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Abstract

Motivation: Cancer subtype identification aims to divide cancer patients into subgroups with distinct clinical pheno-
types and facilitate the development for subgroup specific therapies. The massive amount of multi-omics datasets
accumulated in the public databases have provided unprecedented opportunities to fulfill this task. As a result, great
computational efforts have been made to accurately identify cancer subtypes via integrative analysis of these multi-
omics datasets.

Results: In this article, we propose a Consensus Guided Graph Autoencoder (CGGA) to effectively identify cancer
subtypes. First, we learn for each omic a new feature matrix by using graph autoencoders, where both structure in-
formation and node features can be effectively incorporated during the learning process. Second, we learn a set of
omic-specific similarity matrices together with a consensus matrix based on the features obtained in the first step.
The learned omic-specific similarity matrices are then fed back to the graph autoencoders to guide the feature learn-
ing. By iterating the two steps above, our method obtains a final consensus similarity matrix for cancer subtyping.
To comprehensively evaluate the prediction performance of our method, we compare CGGA with several
approaches ranging from general-purpose multi-view clustering algorithms to multi-omics-specific integrative meth-
ods. The experimental results on both generic datasets and cancer datasets confirm the superiority of our method.
Moreover, we validate the effectiveness of our method in leveraging multi-omics datasets to identify cancer sub-
types. In addition, we investigate the clinical implications of the obtained clusters for glioblastoma and provide new
insights into the treatment for patients with different subtypes.

Availabilityand implementation: The source code of our method is freely available at https://github.com/alcs417/
CGGA.

Contact: alcs417@sdnu.edu.cn or luojiawei@hnu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a type of disease that involves abnormal cell growth and can po-
tentially invade or spread to other organisms of the body. As one of the
leading causes of death worldwide, its heterogeneity is considered as the
major problem limiting the efficacy of targeted therapies and compromis-
ing treatment outcomes (Janku, 2014). Cancer subtype identification aims
to divide patients into groups with similar clinical phenotypes or molecular
profiles, thus facilitating the prognosis and personalized treatment predic-
tion in cancer (Huang et al., 2019; Kuijjer et al., 2018). For instance, it is
now well-recognized that there are four main subtypes in breast cancer,
i.e. Luminal A, Luminal B, Basal and HER2, each of which has distinct
morphologies and responds differently to both targeted and chemothera-
peutic agents (Dai et al., 2015; Salvadores et al., 2020).

With the rapid development of high-throughput sequencing tech-
niques, large-scale projects such as The Cancer Genome Atlas
(TCGA) have accumulated massive amount of diverse omics data
for various cancer types (Cancer Genome Atlas Research Network
et al., 2013; Speicher and Pfeifer, 2015). As a result, great computa-
tional efforts have been made to accurately identify cancer subtypes
by integrative analysis of these multi-omics data (Chen et al., 2019;
Rappoport and Shamir, 2018; Tepeli et al., 2020). Since the subtypes
of most cancer samples are unclear, clustering has been widely used
for cancer subtyping (Xu et al., 2019). Early methods generally
make predictions by employing only one type of multi-omics data or
directly concatenating all omics data followed by traditional single-
omic clustering algorithms (e.g. k-means). However, this approach
cannot fully exploit the underlying connections among different
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types of omics data and might lead to inaccurate results. Moreover,
the simple concatenation strategy will also increase the data dimen-
sion and thus reduce the computational efficiency.

Multi-view clustering has recently become a hot topic in the field
of machine learning(Nie et al., 2018; Xu et al., 2016). The goal of
multi-view clustering is to make use of heterogeneous information
from different views to provide a comprehensive result (Tang et al.,
2019; Wang et al., 2020a,b). To take advantage of multi-omics data-
sets and understand sample characteristics from a more comprehen-
sive perspective, many methods based on multi-view clustering have
been developed to uncover potential subtypes in cancers (Jiang et al.,
2019a,b; Li et al., 2018; Nguyen and Wang, 2020). According to the
underlying model assumptions, existing cancer subtyping
approaches can be roughly divided into several categories.
Algorithms in the first category mainly utilize statistical models to
fulfill the task (Vaske et al., 2010). One of the representative works
is iCluster (Shen et al., 2009), a joint latent variable model for inte-
grative clustering which simultaneously incorporates flexible model-
ing of the associations between different data types and reduces the
dimensionality of the datasets. Although powerful, this method has
a high computational cost with respect to the number of features
and is relatively sensitive to the feature preselection step.
LRACluster is an integrative probabilistic model to fast find the
shared principal subspace across multiple data types by using low-
rank approximation. Specifically, samples were clustered in a
reduced low-dimensional subspace to identify the molecular sub-
types (Wu et al., 2015). Another group of identification methods are
generally based on multi-view similarity learning and different inte-
gration strategies are adopted to obtain the cluster labels for
patients. Wang et al. first computed a sample-similarity network for
each data type and then fused these networks into a single similarity
network non-linearly (Wang et al., 2014). Finally, spectral clustering
was applied on the obtained similarity network to get the results for
cancer subtyping. In this way, the complementarity in the data were
well explored. Cai et al. tried to find a consensus kernel matrix from
a set of kernel matrices constructed for each data type. To solve the
inconsistency among different views, they decomposed each kernel
matrix into a consensus part together with a disagreement part and
further defined a consensus score to measure the consistency (Cai
and Li, 2017). In addition to the methods mentioned above, other
representative subtyping methods include PINS (Nguyen et al.,
2017), iNMF (Yang and Michailidis, 2016), JIVE (O’Connell and
Lock, 2016) and so on. PINS discovered meaningful cancer subtypes
based on perturbation clustering. The main idea is to repeatedly per-
turb the data by adding Gaussian noise and find the sample parti-
tions that are least affected by the perturbations. iNMF is based on
joint non-negative matrix factorization and can leverage the advan-
tage of multiple data sources to gain robustness to heterogeneous
perturbations. JIVE extends the principal components analysis to
multi-source scenario and finds the joint structure by quantifying the
amount of shared variation between data sources.

Although great computational efforts have been made in the past
decade, it still remains a challenging task to discover biologically
meaningful subgroups in cancer samples. Specifically, most of the
existing methods only consider either the feature content or the
graph structure of samples during the identification process, which
cannot fully exploit the clustering information hidden in the sam-
ples. Besides, the graph structures used by many alternatives are con-
structed directly from the feature contents and are fixed throughout
the optimization process, which might lead to sub-optimal perform-
ances due to the existence of noise in omics data and impedes the
consistency sharing among multiple views. To solve these issues, in
this article, we propose a Consensus Guided Graph Autoencoder
(CGGA) to effectively identify cancer subtypes. Our method mainly
consists of two steps. First, we learn for each omic a new feature ma-
trix by using graph autoencoders, where both the structure informa-
tion and node features are simultaneously considered during the
learning process. Second, we learn a set of omic-specific similarity
matrices as well as a consensus matrix based on the features
obtained in the first step. Then, the learned omic-specific similarity

matrices are fed back to the graph autoencoders to guide the feature
learning. By iterating the two steps above, our method obtains a
final consensus similarity matrix for cancer subtyping. Experimental
results on both generic machine learning datasets and cancer data-
sets confirm the effectiveness of our method. Moreover, the survival
analysis as well as the enrichment analysis based on the subgroups
uncovered in glioblastoma provides new insights into the importance
of cancer subtype identification.

2 Materials and methods

As aforementioned, our proposed algorithm consists of two parts,
i.e. latent representation learning by GAEs and adaptive similarity
graph learning based on the obtained representations (Fig. 1). The
two parts are enhanced with each other in an iterative manner. We
will first summarize the notations used in our work and then give
details of each part in the following subsections.

2.1 Basic notations
Throughout the article, we use italic uppercase letters to denote
matrices. Given a matrix M, its jth column and (i, j)th element are
denoted as mj and mij, respectively. MT, Tr(M) and Mj jj jFdenote the
transpose, the trace and the Frobenius norm of M, respectively. 1 is
a column vector with all ones and I is the identity matrix.

2.2 Graph autoencoders and its optimization
2.2.1 Graph convolutional networks

Graph Convolutional Networks(GCNs) are an efficient variant of
Convolutional Neural Networks (CNNs) on graphs and have been
widely used in various semi-supervised learning tasks (Kipf and
Welling, 2016a,b; Wu et al., 2019). Given an attributed graph G(X,
A), where X ¼ ½x1; x2; . . . ; xn� 2 R

n�d is the node feature matrix and
A 2 R

n�n encodes the similarities between each pair of nodes, a
GCN aims to learn a latent representation Z ¼ ½z1; z2; . . . ; zn� 2
R

n�pðp � dÞ by simultaneously considering both the node features
X and the graph structure A (Jiang et al., 2019a,b). Specifically, the
layer-wise propagation rule of GCNs is:
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Fig. 1. An overall workflow of the proposed method. It iterates between two parts,

i.e. latent representation learning and consensus graph learning, until convergence
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Zlþ1 ¼ rð ~AZlWlÞ; (1)

where Zl 2 R
n�dl is the input feature matrix at the lth layer and

Z0¼X. Wl 2 R
dl�dlþ1 is a trainable weight matrix at the lth layer.

~A ¼ ~D
�1

2ðAþ InÞ ~D
�1

2 and ~D is a diagonal matrix with its ith element
defined as ~Dii ¼

P
kðAþ InÞik. r(_) is an activation function such as

ReLU. Based on Equation (1), a typical GCN can be easily con-
structed with predefined number of layers and the feature dimen-
sions at each layer.

2.2.2 Graph AutoEncoders

Graph AutoEncoders(GAEs) are unsupervised learning frameworks
that usually consist of a GCN encoder and a simple inner product
decoder (Kipf and Welling, 2016a,b). Let Z¼GCN(X, A) denote the
final latent representation obtained from a GCN, the core idea of
GAEs is to approximate the original adjacency matrix A with the
reconstructed matrix rðZZTÞ with rð�Þ being the sigmoid activation
function. However, different from general semi-supervised learning
scenarios, where a known graph structure is usually given (e.g. Cora,
Citeseer, etc.), we do not have such prior knowledge for cancer sub-
typing or many other clustering tasks. As a result, the graph struc-
ture information used in GAEs needs to be constructed based on the
feature matrix, which might be sub-optimal due to the existence of
the noises in these datasets. In addition, since the input adjacency
matrix is not updated during the whole training process, it would
further impair the learning ability of GAEs. To solve these issues,
here we propose to reconstruct the input X instead of the adjacency
matrix A by minimizing the squared reconstruction loss (Wang
et al., 2017). Specifically, the single-layer autoencoder in our model
is defined as:

kX� f ðX;A; WÞk2
F; (2)

where f(X, A; W) represents a GCN parameterized by the weight
matrix W. By using the linear activation function and adding a regu-
larization term on W, Equation (2) can be further transformed into:

kX� ~AXWk2
F þ kkWk2

F; (3)

where k is a tradeoff parameter. Based on Equation (3), our model
can be easily extended to a multi-layer GAE by stacking a set of
single-layer autoencoders and thus forming a deep learning
architecture(Salha et al., 2019). Suppose our model has L layers,
then the latent representation Zlþ1(l¼ 1, 2,. . ., L - 1) can be obtained
by:

Zlþ1 ¼ ~AZlWl (4)

with Z0¼X.

2.2.3 Optimization

It is clear from Equations (3) and (4) that to train the proposed
GAE, we only need to optimize the weight matrix W at each layer.
Unlike traditional deep learning methods that require gradient des-
cent to reach convergence, we can easily get a global optimal solu-
tion for W layerwise due to the convexity of Equation (3) with
respect to W. Specifically, by taking the derivative of Equation (3)
with W and setting it to 0, we obtain that:

W ¼ XT ~A
T

XðXT ~A
T ~AXþ kÞ�1: (5)

With the obtained optimal solution of W, we can directly calcu-
late the new representation Zl at each layer according to Equation
(4).

2.3 Similarity graph construction and its optimization
2.3.1 Similarity graph construction

Let X1, X2, . . ., Xm denote the feature matrix for each omic.
Xv 2 R

n�dv (v¼1, 2,. . .,m), where n and dv represent the number of
samples and the number of features of the vth view, respectively.
According to the proposed GAE in Equation (4), we can obtain a

latent representation Zv for each omic data type and thus calculate a
set of similarity matrices Av 2 R

n�n by minimizing the following ob-
jective function:

min
fAvg

Xm
v¼1

Xn

i;j¼1

kzv
i � zv

j k
2
2av

ij þ b
Xm
v¼1

Xn

i;j¼1

kav
ijk

2
2

s:t:8v; av
ii ¼ 0; av

ij � 0;1Tav
i ¼ 1

; (6)

where zv
i denotes the ith row vector of Zv and av

ij denotes the (i, j)th
element of Av. 1 is a column vector with all its elements equal to 1.
The first term in Equation (6) means that a smaller distance between
zv

i and zv
j should be assigned a larger connection probability (Nie

et al., 2014). The second term is a regularization that avoids trivial
solutions. b is a tradeoff parameter balancing the two terms and can
be determined adaptively by the number of neighbors k.
Nevertheless, each Av in Equation (6) is optimized independently
and cannot interact with each other to share the common informa-
tion among them. Therefore, we add a consensus graph learning
term to guide the learning of Av (Wang et al., 2020a,b):

min
fAvg;S

Xm
v¼1

Xn

i;j¼1

kzv
i � zv

j k
2
2av

ij þ b
Xm
v¼1

Xn

i;j¼1

kav
ijk

2
2 þ

Xm
v¼1

xvkS� Avk2
F

s:t:8v; av
ii ¼ 0; av

ij � 0; 1Tav
i ¼ 1; sij � 0;1Tsi ¼ 1

; (7)

where xv is the weight measuring the difference between the consen-
sus matrix S and the vth view and it can be updated automatically.
As we can see from Equation (7), with the guidance of the consensus
matrix S, each Av will be forced to approach the same graph struc-
ture and thus the underlying consistency among multiple views can
be exploited.

2.3.2 Optimization

There are three variables Av, S and xv that need to be updated and
we adopt alternative optimization to solve them effectively.

Update Av. Once we obtained the latent node features Zv from
GAEs, we can calculate a similarity matrix Av for each omic.
Actually, Av of different views can be updated independently (Cui
et al., 2020). Therefore, we solve for eachav

i separately and trans-
form Equation (7) as follows:

min
fAvg

Xn

j¼1

kzv
i � zv

j k
2
2av

ij þ b
Xn

j¼1

kav
ijk

2
2 þ xvksi � av

i k
2
2

s:t:8v; av
ii ¼ 0; av

ij � 0;1Tav
i ¼ 1

: (8)

Let eij ¼ kzv
i � zv

j k
2
2 and ei be a vector with its jth element as eij,

Equation (8) can be further written in a simple form:

minkav
i þ

ei � 2xvsi

2ðbþ xvÞ
k2

2; s:t:a
v
ii ¼ 0; av

ij � 0; 1Tav
i ¼ 1: (9)

Equation (9) can be solved efficiently via the method proposed in
(Huang et al., 2015).

Update S. When Av (v¼ 1, 2,. . .,m) is fixed, Equation (7)
becomes:

min
S

Xn

i¼1

Xm
v¼1

xvksi � av
i k

2
2; s:t:sii ¼ 0; si � 0;1Tsi ¼ 1 (10)

and it can be solved in the way as Equation (9).
Update xv. Finally, we update xv with the following formula:

xv ¼ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kS� Avk2

F

q
; v ¼ 1;2; . . . ;m: (11)

Obviously, xv will be assigned larger values when the corre-
sponding view-specific similarity matrix is more consistent with the
final consensus graph and vice versa.

2.4 Combination of the two components and clustering
With the two stages introduced above, we combine them together
to reinforce the learning of each stage in an iterative manner.
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Specifically, in the first step, we can obtain new representations
Zv for all omics through the proposed GAEs in Equation (4); in
the second step, we learn m specific similarity graphs Av as well as
a consensus similarity graph S through Equation (9) and Equation
(10), respectively. The learned Av is then fed back into the corre-
sponding GAE to guide the learning of Zv. In this way, the consen-
sus information shared by different views can be conveyed to
learn the new representations effectively. By repeatedly optimiz-
ing the variables fZv, Avg and S, we can finally obtain more ro-
bust GAEs for representation learning and a more reliable
similarity graph for subtype identification. After we obtain the
final similarity matrix S, we use rotation cost method to evaluate
the number of clusters and then apply spectral clustering on S to
get the patient clusters. The whole optimization process is sum-
marized in Algorithm 1.

3 Results

3.1 Benchmark datasets
To comprehensively evaluate the performance of our method, we
selected two types of datasets in the following experiments, i.e. four
frequently used machine learning datasets and four cancer datasets.
A brief description of the datasets are given below:

Generic machine learning datasets. We used four generic datasets
in this work, i.e. Caltech101-7, BBC, COIL20, Handwritten.
Specifically, Caltech101-7 has 1474 images that are selected from 7
widely used classes (Fei-Fei et al., 2007). COIL20 is from the
Columbia object image library and it has 1440 images from 20 cate-
gories (Nene et al., 1996). BBC dataset is collected from the BBC
news website. It contains 685 documents involving 5 topical labels
(Greene and Cunningham, 2006). Handwritten dataset has 10
classes and each class contains 200 different handwritten digits (Dua

and Graff, 2019). The statistics of the four datasets are summarized
in Table 1.

Cancer datasets. The four cancer datasets, Acute Myeloid
Leukemia (AML), Breast Invasive Carcinoma (Breast), Glioblastoma
Multiforme (GBM) and Liver Hepatocellular Carcinoma (Liver),
were directly downloaded from (Rappoport and Shamir, 2018). All
of the four datasets contain three omic data types, i.e. mRNA ex-
pression, DNA methylation and miRNA expression. Notably, differ-
ent from the generic datasets above, the true number of clusters
within each cancer dataset is unknown. A brief summary of the can-
cer datasets is listed in Table 2.

3.2 Experimental settings
Baseline methods. Seven algorithms, spectral clustering, Cotrain
(Kumar and Iii, 2011), CoregSC (Kumar et al., 2011), LRACluster
(Wu et al., 2015), PINS (Nguyen et al., 2017), SNF (Wang et al.,
2014) and iClusterBayes (Mo et al., 2018) are selected as baselines
to compare with the proposed method. Among these methods, spec-
tral clustering is a representative method for single-view clustering
tasks. Cotrain and CoregSC are designed for general-purpose multi-
view clustering problems, while LRACluster, PINS, SNF and
iClusterBayes are mainly developed for integration of multi-omics
data and disease subtyping.

Parameter settings. For spectral clustering, we simply concaten-
ate the multi-view features into a unified feature vector. For the
other methods, we carefully tune the parameters to record their best
results. Each method is repeated five times and the average result is
reported. For our method, there are in total four parameters, i.e. k,
b, the number of neighbors k and the number of layers L in graph
autoencoder. Once k is fixed, the optimal value of b can be deter-
mined adaptively (Wang et al., 2020a,b). For the number of layers,
we set L¼2 throughout the experiments according to the analysis
results shown in the experiment section.

Data preprocessing. For cancer datasets, features measured by
RNA-seq and miRNA-seq were log transformed, and miRNA fea-
tures with zero variance were filtered. Specifically, for SNF, Cotrain,
CoregSC and our method, all features were further normalized to
have zero mean and standard deviation. Moreover, 2000 features
with highest variance were selected from all omics to run Cotrain,
CoregSC and CGGA. For generic machine learning datasets, features
from all views were normalized to have unit norm before running all
algorithms.

Estimation of the number of clusters c. For generic datasets, the
number of clusters in each dataset is given. For cancer datasets, we
estimate c with different approaches for each method. Specifically,
for spectral clustering, LRACluster, PINS, SNF and iClusterBayes,
the optimal c was determined in the same way as shown in
(Rappoport and Shamir, 2018). For Cotrain and CoregSC, since
they are all spectral clustering based multi-view learning methods,
we used the same number of clusters estimated by SNF for the two
methods. For our method, we use the rotation cost to estimate c as it

Algorithm 1. Consensus Guided Graph Autoencoders (CGGA)

Input: Multi-omics datasets fXvg (v¼ 1,2,. . .,m), parameter k, number

of neighbors k, number of layers L in GAEs;

Output: Final clustering results;

1. Initialize each Av with Xv(v¼ 1,2,. . .,m) using KNN;

2. Repeat:

3. for v¼ 1, 2,. . ., m:

4. Initialize (Zv)0¼Xv;

5. for l¼ 1, 2,. . ., L:

6. Update (Wv)l-1 according to Equation (5);

7. Calculate (Zv) l according to Equation (4);

8. end

9. Obtain the final latent representation Zv.

10. end

11. Initialize xv ¼ 1/m, initialize each Av with Zv using KNN, initialize

S by averaging fAvg with xv;

12. Repeat

13. Update Av according to Equation (9).

14. Update S according to Equation (10);

15. Calculate xv according to Equation (11);

16. until Convergence;

17. until Convergence;

18. Apply spectral clustering on S.

Table 1. Summary of the generic machine learning datasets

Datasets No. of views No. of samples No. of clusters No. of features

Caltech101-7 6 1474 7 48þ40þ 254þ 1984þ 512þ 928

BBC 4 685 5 4659þ 4633þ 4665þ 4684

COIL20 3 1440 20 512þ1239þ324

Handwritten 6 2000 10 240þ 76þ 216þ 47þ64þ 6

Table 2. Summary of the cancer datasets

Datasets No. of views No. of samples No. of features

AML 3 170 20531þ5000þ705

Breast 3 621 20531þ 5000þ 1046

GBM 3 274 12042þ5000þ534

Liver 3 367 20531þ 5000þ 1046
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is known to be more stable (Wang et al., 2014). The main idea of ro-
tation cost is to exploit the structure of eigen-vectors of the
Laplacian matrix and more details can be referred to (Zelnik-Manor
and Perona, 2004).

3.3 Experimental results
Performance evaluation. We first compared the clustering perform-
ance of CGGA with the seven baseline methods on the four general-
purpose multi-view datasets. Table 3 reports the comparison results
in terms of ACC. Results on other evaluation metrics (i.e. NMI and
purity) can be found in Supplementary Tables S1 and S2,
Supplementary File S1. The experimental results clearly demon-
strated the superiority of our method over the other methods.
Specifically, our method gained more than 10% improvement on
ACC and NMI than the second best method on Caltech101-7 and
BBC datasets, respectively.

Next, we compared the performance of each method on cancer
datasets. The number of distinct subtypes identified by each method
was provided in Supplementary Table S3. Since there does not exist
explicit subtypes for most cancer datasets, we cannot evaluate the
quality of clusters with commonly used metrics such as ACC.
Instead, we seek for metrics that can evaluate the potential clinical
significance of the obtained clusters. The logrank test is a statistical
test used to compare the survival times between two or more inde-
pendent groups and it is commonly assumed that if groups of
patients have significantly different survival, they are different in a
biologically meaningful way. Therefore, we first evaluate the differ-
ential survival between the obtained clusters with logrank test.
Specifically, to derive a more accurate P-value for comparison, we
adopted the same strategy used in (Rappoport and Shamir, 2018),
where they permuted the cluster labels between samples and used
the test statistic to obtain an empirical P-value. Table 4 lists the com-
parison results of all methods on the four cancer datasets. As a re-
sult, our method achieved the most significant P-values on AML,
Breast and Liver datasets, and obtained the second best result on
GBM. Moreover, we also compared the number of enriched clinical
labels in the obtained clusters by each method. Six clinical labels,
gender, age at initial pathologic diagnosis, pathologic T, pathologic
M, pathologic N and pathologic stage, were selected for the enrich-
ment test. Notably, different cancer subtypes have different clinical
parameters and the details for each cancer subtype were given in

Supplementary Table S4. As shown in Table 5, our method obtained
the greatest number of enriched clinical labels over all cancer data-
sets. In particular, we obtained 5 enriched clinical labels on Breast
dataset, which is the most among all methods. Taken together, these
results demonstrated that our method can perform well on both gen-
eric machine learning datasets and cancer datasets.

Comparisons between single view and multi-view data. To valid-
ate whether our method can take advantage of the multi-view data-
sets and identify the underlying intrinsic clustering structures, we
tested the clustering performance of our method by using data from
specific views instead of all views. Two datasets AML and
Caltech101-7 were selected for validation. Specifically, since AML
only contains three views, we tested all cases of different view com-
binations. For Caltech101-7, we only tested the performance of
using data from each view as it contains six views. As expected (Fig.
2), our method achieved the best performance on both datasets
when data from all views is considered.

Effects of the number of layers in GAEs. We also tested the influ-
ences of the number of layers stacked in GAEs on the clustering per-
formance. Figure 3 illustrated the performance variations on the
four cancer datasets as well as Caltech101-7 with respect to the
number of layers. We can see that the performance on AML and
Caltech101-7 is relatively stable as the number of layers increases,
while on Breast, GBM and Liver datasets, the performance reduces
sharply when the number of layers increases to 7 or 8. This might be
due to the difficulties to train a more complex network architecture

Table 3. Comparison of the clustering performance on the four generic datasets in terms of ACC

Methods Caltech101-7 BBC COIL20 Handwritten

Spectral 0.6208 6 0.000 0.5241 6 0.000 0.6806 6 0.000 0.6620 6 0.000

LRAcluster 0.4233 6 0.000 0.4847 6 0.000 0.6049 6 0.005 0.4470 6 0.001

PINS 0.5522 6 0.000 0.4015 6 0.000 0.6444 6 0.012 0.4690 6 0.000

SNF 0.5197 6 0.000 0.5752 6 0.000 0.7868 6 0.000 0.8225 6 0.000

iClusterBayes 0.1913 6 0.005 0.3810 6 0.040 0.2632 6 0.030 0.1325 6 0.020

Cotrain 0.4783 6 0.060 0.6375 6 0.021 0.7796 6 0.035 0.7763 6 0.053

CoregSC 0.4166 6 0.050 0.4672 6 0.016 0.6771 6 0.039 0.7540 6 0.061

CGGA 0.7741 6 0.000 0.6934 6 0.000 0.8271 6 0.000 0.8585 6 0.000

Table 4. Comparison of the clustering performance on the four cancer datasets in terms of the empirical survival P-values

Methods AML Breast GBM Liver

Spectral 0.0186 6 0.00 0.0276 6 0.00 5.7E-03 6 0.00 0.3919 6 0.00

LRAcluster 0.0107 6 0.00 0.0452 6 0.00 0.0363 6 0.01 0.1625 6 0.01

PINS 0.0706 6 0.00 0.0500 6 0.00 2.3E-04 6 0.00 0.0111 6 0.00

SNF 0.0014 6 0.00 0.0989 6 0.00 7.3E-05 6 0.00 0.6592 6 0.00

iClusterBayes 0.1054 6 0.01 0.6272 6 0.01 0.0938 6 0.00 0.1056 6 0.00

Cotrain 0.0015 6 0.01 0.0557 6 0.00 0.0114 6 0.00 0.0524 6 0.00

CoregSC 0.3350 6 0.01 0.0568 6 0.00 0.1896 6 0.01 0.4028 6 0.00

CGGA 0.0009 6 0.00 0.0149 6 0.00 2.1E-04 6 0.00 0.0050 6 0.00

Table 5. The number of enriched clinical labels obtained by each

method

Methods AML Breast GBM Liver

Spectral 1 2 2 2

LRAcluster 1 4 1 0

PINS 1 4 1 2

SNF 1 2 1 2

iClusterBayes 0 3 0 2

Cotrain 1 1 0 2

CoregSC 1 1 0 2

CGGA 1 5 2 3
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and higher risks of information loss. In summary, we only use two
layers in our model as it is enough to obtain satisfactory results.

Parameter analysis. There are two hyper-parameters k and b in
our objective function, where b can be adaptively determined by the
number of neighbors k. Therefore, we investigated their impacts on
the clustering performance of the proposed method on two datasets,
AML and Caltech101-7 (Fig. 4). The analysis results on other data-
sets were provided in Supplementary Figure S1–S6. It can be
observed that, the proposed method is relatively stable with respect
to the two parameters on the generic machine learning datasets. For
cancer datasets, the optimal values for the two parameters are de-
pendent on the specific dataset. In general, k can be set in the range
[0.01, 10] while k can be selected from f7, 9g.

Convergence analysis. Since our method mainly consists of two
components, we first investigated the convergence of each sub-
optimization problem separately. Specifically, in the first step, we
can obtain the closed-form optimal solution for W according to
Equation (5). In the second step, the optimization for Av is guaran-
teed to converge to an optimal solution as the Hessian matrix of the
Lagrange function of Equation (9) is positive definite. Similarly, we
can derive the same conclusion for the optimization of S. Therefore,
our algorithm can converge to an optimal solution at each iteration.
Unfortunately, since the input similarity matrix Av varies at each it-
eration, it is difficult to theoretically prove the overall convergence
of the proposed algorithm. However, in practice, we find that our al-
gorithm can quickly reach a stable state in practice in most cases
(Fig. 5, Supplementary Figs S7–S12), which ensures the utility of our
method.

3.4 Comparison of clusters to established subtypes
In this subsection, we investigated the connections between the clus-
tering results identified by our method with previously established
subtypes for GBM dataset. Specifically, Brennan et al. identified four
major subtypes, i.e. Classical, Mesenchymal, Neural, Proneural,
based on the gene expression profiles, where they further divided the
Proneural subtype into proneural G-CIMP and proneural-non-G-
CIMP subtypes in terms of the DNA methylation profiles(Brennan
et al., 2013). We therefore reported the overall number of samples
of Proneural subtype by taking the G-CIMP into account. After fil-
tering, we retained 271 common samples with reported subtype in-
formation and the comparison results were listed in Table 6. We can
observe that Subtype 1 is enriched for the Classical subtype while
Subtype 2 is mainly dominated by the Proneural subtype. Subtype 3
contains samples belonging to the Mesenchymal subtype and the
Neural subtype. Similar conclusions were also drawn from a smaller
sample collection (Verhaak et al., 2010) (Supplementary File S1,
Supplementary Table S5). Our findings indicated that patients of the
Neural subtype have similar molecular traits with Mesenchymal and
Classical subtypes and might be clustered together for better
treatment.

3.5 Clinical implications of the identified clusters
With the identified subtypes for cancer samples, we can carry out
further analysis to discover the underlying differences between can-
cer subtypes and thus facilitate clinical therapeutics. To this end, we
examined the responses of patients from different GBM subtypes to
the same treatment. Specifically, the drug treatment information for
GBM patients were downloaded from TCGA. After filtering, there
were in total 272 samples with matched treatment data. Among
these, 87 were treated with Temozolomide, an anti-cancer chemo-
therapy drug that is frequently used to treat brain tumors (Table 7).
We then tested for each identified subgroupthe survival time of
patients treated versus those not treated with the drug by using R
package survminer and reported the P-vlaue of the logrank test (Fig.
6). Notably, among the three subtype groups, only patients from
subtype 1 had positive responses to the drug treatment with
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Table 6. Comparison of GBM subtypes identified by CGGA to gene

expression subtypes reported by Brennan et al.

Classical Mesenchymal Neural Proneural

No of Subtype1 56 11 15 3

No of Subtype2 2 3 6 62

No of Subtype3 12 69 25 7

Table 7. The number of samples with drug treatment in each

subtype

No. of samples Subtype 1 Subtype 2 Subtype 3 Total

Treated 23 19 45 87

Untreated 62 53 70 185
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significantly increased survival time, while for the other groups there
were no significant differences detected in survival time. These
results indicated that different subtypes may respond differently to
certain pharmacotherapies.

To gain further insights into the characteristics of each subtype, we
identified a set of differentially expressed genes (adjusted P-value
<0.01) associated with each subgroup using R package limma(Ritchie
et al., 2015). The identified genes were then divided into down-
regulated and up-regulated genes according to their fold changes and
were used for the subsequent functional enrichment analysis using R
package clusterProfiler(Yu et al., 2012). Figure 7 demonstrated the
over-representation analysis for both GO terms and KEGG pathways.
Interestingly, we found that although the enriched GO categories as
well as the KEGG pathways with respect to subtype 2 and subtype 3
were similar, their associated genes exhibited opposite expression pro-
files. This might explain why samples of subtype 2 and subtype 3 had
different responses with the same treatment.

4 Conclusions

To accurately identify cancer subtypes and facilitate precision cancer
diagnosis, it is imperative to take an integrative approach that com-
bines multi-omics data to uncover the consensus information hidden
in these data. In this article, we proposed a consensus guided graph
autoencoder to cluster cancer patients into biologically meaningful
groups. Our method effectively learns a latent representation for
each omic by graph autoencoders and then obtained a consensus
similarity matrix based on the new features. Moreover, an omic-

specific similarity matrix was also learned together with the consen-
sus matrix and was further used to conduct the training process of
graph autoencoders. As a result, the latent representation learning
and consensus matrix learning could be enhanced with each other in
an iterative manner. Extensive experimental results on both machine
learning datasets and cancer datasets confirmed the superiority of
our method over existing baselines. We also analyzed the clinical
implications of the obtained subgroups for GBM. Specifically, the
GO and KEGG enrichment analysis on the differentially expressed
genes associated with each subtype exhibited distinct expression pro-
files, which further confirmed the importance of cancer subtype
identification in cancer treatment. Taken together, we provided a
new avenue to identify cancer subtypes via consensus guided graph
autoencoders.

The superior performance of our method can be attributed to the
following two reasons. First, we utilized GAEs to obtain robust latent
representations for each omic, where both the feature information and
graph structure information of samples were incorporated into a uni-
fied learning framework. Second, we proposed an effective two-step
strategy to share the consistency among multiple omics and enhance
the representation learning by iteratively updating the input similarity
matrices for GAEs. Although effective, there also exist some limitations
in our model that need further investigation. For example, two parame-
ters are involved in our objective function and should be carefully tuned
during the experiments to reach optimal solutions. Besides, the incorp-
oration of multi-omics datasets does not necessarily lead to better clus-
tering results in certain occasions and thus it remains challenging to
uncover both the consistent and complementary information hidden in
each type of multi-omics data.
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