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Abstract

Motivation: To complement experimental efforts, machine learning-based computational methods are playing an in-
creasingly important role to predict human–virus protein–protein interactions (PPIs). Furthermore, transfer learning
can effectively apply prior knowledge obtained from a large source dataset/task to a small target dataset/task,
improving prediction performance.

Results: To predict interactions between human and viral proteins, we combine evolutionary sequence profile fea-
tures with a Siamese convolutional neural network (CNN) architecture and a multi-layer perceptron. Our architecture
outperforms various feature encodings-based machine learning and state-of-the-art prediction methods. As our
main contribution, we introduce two transfer learning methods (i.e. ‘frozen’ type and ‘fine-tuning’ type) that reliably
predict interactions in a target human–virus domain based on training in a source human–virus domain, by retrain-
ing CNN layers. Finally, we utilize the ‘frozen’ type transfer learning approach to predict human–SARS-CoV-2 PPIs,
indicating that our predictions are topologically and functionally similar to experimentally known interactions.
Availability and implementation: The source codes and datasets are available at https://github.com/
XiaodiYangCAU/TransPPI/.

Contact: wuchtys@cs.miami.edu or zidingzhang@cau.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The detection of human–virus protein–protein interactions (PPIs) is
essential for our understanding of the mechanisms that allow viruses
to control cellular functions of the human host. Considerable experi-
mental efforts allow the determination of binary interactions between
viral and human proteins through yeast two-hybrid (Y2H) assays and
mass spectroscopy (MS) techniques (Gordon et al., 2020; Shah et al.,
2018). However, maps of interactions between the human host and
various viruses remain incomplete, as a consequence of experimental
cost, noise and a multitude of potential protein interactions. Although
tens of thousands of interactions have been experimentally deter-
mined, an immense need still exists for the development of reliable
computational methods to predict human–virus PPIs.

The primary amino acid sequence remains the most accessible and
complete type of protein information. As a consequence, many
sequence-based feature extraction methods have been developed, such

as Local Descriptors (LD) (Davies et al., 2008; Yang et al., 2010),
Conjoint Triads (CT) (Shen et al., 2007; Sun et al., 2017) and Auto
Covariance (AC) (Guo et al., 2008; You et al., 2013). Specifically, such
features generally represent physicochemical properties or positional in-
formation of amino acids that appear in the protein sequences. In add-
ition, other heterogeneous encoding schemes have been used as well to
supplement traditional sequence encodings, including biological func-
tions, protein interaction network properties, domain/motif informa-
tion, expression profiles, evolutionary information and natural
language processing-based sequence embedding techniques (Lian et al.,
2021). Based on these features, several traditional machine learning
algorithms (Alguwaizani et al., 2018; Cui et al., 2012; Dyer et al.,
2011; Eid et al., 2016; Emamjomeh et al., 2014; Lian et al., 2020;
Yang et al., 2020) were previously applied to predict human–virus
PPIs. Dyer et al. proposed a linear Support Vector Machine (SVM)
model to predict human–HIV PPIs based on k-mers composition, prop-
erties of human proteins in human PPI networks and domain profile
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features. Cui et al. utilized CT to encode protein sequences that were
fed to an SVM model with a radial basis function kernel to predict
human–HPV/HCV interactions. Emamjomeh et al. developed ensemble
models to predict human–HCV PPIs including four popular machine
learning methods and six different encoding schemes (i.e. amino acid
composition, pseudo amino acid composition, evolutionary informa-
tion, network centrality, expression information and post-translational
modification information). Eid et al. introduced a domain/linear motif-
based SVM approach called DeNovo to predict human–virus PPIs (Eid
et al., 2016). In (Alguwaizani et al., 2018), an SVM model was devel-
oped to predict human–virus PPIs based on sequence features represent-
ing single amino acid repeats and local amino acid composition.
Recently, we proposed a sequence embedding-based Random Forest
(RF) method to predict human–virus PPIs with promising performance
(Yang et al., 2020). In particular, we applied an unsupervised sequence
embedding technique (i.e. doc2vec) to represent interacting protein
sequences as low-dimensional vectors. While effectively capturing
amino acid-specific information to predict novel human–virus PPIs,
such machine learning methods still suffer from several limitations,
such as publicly unavailable source codes/web servers, limited sets of
virus species and unsatisfactory performance in real applications.
Therefore, further method development of human–virus PPI predictions
is still in high demand.

In the past decade, deep learning methods have demonstrated
improved performance and potential in many fields. In particular,
convolutional neural networks (CNNs) (Hashemifar et al., 2018)
and recurrent neural networks (RNNs) (Zhang et al., 2016) are com-
paratively well-established approaches, where CNNs automatically
capture local features while RNNs preserve contextualized/long-
term ordering information. While deep learning methods (Ahmed
et al., 2018; Chen et al., 2019; Du et al., 2017; Hashemifar et al.,
2018; Sun et al., 2017) that allow the prediction of PPIs yield excel-
lent performance, such models usually focus on intraspecies interac-
tions. Very recently, Liu-Wei et al. (2021) reported a predictive
method called DeepViral that utilized the information of sequences,
disease phenotypes and functions as input to train a CNN model for
human–virus PPI prediction.

In general, traditional machine learning/deep learning only
perform well, if training and test set were cut from the same statis-
tical distribution in the feature space (Shao et al., 2015). While
the rigid application of a trained model on testing datasets with
different distributions usually perform poorly, transfer learning
methods utilize prior knowledge from a ‘source’ to train in a ‘tar-
get’ task domain (Chang et al., 2018; Shao et al., 2015) to im-
prove performance. Effective transfer learning can improve the
generalization of models, reduce the size of labeled datasets and
save training time on the target dataset/task. With the develop-
ment of deep learning networks, a regular phenomenon appears in
various training objectives (Lee et al., 2009) in that the first layers
of deep neutral networks (DNNs) usually capture standard fea-
tures of training data, providing a foundation for transfer learn-
ing. Specifically, a DNN can be trained on a source task,
establishing the parameters of the first layers. Subsequently,
parameters of late layers are trained on the target task, striking a
balance between the distributions of the different training
domains. Depending on the size of the target dataset and number
of parameters of the DNN, first layers of the target DNN can ei-
ther remain unchanged during training on the new dataset or fine-
tuned toward the new task, leveling specificity and generality of
derived prior knowledge (Taroni et al., 2019).

Here, we focus on the development and application of transfer deep
learning approaches to predict human–virus PPIs, an important issue
amidst the world-wide COVID-19 pandemic. In particular, we design a
deep learning framework through representing interacting protein
sequences with a pre-acquired protein sequence profile module fol-
lowed by a Siamese CNN and a multi-layer perceptron (MLP) module.
Based on our deep learning framework, we propose two types of trans-
fer learning methods through freezing/fine-tuning the parameters of the
CNN layers trained with a source and retrained with a target human–
virus system, showing improved prediction performance and better
model generalization. Finally, we use the transfer learning models to

predict human–SARS-CoV-2 PPIs and conduct in-depth topological
and functional analysis of the obtained interaction network.

2 Materials and methods

2.1 Deep learning network framework
Our end-to-end DNN framework consists of a pre-acquired protein
sequence profile module, a Siamese CNN module and a prediction
module (Fig. 1). Evolutionary profile features have been used for
intraspecies PPI predictions with favorable performance (Hamp and
Rost, 2015; Hashemifar et al., 2018). In particular, we represent
interacting proteins by protein sequence profile [i.e. position-specific
scoring matrix (PSSM)], as input to the Siamese CNN module to
generate respective high-dimensional sequence embeddings that cap-
tures local features of human and viral proteins such as protein lin-
ear binding motif patterns. Finally, output embeddings of two
proteins form a sequence pair vector as the input to an MLP with an
appropriate loss function to predict the presence/absence of an inter-
action between a viral and a human protein.

2.1.1 Pre-acquired protein sequence profile module

By applying a threshold of E-value < 0.001, we performed PSI-
BLAST searches with default parameters in the UniRef50 protein se-
quence database (Suzek et al., 2015) to discover protein sequences
that are evolutionarily linked to the search sequence (Hamp and
Rost, 2015; Hashemifar et al., 2018). Sequence profiles (i.e. PSSMs)
thus obtained for each search sequence were processed by truncating
profiles of long sequences to a fixed length n and zero-padding short
sequences, a method widely used for data pre-processing and effect-
ive training (Min et al., 2017). As a result, we obtained a n� 20 di-
mensional array S for each protein,

S ¼

s1;1 � � � s1;j � � � s1;20

..

.
� � � ..

.
� � � ..

.

si;1 � � � si;j � � � si;20

..

.
� � � ..

.
� � � ..

.

sn;1 � � � sn;j � � � sn;20

2
66666664

3
77777775
;

where si;j denotes the probability of the jth out of the alphabet of 20
amino acids in the ith position of the sequence.

Fig. 1. Our proposed deep learning architecture to predict human–virus PPIs com-

bines evolutionary sequence profile features of interacting human and viral proteins

with a Siamese CNN architecture and an MLP
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2.1.2 Siamese CNN module

To capture complex relationship between two proteins, we use a
Siamese CNN architecture (Chen et al., 2019; Hashemifar et al.,
2018) with two identical CNN sub-networks that share the same
parameters for a given pair of protein profiles S; S0. Each sub-
network produces a sequence embedding of a single protein profile
that are subsequently concatenated. While each single CNN module
consists of a convolution layer and a pooling layer, we leverage four
connected convolutional modules to capture the patterns in an input
sequence profile.

Specifically, we use one-dimensional (1-D) convolution in each
convolution layer. For the first convolution layer, we input a
2000 � 20 array for each protein where the array can be regarded
as a vector of length 2000 with 20 channels (i.e. 20 features in each
position). Therefore, for each convolution layer, we consider a
n� sinput array X where n is the length of the input vector, and s is
the number of channels. The convolution layer applies a sliding win-
dow of length w (i.e. the size of filters/kernels) to convert X into
aðn�wþ 1Þ � farray C where f represents the number of filters/
kernels. Ci;k denotes the score of filter/kernel k, 1 � k � f , that
corresponds to position i of array X 1 � i � n�wþ 1ð Þ.
Moreover, the convolution layer applies a parameter-sharing ker-
nelM, a f �w� s array where Mk;j;l is the coefficient of pattern k at
position j and feature l. As a consequence, we define C as

C ¼ ConvMðSÞ

Ci;k ¼
Xw
j¼1

Xs

l¼1

Mk;j;lXiþj�1;l

Furthermore, the pooling layer immediately follows the convolu-
tion layer and further transforms C to a (ðn�wþ 1� pÞ=t þ 1Þ � f
array P where p is the size of pooling window, and t is the stride of
the sliding window. Array P ¼ PoolðCÞ is calculated as the max-
imum of all positions i� 1ð Þ � t þ 1 � j � i� 1ð Þ � t þ p over each
feature k where 1 � i � ðn�wþ 1� pÞ=t þ 1,

Pi;k ¼ maxðC i�1ð Þ�tþ1;k; . . . ;C i�1ð Þ�tþp;kÞ

2.1.3 Prediction module

The prediction module concatenates a pair of protein sequence
embedding vectors into a sequence pair vector as the input of fully
connected layers in an MLP and computes the probability that two
proteins interact. The MLP contains three dense layers with
leakyReLU where cross-entropy loss is optimized for the binary clas-
sification objective defined as

Loss ¼ � 1

K

X
p2K

Xm

i¼1
yp

i log sp
i

where yi is numerical class label of the protein pairp. The output of
the MLP for the protein pair p is a probability vector ŝp, whose
dimensionality is the number of classes m. s is normalized by a soft-
max function, where the normalized probability value for the ith

class is defined as sp
i ¼ expðŝp

i Þ=
P

j expðŝp
j Þ.

2.1.4 Implementation details

As for pre-acquired sequence profile construction, we consider a
fixed sequence length of 2000. As for the construction of our learn-
ing approach, we use four 1-D convolutional modules, where the in-
put sizes (i.e. the number of channels) of these four convolution
layers for each protein sequence are 20, 64, 128 and 256, respective-
ly. As for the size of the CNN models, the numbers of filters in the
four layers are 64, 128, 256 and 512, respectively. The convolution
kernel size (i.e. the length of the convolution sliding window) is set
to 3. Both the length and the stride of the pooling window are set to
2 for three max-pooling layers while the final pooling layer adopts
global max-pooling. Each convolution layer is followed by a pooling

layer. The detailed network architecture of the deep learning model
is provided in Supplementary Figure S1. To optimize cross-entropy
loss we use AMSGrad (Reddi et al., 2018), and set the learning rate
to 0.0001. The batch size is set to 64, while the number of epochs is
100. The fully connected layers contain three dense layers with input
sizes 1024, 512 and 256, respectively, and output a two-dimensional
vector with the last softmax layer. We implemented the proposed
architecture with Keras (https://keras.io/) using the GPU configur-
ation. The parameter selection and optimization are detailed in
Supplementary Table S1.

2.2 Dataset construction and partition
We collected experimentally verified human–virus PPI data from
five public databases, including HPIDB (Ammari et al., 2016),
VirHostNet (Guirimand et al., 2015), VirusMentha (Calderone
et al., 2015), PHISTO (Durmuş Tekir et al., 2013) and PDB
(Altunkaya et al., 2017). To obtain high-quality PPIs, we removed
interactions from large-scale MS experiments that were detected
only once, redundant interactions, non-physical interactions and
interactions between proteins without available PSSM features. By
performing the above filtering steps, we obtained 31 381 interac-
tions in all viruses, capturing 9880 interactions in HIV, 5966 in
Herpes, 5099 in Papilloma, 3044 in Influenza, 1300 in Hepatitis,
927 in Dengue and 709 in Zika (Supplementary Table S2). We took
these pre-processed experimentally verified interactions as positive
sample sets. As for human–SARS-CoV-2 PPIs, we collected experi-
mental interactions from two high-throughput MS experiments
(Gordon et al., 2020; Li et al., 2021), amounting to 568 human–
SARS-CoV-2 PPIs as positive samples.

To compile negative samples, we first randomly selected human–
virus protein pairs from human proteins in Swiss-Prot (The UniProt
Consortium, 2017) and viral proteins in positive samples except
those already reported to interact. Utilizing the ‘Dissimilarity-Based
Negative Sampling’ method (Eid et al., 2016; Yang et al., 2020,
2021) we further sampled negative samples that were 10 times larger
than the positive counterparts in each human–virus system
(Supplementary Table S2). As the key strategy of ‘Dissimilarity-
Based Negative Sampling’ we stipulate that if the sampled sequence
of viral protein B is similar to another viral protein A (sequence iden-
tity > 0.3), that is found to interact with human protein C (i.e. A-C
is a positive sample), then the pair of the viral protein B and the
human protein C is not selected as a negative sample. As for the size
of training sets, we surmise that positive interaction examples are far
less abundant than negative examples, prompting us to use an unbal-
anced ratio of positives/negatives (i.e. 1:10) to capture this disparity.
Furthermore, we mainly relied on 5-fold cross-validation for evalu-
ating the predictive models in all experimental settings. To this end,
all the benchmark datasets were equally divided into five non-
overlapping subgroups and each subgroup owns one chance to train/
test the model which can provide an unbiased evaluation. Note that
the dataset partition was fixed for all experiment settings, providing
a reliable basis for an unbiased comparison of different models.

2.3 Two types of transfer learning methods
To further improve the performance of our DNN especially when
dealing with smaller datasets, we propose two transfer learning
methods that keep the parameters of the CNN layers constant (i.e.
‘frozen’) or allow their fine-tuning in the early layers (i.e. ‘fine-tun-
ing’). In more detail, we used the proposed DNN architecture to
train the models based on a given source set of human–virus interac-
tions to obtain pre-trained parameters in the CNN layers that learn
the representation of the protein sequences. In subsequent transfer
learning steps, we kept the parameters of these CNN layers constant
(i.e. ‘frozen’) and only trained parameters of the fully connected
layers of the MLP to predict interactions in a target human–virus
interaction set. As an alternative, our ‘fine-tuning’ approach trained
parameters of the fully connected layers of the MLP and retrains the
parameters of CNN layers that we obtained from the initial training
step and changed such parameters by learning interactions in a target
set of human–virus interactions.

Human–virus PPI prediction by using transfer learning 4773
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3 Results and discussion

3.1 Performance of the proposed deep learning method
Based on our deep learning architecture, we assessed the predicted
interactions between proteins of various viruses and the human host
through 5-fold cross-validation. While Table 1 indicates generally
high prediction performance of our deep learning approach, we
observed that small sizes of training datasets such as Dengue, Zika
and SARS-CoV-2 decreased prediction performance. As RF outper-
forms other machine learning methods when applied to binary clas-
sification problems (Chen et al., 2019; Wu et al., 2009; Yang et al.,
2020), we compared the performance of our deep learning
approaches (i.e. PSSMþCNNþMLP) to this representative state-of-
the-art classifier. Moreover, we considered three widely used encod-
ing schemes (i.e. LD, CT and AC) for feature representations as in-
put to the RF classifier (see Supplementary Methods and
Supplementary Table S1 for method details). By comparing AUPRC
(area under the precision–recall curve) values, we observed that our
deep learning method generally outperformed other encoding
schemes-based RF classifiers especially when applied to compara-
tively large datasets (Table 2).

To further assess the proposed sequence profile-based encoding
scheme, we compared the performance of our deep learning architec-
ture based on PSSM to a different word embedding technique called
word2vecþCT one hot. Briefly, word2vecþCT one-hot is the con-
catenation of two pre-trained amino acid embeddings [i.e. the
word2vec encoding method (Chen et al., 2019; Le and Mikolov,
2014) and the CT one-hot encoding scheme of the corresponding se-
quence], where each protein was represented by a n� 12 dimension-
al array. Training our CNNþMLP approach with word2vecþCT
one hot encodings of the corresponding protein sequences, we
observed that the representation of sequences through PSSM in our
approach provided better prediction performance especially in rela-
tively small datasets such as Dengue, Zika and SARS-CoV-2
(Supplementary Table S3).

3.2 Comparison with other existing human–virus PPI

prediction methods
We further compared the performance of our method to four exist-
ing human–virus PPI prediction approaches [i.e. our previous RF-
based method (Yang et al., 2020), DeepViral (Liu-Wei et al., 2021),
the method of (Alguwaizani et al., 2018) and the DeNovo method
(Eid et al., 2016)]. Allowing a fair comparison, we first constructed
the PSSMs of the protein sequences in DeNovo’s PPI dataset and
used their training set to retrain our Siamese-based CNN model.
Finally, we assessed the performance of our reconstructed deep
learning model on the test set provided in Eid et al. (2016) including
425 positive and 425 negative samples. Furthermore, we used
DeNovo’s PPI interaction dataset to assess the prediction perform-
ance of our RF-based method, DeepViral and Alguwaizani et al.’s
method utilizing their corresponding performance metrics. As shown
in Supplementary Table S4, our deep learning and previously pub-
lished RF-based method clearly outperformed or were comparable

with other approaches, emphasizing that our deep learning method
is fully competitive compared to the newly developed method
DeepViral using sequence alone or together with phenotype and
functional features (Supplementary Table S4).

3.3 Cross-viral tests and transfer learning
To explore potential factors that affect prediction performance in a
cross-viral setting, we trained our deep learning model on four sub-
groups of one human–virus PPI dataset, predicted protein interac-
tions in one subgroup of a different human–virus system and
repeated these steps five times, implementing a 5-fold cross-
validation of a naı̈ve cross-viral test. As expected, we observed that
the prediction performance dropped considerably compared to train-
ing and testing in the same human–virus system (Fig. 2a). To allow
reliable cross-viral predictions of PPIs, we introduced two transfer
learning methods (i.e. ‘frozen’ and ‘fine-tuning’). To comprehensive-
ly test our transfer learning approaches, we considered each combin-
ation of human–virus PPI sets as source and target domains. Similar
to the previous naı̈ve 5-fold cross-validation setting, we first trained
the parameters of CNN layers on four randomly sampled subgroups
of a source domain. Subsequently, we transferred all parameters of
CNN layers to initialize a new model (‘frozen’ or ‘fine tuning’) with
randomly initialized MLP layers to train on the corresponding four
subgroups of a target domain and test the predictive model on the
remaining subgroup in the target domain. Figure 2b indicates that a
relatively rigid transfer learning methodology by keeping the param-
eters of the CNN module untouched (i.e. ‘frozen’) and training the
MLP layers strongly outperformed the naı̈ve baseline performance
as shown in Figure 2a. In turn, fine-tuning parameters in the CNN
module and training the MLP layers as well with a given target
human–virus domain allowed for another increase in performance
(Fig. 2c). As for individual pairs of human–virus domains, we also
observed that independently from the training domain the ‘frozen’
transfer methodology worked better compared to the ‘fine-tuning’
approach when the target domain dataset was extremely small (i.e.
human–SARS-CoV-2). In turn, performance of the ‘frozen’ transfer
learning approach dropped compared to ‘fine-tuning’ when the tar-
get human–virus domain datasets of PPIs were larger such as
human–Hepatitis, human–Dengue and human–Zika.

3.4 Prediction and analysis of human–SARS-CoV-2 PPIs

based on transfer learning models
To predict a genome-wide map of potential PPIs between the human
host and SARS-CoV-2, we first trained parameters of the CNN
layers of our deep learning model utilizing all human–virus protein
interactions. Subsequently, we used our two transfer learning
approaches to train our set of interactions between proteins of

human and SARS-CoV-2. Applying 5-fold cross-validations, we

observed that the AUPRC of 0.483 with the ‘frozen’ transfer learn-
ing approach outperformed the corresponding value of 0.435

when we used the ‘fine-tuning’ method. In addition, training on all

source human–virus PPI datasets showed best performance

Table 1. Performance of our deep learning architecture (PSSMþCNNþMLP) using 5-fold cross-validationa

Human–virus PPI

dataset

Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1-score (%) AUPRC

Human–HIV 98.65 95.16 89.72 99.54 92.36 0.974

Human–Herpes 95.26 77.11 68.10 97.98 72.33 0.768

Human–Papilloma 95.98 82.70 70.48 98.53 76.10 0.818

Human–Influenza 96.10 84.22 70.30 98.68 76.63 0.834

Human–Hepatitis 93.43 69.27 49.77 97.79 57.92 0.636

Human–Dengue 93.29 70.02 45.85 98.04 55.41 0.605

Human–Zika 95.41 85.17 59.94 98.96 70.36 0.746

Human–SARS-

CoV-2

90.64 45.81 16.37 98.06 24.12 0.329

aThe definitions of performance assessment metrics are available in Supplementary Materials.

4774 X.Yang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/24/4771/6323357 by guest on 09 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab533#supplementary-data


compared to separately training with virus-specific source PPI

datasets (data not shown). Therefore, we used five ‘frozen’ models

in a

5-fold cross-validation setting based on human–all virus source
dataset to predict human–SARS-CoV-2 PPIs and averaged the

scores of the five models as the prediction result. At a false positive

rate control of 0.01, we identified 946 high-confidence interac-

tions between 21 SARS-CoV-2 proteins and 551 human proteins
(Supplementary Table S5).

By analyzing the 551 targeted human proteins we found several net-
work patterns that are in line with previous observations
(Supplementary Fig. S2a–d). In particular, the power-law distribution
of the number of viral proteins that interact with a given human protein
suggests that a majority of human proteins are targeted by one viral
protein, while a minority interacts with many viral proteins (Wuchty
et al., 2010). Collecting 365 284 human PPIs from the HIPPIE database
(Alanis-Lobato et al., 2017) we observed that targeted human proteins
are enriched in bins of increasing degree, a result that is consistent with
previous findings as well (Dyer et al., 2008; Wuchty et al., 2010).
Considering 2916 human protein complexes from the CORUM data-
base (Giurgiu et al., 2019) we found that viral targets are enriched in
sets of proteins that participate in an increasing number of protein com-
plexes (Wuchty et al., 2010). To illustrate viral similarities, we com-
pared the experimentally known human–SARS-CoV-2 interactome and
our predicted interactome with their counterparts of seven other
viruses. While our predictions show similar overlaps of viral targets
with the experimentally obtained interactomes, we further found that
Dengue and Influenza had the most similar interacting partners in both
predictions and experimentally known interactions (P-value � 0.05,
hypergeometric test). Notably, the association with Influenza is of
particular interest as this virus also induces respiratory disease (i.e.
pneumonia).

Table 2. Performance comparison of our deep learning architecture and three sequence encoding schemes-based RF methods using 5-fold

cross-validation

AUPRC

Human–virus PPI dataset Our method LDþRF CTþRF ACþRF

Human–HIV 0.974 0.972 0.970 0.972

Human–Herpes 0.768 0.741 0.737 0.699

Human–Papilloma 0.818 0.740 0.724 0.656

Human–Influenza 0.834 0.813 0.795 0.713

Human–Hepatitis 0.636 0.571 0.580 0.537

Human–Dengue 0.605 0.526 0.505 0.456

Human–Zika 0.746 0.720 0.718 0.698

Human–SARS-CoV-2 0.329 0.371 0.350 0.314

Fig. 2. (a) Investigating prediction performance we trained our deep learning model on one human–virus PPI dataset (rows) and predicted protein interactions in a different

human–virus system (columns). In (b) and (c) we show the corresponding performance of the ‘frozen’ and the ‘fine-tuning’ transfer learning methods

Fig. 3. (a) Overlap of experimentally observed and predicted interactions between

proteins of the human host and SARS-CoV-2. (b) In a quantitative functional ana-

lysis of targeted human host proteins, we considered the enrichment of GO terms

and KEGG pathways through a hypergeometric test (Bonferroni corrected P-value

� 0.01). We found that a relatively large share of functional terms in groups of host

proteins appearing in the experimentally known PPIs and predictions. (c) In more

detail, we observed that enriched GO BP terms in host proteins appearing in the ex-

perimental and predicted PPIs were functionally similar
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3.5 Comparative analysis of known and our predicted

human–SARS-CoV-2 PPIs
Comparing our predicted and experimentally obtained human–SARS-
CoV-2 PPIs, we found considerable overlaps. In particular, 298 out of
946 predicted PPIs were identified through previous experimental efforts
that amount to 52.5% of known interactions in SARS-CoV-2, while 648
were specifically identified through our deep learning approach (Fig. 3a,
Supplementary Table S5), indicating the reliability and specificity of our
model for the identification of novel interactions. Moreover, we per-
formed functional and pathway enrichment for experimentally known
and predicted viral targets, respectively. Considering hypergeometric tests
(Bonferroni corrected P-value � 0.01), we observed a relatively large
number of shared GO enrichment terms/KEGG enrichment pathways of
experimentally confirmed targets and predicted targets, further indicating
the reliability of our predictions (Fig. 3b, Supplementary Tables S6 and
S7). In more detail, we found that GO BP enrichment of experimental

and predicted viral targets both point to the involvement of viral targets
in protein transport, protein import and mRNA export from the nucleus
(Fig. 3c). Notably, our predictions augment such functions, indicating
that the virus may also interfere with nuclear pore organization and as-
sembly as well as protein export from the nucleus.

3.6 Modular analysis of human–SARS-CoV-2 PPI

network
To further explore potential functional modules that can reveal
SARS-CoV-2 biology, we combined our predicted 946 human–
SARS-CoV-2 PPIs with known human-specific PPIs as of the HIPPIE
database (Alanis-Lobato et al., 2017) (Fig. 4a). Specifically, we iden-
tified nine topological modules based on connectivity between
human proteins (Fig. 4a and b; Supplementary Methods), utilizing
the MCODE algorithm (Bader and Hogue, 2003). Investigating the

Fig. 4. (a) Combining predictions from the transfer learning approach and known human PPIs we determined connectivity-based modules that were subjected to functional in-

terpretation. (b) Human–SARS-CoV-2 PPI network with enriched GO BP terms and KEGG pathways for each topological module. (c) SARS-CoV-2 targets a module that

involves the centrosome, cell cycle and interferon pathway. Through multiple sequence alignment, we observed a potential conserved binding motif shared by nsp13 of SARS-

CoV-2 and proteins of other viral pathogens, suggesting that SARS-CoV-2 nsp13 protein may interfere with the regulation processes of IFN to support antiviral innate immune

response
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enrichment of GO BP terms and KEGG pathways through hypergeo-
metric tests (Bonferroni adjusted P-value � 0.05; Supplementary
Methods), we observed that these modules largely revolved around
ribosome biogenesis, retrograde protein transport, elastic fiber as-
sembly, mitochondrial translation, protein processing in endoplas-
mic reticulum, stress granule regulation, protein folding in
endoplasmic reticulum, centrosome and gene splicing (Fig. 4b,
Supplementary Table S8).

Considering a module that was enriched with centrosome func-
tions through interactions with nsp13 and cell cycle functions through
interactions with orf6, we also found that this module harbors human
genes that allow SARS-CoV-2 to interact with innate immune path-
ways which is consistent with previous findings (Gordon et al., 2020).
As shown in the module, the interferon (IFN) pathway is targeted
through TBK1 by nsp8, nsp13 and orf6, a serine/threonine-protein
kinase that plays an important role in the induction of the antiviral
IFN response to foreign agents such as viruses. A number of viral pro-
teins bind to TBK1 and regulate their kinase activity to reduce TBK1-
mediated secretion of IFN and induction of an antiviral state, such as
Borna disease virus (BDV) P protein (Unterstab et al., 2005), Human
herpesvirus 1 (HSV-1) ICTP34.5 protein (Manivanh et al., 2017) and
Ebola virus (EBOV) VP35 protein (Prins et al., 2009). BDV P protein
itself is phosphorylated by TBK1, suggesting that P functions as a viral
decoy substrate that prevents activation of cellular target proteins of
TBK1. Furthermore, residues from 87 to 106 in HSV-1 ICTP34.5 pro-
tein interact with TBK1 to modulate type I IFN signaling (Manivanh
et al., 2017; Verpooten et al., 2009). Considering the multiple se-
quence alignment of these viral proteins and nsp13 of SARS-CoV and
SARS-CoV-2 we found a potential conserved binding motif (Fig. 4c),
corroborating our assumption that SARS-CoV-2 nsp13 protein may
also interfere with the regulation processes of IFN that support anti-
viral innate immune response.

4 Conclusion

We designed a Siamese-based multi-scale CNN architecture by using
PSSMs to represent sequences of interacting proteins, allowing us to
predict human–virus PPIs with an MLP approach. We observed that
our model outperformed previous state-of-the-art prediction methods
as well as combinations of other machine learning and pre-trained fea-
ture embeddings. Moreover, we introduced two transfer learning meth-
ods (i.e. ‘frozen’ type and ‘fine-tuning’ type), which allowed us to train
on a source human–virus domain and retrain the layers of CNN with
data of a target domain. Notably, our methods increased the cross-viral
prediction performance dramatically, compared to the naı̈ve baseline
model. Finally, we used our ‘frozen’ transfer learning method to predict
human–SARS-CoV-2 PPIs and performed in-depth network analysis
based on the identified interactions. Our transfer learning model
resembled closely the functions and characteristics of experimentally
obtained interactions and indicated novel functions that the virus po-
tentially targets. Taken together, our transfer learning method can be
effectively applied to predict human–virus PPIs in a cross-viral setting
and the study of viral infection mechanism.
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