMM-based predictor described in Core et al. (2014), selecting the
TSS with the maximum GRO-cap signal per peak. We defined candi-
dates as ‘inactive’ if they did not overlap any such peaks, and did not
fall near other active TSSs (� 100 bp) or mapped GRO-cap reads
(� 25 bp) (Supplementary Fig. S2). The CNN was composed of a
single 1-D convolutional layer, followed by a ReLU activation func-
tion, max-pooling and drop-out. The output was then flattened and
fed into a densely connected layer, and finally a single sigmoid func-
tion was used to classify the TSS (Supplementary Fig. S3). The model
was applied to feature vectors corresponding to strand-specific read-
counts in 21 bins of width 51 bp, centered on the positive and nega-
tive strands; the 42 raw read-counts for each example were trans-
formed to z-scores for scale-independence. The CNN was trained
using the Adam optimizer (Kingma and Ba, 2017) with early
stopping.

When the optional TSS-calling feature is in use, only isoforms
corresponding to predict active TSSs are allowed to have non-zero
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weights. However, because the TSS predictor inevitably misses some
active TSSs, DENR makes use of a heuristic method to identify and
reconsider regions of ‘unexplained’ high-density polymerase.
Specifically, an upstream polymerase ratio (UPR) statistic is calcu-
lated by taking the ratio of the read-count density inside the isoform
(þ0.5 to þ2 kb relative to the TSS) to the density upstream of the
isoform (–3 to –0.5 kb relative to the TSS; Supplementary Fig. S4). If
the UPR of an isoform is �5, and there are no other active isoforms
within 5 kb upstream or 6 kb downstream of its TSS, then the iso-
form is eligible to be assigned a non-zero weight.

2.3 Shape-profile correction
The shape-profile correction is empirically derived from a reference
set of isoforms. Briefly, starting with the full set of annotations pro-
vided by the user, DENR identifies a subset of isoforms that, accord-
ing to various heuristics, appear to be sufficiently long, robustly
expressed and the sole source of sequencing reads in their genomic
regions. DENR then tiles each representative isoform with bins of
the user-specified size (default 250 bp), and maps those bins to a ca-
nonical [0, 1] interval. This mapping is intended to fix the scales of
the promoter-proximal and termination regions, and allow the
remaining gene-body to be compressed or expanded as needed.
Specifically, the first 3 kb of each isoform is mapped (proportionally)
to the interval [0, 0.2], the last 3 kb is mapped to [0.8, 1] and the
remaining portion is mapped to the (0.2, 0.8) interval. Finally, the
canonical shape-profile is obtained by averaging the relative read-
count densities of the entire [0,1]-rescaled reference set of isoforms,
using a loess fit for smoothing, and scaling the density such that the
median value across the entire interval is one. This shape-profile is
then used to adjust the design matrix X (see above) by replacing
each value of one with the relative density at the corresponding loca-
tion in the canonical shape-profile. The isoform weights are then
estimated by least-squares, as usual. In the case of isoforms of length
l � 6 kb, the first 0.75 l and last 0.25 l base-pairs are proportionally
mapped to the [0, 0.2] and [0.8, 1.0] intervals, respectively, in the ca-
nonical shape-profile, and the interval (0.2, 0.8) is ignored. As an ex-
ample, the shape-profile for a set of isoforms based on PRO-seq data
from K562 cells (Dukler et al., 2017) is shown in Supplementary
Figure S5. Note that, while we sometimes refer to a ‘U-shape correc-
tion’, the ‘U’ shape is not assumed but is derived from the data.

2.4 Simulation of nascent RNA-sequencing data
Our non-parametric simulator for nascent RNA-sequencing data,
called nascentRNASim, makes use of a template set of isoform anno-
tations and a designated collection of well-defined isoform ‘arche-
types’ and corresponding read-counts. The archetypes are selected as
cases where the observed read-counts can be attributed to a single
isoform (see below). Given these inputs, we simulate a synthetic
dataset in five steps. First, we group the isoform annotations into
non-overlapping strand-specific clusters, as in a DENR analysis.
Second, we sample randomly (with resampling) from this set of clus-
ters, and similarly, from the set of inter-cluster distances. Third,
within each sampled cluster, we substitute for each isoform the
archetype that is closest to it in genomic length, keeping the TSS at
its original position relative to the beginning of the cluster. Fourth,
we sample a new overall isoform abundance for each synthetic iso-
form from a distribution fitted by kernel density estimation to iso-
form-abundance estimates from GTEx for skeletal muscle (Lonsdale
et al., 2013). Finally, we obtain a new read-count for each position
along the isoform by resampling from the original value in propor-
tion to the simulated abundance estimate. In this way, we sample a
full synthetic dataset, consisting of realistic clusters, each with a real-
istic distribution of isoforms and realistic patterns of read-counts,
but with a known abundance for each isoform.

In this work, we used the PRO-seq dataset from Dukler et al.
(2017) as our source dataset, together with isoforms from Ensembl
(Supplementary Fig. S6). We selected a set of 62 archetypes manual-
ly, looking for isoforms with a range of lengths that exhibited rela-
tively high read depth, appeared to be solely responsible for the local
PRO-seq signal (i.e. they did not overlap other active isoforms and

were at least �5 kb from other active genes), and showed a PRO-seq
signal that approximately coincided with the annotated TSS and
PAS, dropping to background levels nearby. We also considered
GRO-cap data from Core et al. (2014) in identifying TSSs. Notice
that the design of the simulator ensures that every synthetic isoform
has the same length and approximate read-count pattern as one of
the 62 archetypes, but isoforms may overlap (with additive contribu-
tions to read-counts) in the synthetic data. In this way, we are able
to produce quite rich and complex patterns of simulated data despite
the use of a relatively small set of archetypes. To ensure that the
number of archetypes was not a limiting feature in our analysis, we
repeated our benchmarking experiments with a larger set of 145
archetypes and found that our results were largely unchanged.

2.5 Applying DENR to synthetic data
To benchmark DENR’s performance, nascentRNASim was first
used to simulate PRO-seq read-counts for 1500 genes. To thorough-
ly examine the effects of optional features on performance, all com-
binations of optional features, i.e. with and without TSS prediction,
shape-profile correction, log-transformation of read-counts and with
various numbers (0, 1 or 4) of masked bins at both the 50 and 30 end
of each isoform, were tested on the synthetic data, resulting in a total
of 72 test schemes (23 � 32) (Supplementary Figs S7 and S8). The
scheme with TSS prediction, shape-profile correction, log-
transformation of read-counts, masking of one bin around the TSS
and four bins around the PAS performed well at both the gene and
isoform levels. Therefore, this combination was used for all subse-
quent analyses in synthetic and real data except where otherwise
noted. The gene-level comparison was performed on the whole set of
genes, and on two complementary subsets: one for which active iso-
forms predominately used an internal TSS, and one for which they
used the 50-most TSS for transcription. Genes were defined as using
internal TSSs if their dominant isoforms were transcribed from a
TSS at least 1 kb downstream from the 50-most TSS annotation;
otherwise they were defined as using the 50-most TSS
(Supplementary Fig. S9). At the isoform level, we compared the per-
formance of DENR and the read-count-based (RCB) method for
both dominant isoforms determined by true abundances in simula-
tion, and longest isoforms determined by the annotations. To make
the estimates comparable, we masked 250 bp downstream from TSS
and 1000 bp upstream from the PAS when counting reads for the
RCB method. To ensure that 1500 simulated genes were sufficient,
we repeated our benchmarking experiments with 10 000 genes and
found the results to be similar.

For the RCB method, the abundance of a gene or isoform i is esti-
mated in transcripts per million as follows:

qRCB
i ¼ ri � 106

fiT
;

where ri is number of reads mapped to the genomic region in ques-
tion (corresponding either to an isoform or the union of isoforms
associated with a gene), fi is the length of that region and, T ¼P

g2G
rg

fg
; where G is the set of all genes in the simulation (Wagner

et al., 2012).

2.6 Applying DENR to real data
To prepare bigWig files as input for DENR, we first processed pub-
lished K562 (Dukler et al., 2017) and CD4þ T-cell (Danko et al.,
2018) PRO-seq libraries using the PROseq2.0 pipeline (https://
github.com/Danko-Lab/proseq2.0) in single-end mode (Chu et al.,
2019). The human genome assembly (GRCh38.p13) and isoform
annotations were downloaded from Ensembl (release 99)
(Cunningham et al., 2019). Annotations of protein-coding genes
from the autosomes and X chromosome were used, excluding genes
that overlapped on the same strand. To identify genes producing
two or more pre-RNA isoforms with high confidence, only genes
with robust expression (i.e. ranking at top 75% of all expressed
genes) in K562 (n ¼ 7732) and CD4þ T-cells (n ¼ 7632) were
retained for analysis. To survey predominant usage of internal TSSs
for transcription, genes with dominant pre-RNA isoforms
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transcribed from internal TSSs 1 kb downstream from the 50 most
TSSs were identified and visualized using Gviz (Hahne and Ivanek,
2016).

To investigate the differences in dominant isoforms between
K562 and CD4þ T-cells, mature RNA isoform annotations were first
grouped together if the distances between their annotated TSSs were
<1 kb. The longest isoform in each group was selected as the repre-
sentative and used for estimating abundance. Inactive TSSs were pre-
dicted separately in K562 and CD4þ T-cells and then intersected, to
ensure that the same set of inactive isoforms was used across cell
types. To identify genes with different dominant isoform between
cell types, 6757 genes exhibiting robust expression (i.e. ranking in
the top 75% in both cell types) were analyzed. We focused on cases
in which the dominant isoforms differed in the two cell types. The
Gene Ontology (GO) analysis was performed using the online tool
DAVID (Huang et al., 2009).

2.7 Calculation and decomposition of Shannon entropy
We made use of Shannon entropy as a general measure of isoform
diversity. Let Xi be a random variable representing the possible pre-
RNA isoforms of gene i, and assume the probability density function
for Xi is proportional to DENR-based estimates of isoform abun-
dance. That is, pðXi ¼ jÞ ¼ 1

Zi
qij, where qij is the estimated abun-

dance of the jth isoform of gene i and Zi ¼
P

j qij. We calculate the
Shannon entropy of Xi as HðXiÞ ¼ �

P
j pðXi ¼ jÞ log 2pðXi ¼ jÞ,

and we calculate the total entropy of a set of genes S as
HðXSÞ ¼

P
i2S HðXiÞ, assuming independence of genes.

Similarly, let Yi represent the possible mature RNA isoforms of
gene i, with pðYi ¼ kÞ ¼ 1

Z0
i
q0ik, where q0ik is the StringTie-estimated

abundance of the kth isoform of gene i and Z0i ¼
P

k q0ik. Then,
HðYiÞ ¼ �

P
k pðYi ¼ kÞ log 2pðYi ¼ kÞ, and, for a set of genes S,

HðYSÞ ¼
P

i2S HðYiÞ.
To decompose entropy into components from H(X) (primary

transcription) and HðYjXÞ (post-transcriptional processes), we con-
sider the joint entropy of X and Y, H(X, Y), and make use of the
chain rule, HðYjXÞ ¼ HðX;YÞ �HðXÞ, interpreting HðYjXÞ as the
additional entropy contributed to the distribution of pre-RNA iso-
forms by post-transcriptional processes. Furthermore, because in
this case, each mature RNA isoform corresponds to a single pre-
RNA isoform, H(X, Y) is the same as H(Y). Specifically, for each i,

HðXi;YiÞ ¼ �
X

j

X

k�j

pðXi ¼ j;Yi ¼ kÞ log2pðXi ¼ j;Yi ¼ kÞ

¼ �
X

k

pðYi ¼ kÞ log2pðYi ¼ kÞ ¼ HðYiÞ;

where k � j indicates that mature RNA isoform k is compatible (in
TSS and PAS) with pre-RNA isoform j. Thus, we estimate the post-
transcriptional contribution as HðYijXiÞ ¼ HðYiÞ �HðXiÞ.

3 Results

3.1 Overview of DENR
DENR is implemented as a package in the R programming environ-
ment. It requires two main inputs: a set of isoform annotations and a
set of corresponding strand-specific nascent RNA-sequencing read-
counts. Mature RNA isoform annotations can be easily downloaded
by making use of biomaRt (Durinck et al., 2005) or extracted from
files in commonly available formats, such as GTF or GFF. Read-
counts can be easily obtained from a file in bigWig format. Detailed
examples are provided in the github repository (see Availability and
implementation section).

Given the necessary inputs, DENR first builds a transcript_quan-
tifier object, which summarizes the read-counts corresponding to the
available isoform annotations (Fig. 1 top panel). This phase consists
of three steps (Supplementary Fig. S1). First, the mature RNA iso-
forms are grouped into non-overlapping, strand-specific clusters,
corresponding roughly to genes (although if two genes overlap on
the same strand, they will be grouped in the same cluster). Second,
masking rules are applied to a user-specified number of bins, causing

read-counts to be excluded at the start and end of each annotated
isoform, to avoid the biases in quantification stemming from
promoter-proximal pausing or termination-related deceleration of
RNA polymerase. Third, the set of mature isoforms in each cluster is
collapsed to a maximal set such that each isoform model has a
unique pair of start and end coordinates, by merging all mature iso-
forms that share both their start and end bins. This step reduces iso-
forms annotated at the mature RNA level, many of which differ only
in their splice patterns, to a more compact set of pre-RNA isoforms.
It also merges pre-RNA isoforms that no longer differ from one an-
other after masking. This second property is useful because the nas-
cent RNA sequence data typically provides only approximate
indications of the TSS and PAS associated with each transcript,
owing to both sparseness of the data and imprecisions in the tran-
scription process itself (such as transcriptional run-on at the 30 end).
The reduced set represents isoforms likely to be confidently distin-
guishable on the basis of nascent RNA sequence data alone. This set
is recorded in the design matrix X for isoform-abundance estimation
(Supplementary Fig. S1).

The second phase in a DENR analysis is, optionally, to provide
auxiliary information that may improve the accuracy of isoform-
abundance estimates. Any combination of three separate types of
data can be provided: (i) the coordinates of predicted TSSs, (ii) a list
of inactive isoforms and (iii) a shape-profile correction. Separate pre-
dictions of TSSs are useful because they help to distinguish the start
of one isoform (particularly one downstream from the start of a clus-
ter) from the continuation of another isoform. The DENR package
includes a lightweight, pre-trained machine-learning classifier,
implemented using TensorFlow, that can predict the locations of
likely TSSs based on their characteristic patterns of bidirectional
transcription and symmetric pause peaks (Section 2; Supplementary
Figs S2 and S3). A separate specification of inactive isoforms can
also be useful by directing the quantification algorithm to ignore a
potentially large class of isoforms that may otherwise be misleading
or confusing, based on auxiliary sources of data—including either
experimental data, such as GRO-cap, PRO-cap, or RNA-seq, or
computational predictions. The shape-profile correction is a way of
accommodating the typical ‘U’-shaped profile of nascent RNA-
sequencing reads along a gene-body, even after pause and termin-
ation peaks are excluded (Fig. 1 middle panel). This phenomenon is

 Collapse annotations to unique pre-RNA isoforms

Use shaped profile and/or TSS detection

Estimate pre-RNA isoform abundances

Fig. 1. Illustration of DENR analysis. (Top) DENR first groups the available isoform

annotations into non-overlapping, stand-specific clusters and summarizes the associ-

ated read-counts in genomic bins of user-specified size (default 250 bp). At this stage,

it optionally masks bins corresponding to the start and end of each isoform. It then

collapses mature RNA isoforms together that share start (TSS) and end (PAS) coor-

dinates within the resolution of a single bin. (Middle) The program then optionally

adjusts the isoform model to reflect a typical ‘U’-shaped profile, and optionally

applies a machine-learning method to predict active TSSs based on patterns of bidir-

ectional transcription. At this stage, it may also exclude isoforms designated by the

user as inactive (not shown). (Bottom) Finally, DENR estimates the abundance of

each isoform in each cluster by minimizing the squared difference between the

expected and observed read-counts across all bins (see Section 2)
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due to transcriptional pausing, acceleration of polymerase after
pause escape and deceleration as the polymerase approaches the end
of a gene (Kwak et al., 2013; Wissink et al., 2019). DENR also pro-
vides a function to estimate the average profile from a designated
subset of the data, and then to consider its shape when estimating
the abundance of each isoform (see Section 2).

Finally, DENR estimates the abundance of each isoform. Given
the read-counts per bin for each isoform cluster, DENR simply esti-
mates a weight for each isoform by least-squares, i.e. by minimizing
the squared difference between the expected density and the
observed read-count across all bins (see Section 2). An option is also
provided to perform this optimization in logarithmic space, i.e. by
comparing the logarithm of the expected density and the logarithm
of the read-counts, corresponding to an assumption of a log-normal
distribution for read-counts (see Section 4).

DENR is designed to be fast and efficient, and in our experiments
on an Intel i7-10700 CPU (using a single thread) it was able to pro-
cess a typical human dataset (�20 000 genes, �25 million mapped
reads) in about 10 min, with <8 GB of RAM. Notably, we used a
bin size of 250 bp for all results reported in this article, finding that
this size appropriately smoothed the raw PRO-seq signal and struck
a good balance between genomic resolution and computational cost.
However, we experimented with a smaller bin size of 125 bp and
observed similar results (see below). For different datasets, users
may wish to experiment with other bin sizes, ranging from, say, 50
to 500 bp.

3.2 DENR accurately estimates RNA abundance at the

gene and isoform levels
We evaluated DENR’s accuracy in quantifying RNA abundance at
both the gene and isoform levels. Lacking an appropriate ‘gold-
standard’ in the form of real biological data, we chose to benchmark
the software using simulated data. Because, to our knowledge, there
is no available simulator for nascent RNA-sequencing data that
accommodates multiple isoforms per gene, we developed a new R
package, called nascentRNASim, to provide a ground truth against
which to compare DENR’s estimates (Supplementary Fig. S6). To
make the simulated data as realistic as possible, nascentRNASim
makes use of an empirical distribution of relative isoform abundan-
ces per gene obtained from RNA-seq data from GTEx (Lonsdale
et al., 2013). Given this distribution, the program then generates
synthetic nascent RNA-sequencing read-counts for each isoform by
resampling PRO-seq read-counts from a manually curated set of
archetypal isoforms (see Section 2). The read-counts from different
isoforms are combined where they overlap. In this way, synthetic
data are generated that closely resembles real data, without the need
for restrictive modeling assumptions.

We first evaluated the impact of the various optional features by
running the program with and without TSS prediction, shape-profile
correction, log-transformation of read-counts and with various num-
bers (0, 1 or 4) of masked bins at the 50 and 30 ends of each isoform.
We ran DENR on 1500 simulated loci, measuring the Pearson’s cor-
relation coefficient (r) of the estimated and ‘true’ abundances at both
the gene (Supplementary Fig. S7) and isoform (Supplementary Fig.
S8) levels. We found, in general, that TSS prediction and the log
transformation did indeed improve performance significantly at
both the gene and isoform levels (all P-values <0.05, Wilcoxon test).
The shape-profile correction also appeared to improve performance
consistently at isoform level, although to a lesser extent (P ¼ 0.149,
Wilcoxon test). The effect of the masking strategy was more vari-
able, but we found that masks of one bin at the 50 end and four bins
at the 30 end performed best at the isoform level and were close to
optimal at the gene level. Therefore, for simplicity, we used this
masking strategy, and made use of TSS prediction, the shape-profile
prediction, and the log-transformation at both the gene and isoform
levels for all subsequent analyses on both simulated and real data.

With these options in place, we next compared DENR’s esti-
mates for the same 1500 simulated loci with estimates obtained
using a naive read-count-based (RCB) method commonly used in the
field. For the RCB method, we simply estimated the abundance of a
gene by the number of sequence reads that overlap any annotated

isoform for that gene divided by the gene’s total length (see Section
2). At the gene level, DENR’s estimates were highly concordant with
true abundances (r ¼ 0.97) (Fig. 2A), substantially better than the
RCB method (r ¼ 0.85) (Fig. 2B). Accordingly, DENR exhibited
much smaller root-mean-square error (RMSE ¼ 328.6) than the
RCB method (RMSE ¼ 642.2) (Fig. 2A and B). DENR offered a par-
ticular improvement in cases where the dominant isoform corre-
sponded to an internal TSS (Supplementary Fig. S9A), where the
RCB method ‘over-normalized’ using the length of whole gene and
therefore underestimated abundance (Supplementary Fig. S9B–D for
comparison). However, several genes having non-zero true abundan-
ces were estimated to have values of zero by DENR (Fig. 2A), appar-
ently owing to failures in TSS detection (see Section 4). The RCB
method displayed the opposite tendency, estimating non-zero values
for some genes having true values of zero (Fig. 2B). These cases were
predominantly caused by overlap with or transcriptional run-on
from other expressed genes.

We also compared estimates from DENR and the RCB method
with the true RNA abundances at the level of individual isoforms.
We focused our evaluation on a single isoform per gene, selecting ei-
ther the most abundant—or ‘dominant’—isoform, as determined by
the true abundances; or the longest isoform, as determined by the
annotations (see Section 2). At the isoform level, DENR’s estimates
of abundance were still well correlated with the true values (r ¼
0.89) (Fig. 2C), although, not surprisingly, the concordance was
somewhat reduced compared with the gene-level analysis (Fig. 2A).
The estimates from the RCB method showed high correlation with
true abundances (r ¼ 0.96) (Fig. 2D), but these estimates were sys-
tematically inflated, leading to substantially larger error (RMSE ¼
786.0) than that from DENR (RMSE ¼ 428.7). This problem be-
came more severe for the longest isoform, where DENR outper-
formed the RCB method substantially in terms of both correlation (r
¼ 0.89 versus 0.59) and RMSE (297.5 versus 1117.3)
(Supplementary Fig. S10). These biases occur because the RCB
method tends to misattribute sequence reads arising from other iso-
forms to the isoform in question. While other counting strategies
could be devised, there is ultimately no good way to estimate
isoform-specific abundance without simultaneously considering all
candidate isoforms and all sequence reads (see Section 4). Finally, as
validation, we tested DENR’s performance with a smaller bin size
(125 bp) (Supplementary Fig. S11) and on an expanded set of 10 000
simulated loci generated from a larger set of 145 archetypes
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Fig. 2. Comparison of DENR (left) and the simple RCB method (right) for quantify-

ing nascent RNA abundance. True (x-axis) versus estimated (y-axis) abundance at

the gene (A and B) and the ‘dominant’ isoform (most highly expressed; C and D) lev-

els, based on 1500 simulated loci. Data were simulated using nascentRNASim,

which resamples real PRO-seq read-counts and assumes a distribution of relative iso-

form abundances derived from real RNA-seq data. RMSE, root-mean-square error;

r, Pearson’s correlation coefficient
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(Supplementary Fig. S12), and found that the relative performance
with the RCB method was largely unchanged.

3.3 Application to real data for K562 and CD41 T-cells
Having demonstrated that DENR has good power to recover true
gene and isoform abundances in simulated data, we next applied it
to real data from K562 (Dukler et al., 2017) and CD4þ T-cells
(Danko et al., 2018). We focused our analysis on 7732 and 7632
genes that displayed robust expression (ranking at the top 75% of
all expressed genes) in K562 and CD4þ cells, respectively. In K562
cells, we found that nearly half of these genes (3624 of 7732, or
46.9%) displayed evidence of expression at two or more isoforms
(see Section 2), indicating frequent use of alternative TSSs or PASs
(248 with alternative TSSs, 2213 with alternative PASs and 1163
with both). We observed a similar pattern in CD4þ cells, with
48.9% (3734 of 7632) of genes producing two or more pre-RNA
isoforms. Moreover, we found that the dominant isoforms for 1178
(15.2%) and 1262 (16.5%) of genes, respectively, made use of an in-
ternal TSS, at least 1 kb downstream from the 50-most annotation.

To illustrate how DENR deconvolves the signal from PRO-seq
data, we highlight two loci with multiple overlapping pre-RNA iso-
forms and evidence for internal TSS usage in K562 cells. The first ex-
ample, at the gene ST7, is a relatively straightforward case
(Supplementary Fig. S13). This gene has 30 (mature RNA) isoform
annotations in Ensembl, which DENR merged into 19 distinct pre-
RNA isoforms. However, the PRO-seq signal in the region suggests
that only a subset of these isoforms are expressed, with clear signals
beginning at a TSS near the 50 end of the locus and at a second TSS
about 60 kb downstream. Indeed, DENR estimated non-zero abun-
dance for only two isoforms, with the shorter one (G14406M1, cor-
responding to five Ensembl isoforms; see Supplementary Table S1)
obtaining a higher weight than the longer one (G14406M6, corre-
sponding to two Ensembl isoforms); the remaining 17 isoforms were
assigned weights of zero. Notice that the TSSs of both isoforms are
clearly marked by bidirectional transcription in the PRO-seq data, a
signal used by DENR in picking them out.

The second example is a more complex case in which three
expressed genes (SEC22C, SS18L2 and NKTR) all overlap (Fig. 3).
These genes all have multiple isoform annotations in Ensembl, some
of which correspond to distinct pre-RNA isoforms after merging. In

particular, SEC22C has 16 isoforms, which are merged into 8 pre-
RNA isoforms; SS18L2 has 3 isoforms, which are merged into 2;
and NKTR has 19 isoforms, which are merged into 10. By again lev-
eraging the signatures associated with TSSs, DENR identified two
expressed isoforms of SEC22C, two expressed isoforms of SS18L2
and three expressed isoforms of NKTR. In each case, one isoform is
clearly dominant, although in the case of SS18L2, both are expressed
at non-negligible levels (Supplementary Table S2). Notice that the
dominant isoforms for both SEC22C and SS18L2 make use of in-
ternal TSSs. Notice also that DENR attributes both expressed iso-
forms of SEC22C and the minor expressed isoform of SS18L2 to the
same TSS, suggesting that stable transcripts are generated bidirec-
tionally from this site. A second TSS contributes bidirectionally to
the dominant isoform of NKTR and a minor isoform of SEC22C.

3.4 Differences in dominant pre-RNA isoforms between

CD41 T-cells and K562 cells
Given DENR’s ability to identify dominant pre-RNA isoforms, we
wondered how frequently these isoforms might differ between cell
types. We therefore compared the predictions of dominant isoforms
from K562 cells to those from CD4þ T-cells. Because the 30 ends of
pre-RNA transcription units can be difficult to pinpoint owing to
transcriptional run-on, we focused on genes for which the dominant
isoforms clearly used different TSSs in the two cell types, requiring a
difference of at least 1 kb in genomic coordinates (see Section 2). In
addition, we limited our analysis to 6757 genes showing robust ex-
pression (ranking in the top 75%) in both cell types. We found that
238 of these genes (�3.5%) had dominant isoforms that made use of
different TSSs in K562 and CD4þ T-cells. A GO analysis showed
that these genes were significantly enriched for annotations of alter-
native splicing (Supplementary Fig. S14), suggesting a correlation be-
tween alternative TSS usage and alternative splicing. One prominent
example in this group is the gene encoding the transcription factor
RUNX1, a master regulator of hematopoietic stem cell differenti-
ation (Fig. 4), which has a much longer dominant isoform—resulting
from a TSS about 160 kb upstream—in CD4þ T-cells as compared
with K562 cells. This gene is known to make use of alternative TSSs
in a temporal and tissue-specific manner (de Bruijn and Dzierzak,
2017; Otálora-Otálora et al., 2019; Sood et al., 2017). Additional
examples are shown in Supplementary Figure S15.
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3.5 Relative contributions of transcriptional and post-

transcriptional processes to isoform diversity
We were interested in making use of DENR to assess overall levels
of isoform diversity genome-wide. Furthermore, we wondered if a
parallel analysis of RNA-seq data would enable an informative com-
parison of the relative contributions to isoform diversity at the pre-
RNA and mature RNA levels. Toward this end, we generated high-
quality matched PRO-seq and RNA-seq datasets (both with paired-
end reads; see Section 2) for two similar but distinct human cell
types, CD4þ T-cells and CD14þ monocytes. We used DENR to
quantify isoform abundance at the pre-RNA level and StringTie
(Pertea et al., 2016) to quantify isoform abundance at the mature
RNA level in each cell type. To make the comparison as direct as
possible, we directed DENR to ignore isoforms not detected at the
RNA-seq level, instead of relying on the automatic TSS prediction
feature. We focused our analysis on a set of 10 650 genes that were
expressed in both cell types, with good representation in both the
PRO-seq and RNA-seq datasets (see Section 2).

To quantify isoform diversity at the pre-RNA and mature RNA
levels, we made use of the information-theoretic measure of
Shannon entropy. We observed that, given pre-RNA isoform-abun-
dance relative frequencies X (estimated from PRO-seq data using
DENR) and mature RNA isoform-abundance relative frequencies Y
(estimated from RNA-seq data using StringTie), the joint entropy
H(X, Y) can be decomposed into a component arising from primary
transcription, H(X), and a conditional-entropy component arising
from post-transcriptional processes, HðYjXÞ; i.e. HðX;YÞ ¼
HðXÞ þHðYjXÞ (see Section 2). Thus, we can estimate H(X) across
any set of expressed genes using DENR, estimate H(X, Y) for the
same set of genes using StringTie, and then estimate the post-
transcriptional entropy, HðYjXÞ by their difference. We can further
estimate the fractional contribution of transcription to the final iso-
form entropy as HðXÞ=HðX;YÞ. In this way, we can quantify the
relative contributions to isoform diversity of transcriptional and
post-transcriptional processes.

When applying these methods to the CD4þ T-cell and CD14þ

monocyte datasets individually, we observed reasonably good con-
cordance, with estimates of H(X, Y) ¼ 0.94–1.01 bits/gene in total
entropy, of which a clear majority, 63–64%, comes from

transcriptional entropy [H(X)] and the remaining 36–37% derives
from post-transcriptional processes (Fig. 5A and B). When we
pooled data from the two cell types together (‘both’), H(X, Y)
increased by about 10%, indicating higher levels of isoform diversity
across cell types than within them. Interestingly, however, the frac-
tional contribution from primary transcription, HðXÞ=HðX;YÞ, also
increased substantially, from �0.64 to �0.72, suggesting that tran-
scriptional processes make a disproportional contribution to the iso-
form diversity across cell types, which is more likely than diversity
within each cell type to be associated with true functional differences
(see Section 4).

A primary difference between these cell types is that CD4þ T-cells
play an important role in the adaptive immune system whereas CD14þ

monocytes are part of the innate immune system. Therefore, we extracted
116 and 287 genes associated with the GO terms ‘adaptive immune re-
sponse’ and ‘innate immune response’, respectively, and calculated
HðXÞ=HðX;YÞ separately for each of these subsets of genes.
Interestingly, we found that this fraction was somewhat elevated in
adaptive-immunity-related genes in CD4þ T-cells (Wilcoxon signed-rank
test, P ¼ 0.0002), and slightly elevated in innate-immunity-related genes
in CD14þ monocytes (Supplementary Fig. S16; Wilcoxon signed-rank
test, P ¼ 8.59e-14), suggesting that primary transcription may dispropor-
tionally contribute to isoform diversity in the genes most relevant to the
specific immune-related functions of each cell type. Examining several
other classes of genes (Supplementary Fig. S17), we found that genes asso-
ciated with the GO term ‘translation’ display a substantial reduction in
HðXÞ=HðX;YÞ compared with genes in the ‘transcription’, ‘RNA splic-
ing’, and other GO categories. Further examination of ‘translation’ genes
showed that the reduction was predominately driven by genes encoding
ribosomes (Fig. 5C), with only �30% of isoform diversity coming from
primary transcription, and the remaining �70% being contributed by
post-transcriptional processes. These findings are consistent with previous
reports that most ribosomal protein genes predominately used one or a
few promoters across human tissues (Guimaraes and Zavolan, 2016), yet
are strongly influenced by alternative splicing (Brumwell et al., 2020;
Song et al., 2017).

4 Discussion

In this article, we have introduced DENR, the first fully vetted computa-
tional method—to our knowledge—to address the abundance estimation
problem at the level of pre-RNA isoforms, based on nascent RNA-
sequencing data. At its core, DENR is simply a regression-like method for
estimating a weight for each element in a set of predefined candidate iso-
forms, by minimizing the sum-of-squares difference between expected and
observed read-counts. This baseline model is augmented by various refine-
ments, including machine-learning predictions of TSSs, a shape-profile
correction for read-counts, and masking of read-counts near isoform TSSs
and PASs. We have shown that DENR performs well on simulated and
real data. We expect it to be useful in a variety of downstream applica-
tions, such as the identification of differentially expressed genes (Dukler
et al., 2017), RNA half-life estimation (Blumberg et al., 2021), the study
of transcription unit evolution (Danko et al., 2018) and the identification
of differential pause-release rates (Siepel, 2021).

In direct comparisons with simple RCB methods like those used
in most current applications, we find that DENR does indeed offer a
substantial performance improvement. The improvement is most
pronounced at the isoform level, where the RCB methods inevitably
misattribute many reads to the wrong isoform. Interestingly, how-
ever, DENR also improves substantially on gene-level estimates of
abundance. The main reason for this improvement has to do with
the normalization for gene length. The gene-level RCB method has
no good way to identify which bases in the DNA template are tran-
scribed, and must conservatively assume transcription occurs across
the union of all annotated isoforms. As a result, it frequently ‘over-
normalizes’ and underestimates abundance. DENR, by contrast,
simultaneously models all isoforms and explains the full set of read-
counts at a locus as a mixture of isoforms. The limitations we
observed with alternative RCB methods highlight the difficulty of ac-
curately estimating abundance without a model that assigns reads to
isoforms in zero-sum fashion. Because most reads can potentially
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It is well known to make use of alternative promoters (de Bruijn and Dzierzak,

2017; Otálora-Otálora et al., 2019)
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arise from multiple alternative isoforms, any naive counting method
will tend to either over- or under-estimate abundance. These errors
in abundance estimation, in turn, can result in biases in many down-
stream applications, such as elongation-rate or RNA-half-life
estimation.

In analyses of real data, we found that many genes (nearly half of
robustly expressed genes in K562 and CD4þ T-cells) display evi-
dence of expression at multiple distinct pre-RNA isoforms.
Moreover, we found that the dominant isoform fairly commonly (in
�15% of cases) makes use of a TSS that is >1 kb downstream of the
50-most annotation. These cases are particularly likely to be mischar-
acterized by standard methods for quantifying pre-RNA expression.
We have highlighted specific examples showing how DENR can ef-
fectively deconvolve the read-count contributions of multiple over-
lapping isoforms, including a complex case involving multiple
overlapping genes (Fig. 3). In addition, in a comparison of K562 and
CD4þ T-cells, we identified more than 200 genes that use different
dominant isoforms in these two cell types, including prominent
examples, such as RUNX1.

One interesting consequence of having the ability—as we now
do—to characterize the distribution of isoform abundances at both
the pre- and mature RNA levels is that it potentially allows for a de-
composition of the contributions to isoform diversity from primary
transcription and post-transcriptional processes. In a final analysis,
we attempted to quantify these relative contributions using a simple
information-theoretic calculation, by partitioning the Shannon en-
tropy in mature RNA isoform diversity (as estimated from RNA-seq
data using StringTie) into a component estimated at the pre-RNA
level (by applying DENR to PRO-seq data) and the remainder,
which we argue can be interpreted as the conditional entropy intro-
duced at the post-transcriptional level. Our observations are qualita-
tively similar to those from a number of previous studies reporting
widespread, regulated alternative TSS usage, often in a tissue-

specific manner (Carninci et al., 2006; Demircio�glu et al., 2019;
Forrest et al., 2014), some of which have argued for a primary role
of transcription relative to splicing (Pal et al., 2011; Reyes and
Huber, 2018). However, while the post-transcriptional entropy that
we measure presumably derives primarily from splicing, it is worth
noting that it could also be influenced by post-transcriptional up- or
down-regulation of particular isoforms, e.g. through miRNA- or
RBP-mediated decay. In some cases, post-transcriptional processes
could even reduce entropy generated at the pre-RNA level, e.g. by
sharply down-regulating particular pre-RNA isoforms relative to
others. Importantly, this type of generation or reduction in entropy
can only be detected if pre-RNA isoform diversity is independently
characterized by a method like the one introduced here, rather than
indirectly assessed from RNA-seq (or CAGE) data. For this reason,
we believe our analysis is complementary to previous analyses of al-
ternative promoters and TSSs.

There are a number of potential avenues for improvement of our
current implementation of DENR. First, the method assumes a sum-
of-squares loss function, which is equivalent to maximum-likelihood
estimation under a Gaussian (or log normal, if optimized in log
space) generating distribution for read-counts, with the counts for
each bin assumed to be independent and identically distributed. Real
nascent RNA-sequencing read-counts, however, tends to be not only
overdispersed but non-uniform along the genome, with fairly pro-
nounced spikes separated by intervals of reduced signal. The method
could be extended to allow for maximum-likelihood estimation
under an arbitrary generating distribution for read-counts, by mak-
ing use of a general probabilistic model for nascent RNA-sequencing
data that we have recently proposed (Siepel, 2021). This model
could potentially accommodate autocorrelated read-counts along
the genome sequence, although in this case, optimizing the mixture
coefficients would become more complex and computationally ex-
pensive. Another advantage of this framework is that it would natur-
ally accommodate a richer and more general model for changes in
polymerase density along the gene-body, beyond the simple shape-
profile correction introduced here. As a result, it might require a less
heavy-handed masking strategy, by providing a better description
for read-counts near TSSs and PASs. More work will be needed to
determine if these generalizations are sufficiently advantageous to
justify their complexity and computational costs.

A second limitation is that DENR effectively uses a ‘hard prior’
for candidate isoforms, either treating them as equally likely a priori
or completely excluding them (i.e. assigning a prior probability of
zero) based on the absence of a TSS prediction or other evidence of
inactivity. A natural generalization would be to accept an arbitrary
prior probability for each candidate isoform. These weights could
potentially be determined based on a variety of relevant covariates,
including not only TSS predictions but also, say, chromatin accessi-
bility, chromatin contact, histone modification or RNA-seq data
from a relevant cell type. The model would then combine the prior
probabilities with the data likelihood to enable full Bayesian estima-
tion of isoform abundances. A related extension would be to con-
sider not only annotated isoforms but also ones suggested by the
nascent RNA-sequencing data but not annotated. Such candidates
could potentially be identified using a separate method [e.g.
Anderson et al. (2020)] and given lower prior weights than anno-
tated isoforms; if they had sufficient support in the data, they might
still obtain high posterior probabilities.

Finally, the current inference method does not make use of a
sparsity penalty to encourage the observed data to be explained
using as few isoforms as possible. In initial experiments, we did not
find that such penalties made a noticeable difference in our predic-
tion performance, and in general, we do not observe a proliferation
of isoforms with small weights. However, we do occasionally find
that DENR gives high weights to short transcripts that happen to co-
incide with spikes in the data or pause peaks, apparently owing to a
failure to account for spikes in the read-count data, as well as inad-
equacies in the shape-profile correction when applied to short iso-
forms. It is possible that a sparsity penalty—perhaps combined with
the use of a richer model for read-counts—would help to eliminate
some of these apparently spurious predictions.

Fig. 5. Decomposition of Shannon entropy of isoform diversity into contributions from

primary transcription and post-transcriptional processing. (A) Entropy per gene of ma-

ture RNA isoforms [H(X, Y)] is partitioned into a component from primary transcrip-

tion [H(X)] and a component from post-transcriptional processing, including splicing

[HðYjXÞ]. (B) Fractional contribution from primary transcription, HðXÞ=HðX;YÞ.
Results are for 10 650 genes expressed in both CD4þ T-cells and CD14þ monocytes.

‘Both’ indicates results when both datasets are pooled. (C) Fractional contribution from

primary transcription, as in (B), but for the subsets of genes associated with GO terms

‘ribosome’ (left, GO: 0005840; n¼ 135) and ‘translation’ (GO: 0006412) but not ‘ribo-

some’ (right; n ¼ 119). Error bars represent the standard deviation of the mean as esti-

mated by bootstrap resampling (n¼ 100)
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Despite these limitations, we have shown that DENR is generally
an effective tool for quantifying pre-RNA abundance at both the
gene and isoform levels, with many possible downstream applica-
tions. We expect this method to be increasingly useful to the commu-
nity as nascent RNA-sequencing data grow more abundant and are
used for a wider variety of downstream applications.
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Otálora-Otálora,B.A. et al. (2019) RUNX family: oncogenes or tumor sup-

pressors (Review). Oncol. Rep., 42, 3–19.

Pal,S. et al. (2011) Alternative transcription exceeds alternative splicing in gen-

erating the transcriptome diversity of cerebellar development. Genome Res.,

21, 1260–1272.

Patro,R. et al. (2014) Sailfish enables alignment-free isoform quantification

from RNA-seq reads using lightweight algorithms. Nat. Biotechnol., 32,

462–464.

Patro,R. et al. (2017) Salmon provides fast and bias-aware quantification of

transcript expression. Nat. Methods, 14, 417–419.

Pertea,M. et al. (2016) Transcript-level expression analysis of RNA-seq experi-

ments with HISAT, StringTie and Ballgown. Nat. Protoc., 11, 1650–1667.

Reyes,A. and Huber,W. (2018) Alternative start and termination sites of tran-

scription drive most transcript isoform differences across human tissues.

Nucleic Acids Res., 46, 582–592.

Roberts,A. and Pachter,L. (2013) Streaming fragment assignment for real-time

analysis of sequencing experiments. Nat. Methods, 10, 71–73.

Schwalb,B. et al. (2016) TT-seq maps the human transient transcriptome.

Science, 352, 1225–1228.

Siepel,A. (2021) A unified probabilistic modeling framework for eukaryotic

transcription based on nascent RNA sequencing data. bioRxiv

2021.01.12.426408; doi: 10.1101/2021.01.12.426408.

Song,Y. et al. (2017) Single-cell alternative splicing analysis with expedition reveals

splicing dynamics during neuron differentiation. Mol. Cell, 67, 148–161.

Sood,R. et al. (2017) Role of RUNX1 in hematological malignancies. Blood,

129, 2070–2082.

Deconvolution of expression for nascent RNA-sequencing data 4735

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/24/4727/6348164 by guest on 10 April 2024



Trapnell,C. et al. (2010) Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differenti-

ation. Nat. Biotechnol., 28, 511–515.

Vaid,R. et al. (2020) Release of promoter-proximal paused Pol II in response

to histone deacetylase inhibition. Nucleic Acids Res., 48, 4877–4890.

Wagner,G.P. et al. (2012) Measurement of mRNA abundance using RNA-seq

data: RPKM measure is inconsistent among samples. Theory Biosci., 131,

281–285.

Wang,E.T. et al. (2008) Alternative isoform regulation in human tissue tran-

scriptomes. Nature, 456, 470–476.

Wang,Z. et al. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat.

Rev. Genet., 10, 57–63.

Wissink,E.M. et al. (2019) Nascent RNA analyses: tracking transcription and

its regulation. Nat. Rev. Genet., 20, 705–723.

Xiao,R. et al. (2019) Pervasive chromatin-RNA binding protein interac-

tions enable RNA-based regulation of transcription. Cell, 178,

107–121.

Zhang,C. et al. (2017) Evaluation and comparison of computational tools for

RNA-seq isoform quantification. BMC Genomics, 18, 583.

4736 Y.Zhao et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/24/4727/6348164 by guest on 10 April 2024


