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Abstract

Motivation: Alternative splicing creates the considerable proteomic diversity and complexity on relatively limited
genome. Proteoforms translated from alternatively spliced isoforms of a gene actually execute the biological func-
tions of this gene, which reflect the functional knowledge of genes at a finer granular level. Recently, some computa-
tional approaches have been proposed to differentiate isoform functions using sequence and expression data.
However, their performance is far from being desirable, mainly due to the imbalance and lack of annotations at
isoform-level, and the difficulty of modeling gene–isoform relations.

Result: We propose a deep multi-instance learning-based framework (DMIL-IsoFun) to differentiate the functions of
isoforms. DMIL-IsoFun firstly introduces a multi-instance learning convolution neural network trained with isoform
sequences and gene-level annotations to extract the feature vectors and initialize the annotations of isoforms, and
then uses a class-imbalance Graph Convolution Network to refine the annotations of individual isoforms based on
the isoform co-expression network and extracted features. Extensive experimental results show that DMIL-IsoFun
improves the Smin and Fmax of state-of-the-art solutions by at least 29.6% and 40.8%. The effectiveness of DMIL-
IsoFun is further confirmed on a testbed of human multiple-isoform genes, and maize isoforms related with
photosynthesis.

Availability and implementation: The code and data are available at http://www.sdu-idea.cn/codes.php?name¼
DMIL-Isofun.

Contact: guomaozu@bucea.edu.cn or guoxian85@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative splicing is an essential biological process (BP) that cre-
ates considerable proteomics diversity and complexity from the rela-
tively limited genome (Graveley, 2001). It enables a gene spliced into
different isoforms by exon skipping, intron retention, alternative 50

donor site and so on. Over 90% multi-exon human genes undergo
alternative splicing, which gives rise to different proteoforms that
can vary with respect to protein–protein interactions, subcellular
localizations and stimulatory or inhibitory activities (Smith and
Kelleher, 2018; Yang et al., 2016). Many studies have found that al-
ternative splicing can greatly affect normal cellular functions and
cause many diseases. In addition, it is widely reported that the pro-
teoforms (or protein variants) translated from different isoforms of

the same gene have distinct or even opposite functions (Melamud
and Moult, 2009; Mittendorf et al., 2012). For example, CaMKII
can be alternatively spliced into four major forms of CaMKIIa,
CaMKIIb, CaMKIIc and CaMKIId (Westenbrink et al., 2015),
CaMKIId plays a key role in heart disease conditions (Gray et al.,
2017), while the other isoforms have no effect on heart disease.
Unfortunately, the changes in isoform sequences of the same gene
are often very small, but may have a distinct impact on protein struc-
ture and function. For example, two isoforms (SERCA2a and
SERCA2b) are differentially expressed during muscle differentiation
via a splice process at the 30 end of the primary SERCA2 transcript.
Replacement of SERCA2 with SERCA2a in a mouse model results in
mild hypertrophy and impaired contraction–relaxation in the heart
(Ver Heyen et al., 2001). In contrast, over-expressed SERCA2b
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shows an increased cardiac SERCA activity and contractility
(Greene et al., 2000). Therefore, the individual functional annota-
tions of isoforms are crucial to decipher the functional complexity of
genomes.

Gene Ontology (GO) is a major bioinformatics initiative that
unifies the representation of gene and gene products functional
attributes of multiple species (Dessimoz and �Skunca, 2017). GO has
been extensively used as a golden standard to encode the function of
gene products; it includes plenty of GO terms and each GO term
describes a distinct biological concept. GO includes three subontolo-
gies: Molecular Function (MF), BP and Cellular Component (CC).
Each subontology structurally organizes GO terms as a direct acyclic
graph (DAG). In the DAG, each node corresponds to a GO term and
the edge describes the relationship between terms. The prediction of
GO annotations of genes has been studied for many years and di-
verse computational methods have been developed (Zhao et al.,
2020; Zhou et al., 2019). Existing solutions mainly focus on the
gene-level and collectively assign all functions of gene products to
the same gene, thus typical gene function prediction methods cannot
be directly adopted to differentiate functions of isoforms.

Some pioneers model the isoform function prediction as a
multi-instance learning (MIL) problem (Zhou et al., 2012), where
each bag (gene) is composed of a set of instances (isoforms), and the
labels of a bag are induced from the label of its instances. This set-
ting aligns with the convention of GO annotations of genes, in which
a gene is positive for a GO term if at least one of its isoforms is posi-
tively annotated with that GO term; on the other hand, a gene is
negative for a GO term if all its isoforms are not annotated with that
GO term. Several MIL-based solutions have been developed to pre-
dict isoform functions using GO and RNA-seq data. Eksi et al.
(2013) applied an isoform-level maximum margin classifier
(miSVM) using GO annotations of genes, gene-isoform relation and
isoform expression data to predict isoform functions. However,
miSVM is seriously affected by the initial annotations of isoforms
from positive genes and the preset threshold. iMILP (Li et al.,
2014b) , a multiple instance-based label propagation method, pre-
dicts annotations of isoforms by constructing the isoform functional
association network and by uniformly initializing the annotations of
isoforms using GO annotations of genes. Then, it iteratively normal-
izes and propagates annotations in the association network to asso-
ciate isoforms with GO terms. WLRM (Luo et al., 2017)
differentiates the functions of isoforms by integrating sparse simplex
projection into a non-convex sparsity-induced regularizer within the
MIL framework, and efficiently solves the highly non-trivial
non-convex and non-smooth optimization problem in miSVM.

The aforementioned methods implicitly assume GO annotations
of genes are complete. Yu et al. (2020) introduced an approach
(IsoFun) that performs bi-random walks on a heterogeneous net-
work composed with genes, isoforms and GO terms to replenish the
missing GO annotations of genes and dispatch them to individual
isoforms. Wang et al. (2020) assumed that the annotations of genes
are aggregated from key isoforms and proposed DisoFun, which col-
laboratively factorizes the isoform expression data matrix and
gene-term association matrix into low-rank matrices to discover the
latent key isoforms and identify their functions. All the above meth-
ods can be regarded as shallow solutions, as they cannot mine non-
linear relationships between isoforms and GO terms. DeepIsoFun
(Shaw et al., 2019) uses auto-encoders to extract features from ex-
pression data, and combines MIL with domain adaption to provide
extra annotated data, and thus to more credibly transfer the annota-
tions to isoforms. DIFFUSE (Chen et al., 2019) uses a convolutional
neural network to predict the functions of isoforms from the genom-
ic sequence, and then applies a conditional random field (CRF) to re-
fine the prediction based on the isoform co-expression network.
However, these two deep methods do not take into account the im-
portant relationship between a gene (bag) and its isoforms (instan-
ces) during training, and thus suffer from inconsistent predictions
for genes and corresponding isoforms.

In this article, we propose a deep multi-instance learning-based
solution called DMIL-IsoFun to predict isoform functions by

leveraging RNA-seq datasets, isoform sequences and GO annota-
tions. The main idea of DMIL-IsoFun and its workflow are illus-
trated in Figure 1. DMIL-IsoFun introduces a Multi-Instance
Learning Convolution Neural Network (MILCNN) to transfer the
gene-level annotations to isoforms by max-pooling, and then pro-
poses a
class-imbalance Graph Convolution Network (GCN) (Kipf and
Welling, 2017) to refine the transferred annotations of individual
isoforms. Particularly, MILCNN takes the gene bag composed with
isoform sequences as input and uses the 1D convolution kernel to
scan isoforms of a gene bag, along with two maximum pooling
layers, one to get the isoform-level initial annotations, and the other
to aggregate the initial annotations to the hosting gene bag, and thus
learns the representational features of isoforms and initializes the
annotations of isoforms by gene-level annotations in a concordant
way. The class-imbalance GCN takes the focal loss (Lin et al.,
2020), instead of cross-entropy loss to handle imbalance annota-
tions, and fuses the representational features and the isoform co-
expression network induced from multiple RNA-Seq datasets to fur-
ther differentiate the annotations of individual isoforms. We con-
ducted experiments on Maize and Human datasets from public
repositories, and found that DMIL-IsoFun can more credibly differ-
entiate GO annotations of isoforms than other related and competi-
tive approaches (Chen et al., 2019; Eksi et al., 2013; Li et al., 2014b;
Shaw et al., 2019; Wang et al., 2020; Yu et al., 2020). Further
experiments confirm that DMIL-IsoFun can accurately identify the
functions of isoforms spliced from multiple-isoform genes (MIGs) of
human and maize isoforms related with photosynthesis.

2 Materials and methods

2.1 Overview and formulation
DMIL-IsoFun predicts isoform functions by deep MIL and GCN to
integrate isoform sequence and expression data, and gene-level
annotations. Figure 1 shows the basic workflow of our model. First,
the spliced isoform sequences of a gene form the feature vectors of a
gene bag. In the MILCNN stage, the 1D convolution kernel is used
to extract the features for each isoform instance in the bag, and then
two maximum pooling layers are used to aggregate the predicted
functions of isoforms to the hosting gene and to reversely back
propagate known annotations of this gene to its isoforms, respective-
ly. The aggregation and back propagation strategy is motivated by
the observation that the collected GO annotations of a gene are the
union of annotations of individual isoforms spliced from this gene
(Dessimoz and �Skunca, 2017). These predicted annotations are
taken as the initial annotations of isoforms for the follow-up fine-
tuning. In the GCN stage, GCN fuses the isoform sequences and
co-expression network to further refine the GO annotations of indi-
vidual isoforms.

We formulate the isoform function prediction as a MIL task. Let
n represent the number of isoforms, m denote the number of genes
and T denote the set of studied GO terms. A gene and its annota-
tions are given as pairs fX i;Yig, where X i ¼ fxi1; xi2; . . . ;xisg, s is
the maximum number of isoforms in a gene, which is set to 20 in
our experiments based on statistics of isoforms spliced from the
same gene, as reported in the Supplementary Section 5. A gene with
more than s isoforms keeps the first s isoforms, and a gene with
fewer than s isoforms is zero-padded to generate the gene bag feature
matrix. xij 2 R

d is the representation feature vector of the j-th iso-
form of the i-th gene. Yi � T stores the GO annotations of this gene,
Zij � Yi (Yi ¼ [fZijgsj¼1) stores the GO annotations of the j-th iso-
form spliced from the i-th gene, but is typically unknown.

2.2 Datasets
Amino acid sequences have been used extensively for predicting pro-
tein functions (Zhou et al., 2019), and have recently been used for
isoform function prediction as well (Chen et al., 2019). Unlike the
canonically studied mammal genomes (i.e. human and mouse),
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which have very scarce direct GO annotations of isoforms, the
Maize B73 v5 genome assembly data provides a number of isoform-
level GO annotations, and can serve as a natural testbed for isoform
function prediction. As such, we perform our experiments using pri-
marily the maize data. We downloaded the B73 v5 genome assembly
data generated by the NAM project from MaizeGDB (https://down
load.maizegdb.org/) . Coding DNA Sequence (CDS) is extracted for
each isoform through the RefSeq CDS annotation file. The combin-
ation of different CDSs of a gene produces a variety of isoforms. The
codon table is used to convert the nucleotide sequence into a protein
sequence. Isoform expression data of maize genome were down-
loaded from NCBI Sequence Read Archive, which includes 10 RNA-
seq datasets from 6 tissues. The details of these RNA-seq datasets
are given in the Supplementary Table S1. As in previous studies
(Chen et al., 2019; Li et al., 2014b; Wang et al., 2020), we also col-
lected human data to comprehensively evaluate our model.

We apply the True Path Rule (Dessimoz and �Skunca, 2017; Zhao
et al., 2020) and direct annotations in the corresponding GO file to
expand GO annotations of genes, namely if a GO term is annotated
to a gene, then its ancestor GO terms are annotated to the gene too.
We then select terms annotated with at least 50 genes for the experi-
ments. As a result, 387 GO terms are chosen. We considered and
created a binary label vector for each gene bag. If a gene bag is anno-
tated with a GO term from the selected terms, we assign 1 to the
term position in the binary vector and use it as a positive sample for
this GO term. Otherwise, we assign 0 and use it as a negative sam-
ple. Similarly, isoforms annotated with the selected terms are kept
for the experiments. In the end, we obtained 31 040 isoforms spliced
from 14 605 maize genes, among which 7587 are MIGs and 7018
are single isoform genes.

2.3 Extracting isoform features and initializing

annotations
Gene-isoform relation is the bridge that transfers gene-level annota-
tions to isoforms. Most isoform function prediction approaches use
this relation to initialize the annotations of isoforms, but neglect it
during the training process (Chen et al., 2019; Li et al., 2014b; Shaw
et al., 2019), and thus result in inconsistent predictions at the gene-
and isoform-levels. Some other approaches make use of such rela-
tions during the training process (Eksi et al., 2013; Wang et al.,

2020; Yu et al., 2020), but they mainly focus on the RNA-seq data,
or fuze multi-type data at a coarse level, which prohibit them
from obtaining a prominent performance. Here, we introduce a
MILCNN trained on gene-level annotations to extract isoform fea-
tures in a gene bag, and to initialize the individual annotations of
isoforms in a coherent manner.

Since different isoforms have different lengths of amino acids, we
need to numerically encode each amino acid sequence while retain-
ing the relationship between the isoform and the gene bag.
Specifically, we first translate the CDS of each isoform into a se-
quence of amino acids. Then each sequence is represented as a series
of overlapping trigrams. The feature vector xij for an isoform is a
combination of trigrams. We splice the feature vectors of all iso-
forms of a gene to generate the bag representation matrix Xi of iso-
form trigrams with one-hot encoding. Formally, given the gene bag
representation matrix Xi, the initial annotations are computed as
follows:

Zi ¼ mPoolðpPoolðiConvðwEmbedðXiÞÞÞÞ; (1)

where wEmbed is the word-embedding of isoform sequences and it
can retain the local features of isoform sequences to some extent.
Particularly, each trigram composed with three amino acids is
treated as a word, then the combination of trigrams is used as a sen-
tence to train wEmbed. We adopt the default word-embedding
model already integrated with PyTorch to obtain the embedding for
each isoform sequence. iConv, pPool and mPool are operations of
MILCNN, and are described below.

Dense embedding (Bengio et al., 2003) can address the sparsity
of one-hot encoding, which has a limited generalization capability.
To discover latent features of isoform sequences, we choose four dif-
ferent sizes (8, 16, 24 and 32) of convolution kernels, and set differ-
ent sliding steps. The convolution portion takes the gene bag Xi as
input and extracts isoform sequence features as follows:

½xð1Þi1 ; x
ð1Þ
i2 ; . . . ; x

ð1Þ
is � ¼ iConv� ½xð0Þi1 ; x

ð0Þ
i2 ; . . . ; x

ð0Þ
is �; (2)

where iConv is the 1D convolution, and x
ð0Þ
ij is the word-embedding

of the j-th isoform of the i-th gene. We observe that the 1D kernels
convolve each isoform by retaining the relationship between the
gene and its isoforms, and the convolutional sliding window does
not contain two isoforms at the same time when sliding, and thus, it

Fig. 1. A schema of DMIL-Isofun. The upper subnetwork is the MILCNN. It takes all isoforms of a gene as input to extract isoform feature vectors via different 1D convolution

kernels and the instance pyramid pooling. It then uses a maximum pooling layer that takes the top-ranked isoform in the gene bag as the responsible actor for a GO term anno-

tated to the hosting gene, and thus initializes the annotations of individual isoforms by gene–isoform relation and GO annotations of genes in a coherent manner. The bottom

subnet is the GCN. It takes the composite isoform functional association network (A 2 R
n�n) derived from multiple RNA-seq datasets and isoform sequence data, and the iso-

form representation vectors H 2 R
n�d as the input to further differentiate the annotations of individual isoforms
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ensures the features are independently extracted among the
isoforms.

The convoluted isoform vectors vary in length, thus making it
difficult to set the connections between the pooling layer and the
dense layer. To handle this, an improved pyramid pooling (He et al.,
2015) (called Instances pyramid pooling) is used to encode isoform
sequences into fixed-length numeric feature vectors via different
ratios of pooling bins. Specifically, we set the window size of the
pyramid pooling to the length of amino acids, and perform pyramid
pooling for each individual isoform as follows:

½xi1; . . . ; xis� ¼ pPoolðxð1Þi1 ; . . . ;x
ð1Þ
is Þ ; (3)

where xis 2 R
d is the representational feature vector of an isoform.

Zhou et al. (2020) found that if the extracted feature dimension
exceeds 128, the protein sequence information can be well pre-
served, and further increasing the dimension has no clear positive ef-
fect on the prediction results. Given that, we set d ¼ 256. After the
pyramid pooling, we use the output of the penultimate layer as the
representational feature vectors H 2 R

n�d of n isoforms.
Finally, two maximum pooling layers are sequentially used to get

the isoform initial annotations (zij 2 R
jT j) and aggregate these anno-

tations to their hosting gene as follows:

½zi1; . . . ; zis� ¼ mPoolðxi1; . . . ;xisÞ; (4)

Ŷ i ¼ mPoolðzi1; . . . ; zisÞ: (5)

The first maximum pooling maps the d-dimensional isoform fea-
ture vectors with respect to jT j GO terms, and the second one aims
to aggregate individual annotations of s isoforms to the hosting
gene. Note, the zero-padded isoform feature vectors are filtered out
in this pooling process. To ensure the consistent annotations be-
tween gene and isoform-levels, we should reversely distribute known
annotations of a gene to its isoforms. To do this, we define the loss
function of MILCNN as the cross-entropy between the isoform-level
aggregated annotations and the corresponding gene-level known
annotations:

lossMIL ¼
Xm

i¼1

Yi logðrðŶ iÞÞ þ ð1� YiÞ logð1� rðŶiÞÞ: (6)

Here Yi is the one-hot label vector for the i-th gene, Yiq ¼ 1 indi-
cate q is annotated to the i-th gene, Yiq ¼ 0 otherwise. rð�Þ is the
Sigmoid activation function. Minimizing the above loss can induce
consistent annotations of a gene and its isoforms. In addition, it uni-
fies the learning of isoform representational features and initial
annotations, the last two are given in input to the GCN subnet for
further differentiating the annotations of individual isoforms.

2.4 Predicting isoform functions using a GCN
The functions of an isoform depend on its sequence and interaction
partners (Yang et al., 2016; Yu et al., 2021). Like genes, isoforms
with similar functions are usually co-expressed (Li et al., 2014a;
Park et al., 2013). The advent of RNA-seq techniques provides an
unprecedented amount of isoform-level expression data, and enables
the detection of alternative splicing events at a deeper level. The ini-
tial annotations Z are still learned at a coarse level using the isoform
sequence and gene-isoform relations. In this work, a GCN (Kipf and
Welling, 2017) is adopted to further refine annotations of individual
isoforms based on the functional associations between isoforms.
Diverse isoform expression measurements have been developed
(Teng et al., 2016), such as Reads Per Kilobase of exon model per
Million mapped reads, Fragments Per Kilobase of exon model per
Million mapped fragments, Transcripts Per Kilobase of exon model
per Million mapped reads (TPM), and so on. Here, we use TPM to
quantify the expression value of isoforms from collected RNA-seq
datasets. TPM can reduce the impact of sequencing depth and gene
length by first standardizing the gene length, and then standardizing

the sequencing depth. Based on the quantified expression profiles of
isoforms across multiple RNA-seq datasets, we construct a co-
expression network Wc using weighted correlation network analysis
(WGCNA) (Langfelder and Horvath, 2008). Particularly, the edge
weights between two isoforms are determined by the Pearson correl-
ation coefficient with the soft threshold method of WGCNA. For
each isoform, we retain the k (k ¼ 10 for our experiments) neighbors
with the highest co-expression values to avoid a too dense co-
expression network and to omit trivial co-expressions.

Due to the sparseness of RNA-seq data, the isoform co-
expression networks are still not very effective for function predic-
tion. Chen et al. (2019) reported that the integration of RNA-seq
and sequence data can boost the performance of isoform function
prediction. Motivated by this study, we build a composite isoform
functional association network by integrating isoform co-expression
networks Wc and isoform sequence similarity networks Ws (using
BLAST with the cutoff E-value of 0.001) as follows:

Aij ¼ maxðWc
ij;W

s
ijÞ: (7)

Here Aij encodes the functional association strength between the
i-th and j-th isoforms. Since the two networks are relatively sparse,
the summation in the fusion process causes similar isoforms to have
a disproportionately high association in the composite network. To
avoid this, we adopt the maximum function to integrate the two net-
works into a composite one A 2 R

n�n.
The composite network A and the isoform representation feature

vectors H naturally give an attributed isoform functional association
network. To mine the underlying non-linear and interdependent
relationships among isoforms and GO terms, we leverage a GCN
and the initialized GO annotations of isoforms on this attributed
network to further differentiate isoform functions. GCN (Kipf and
Welling, 2017) has been widely used in network representation
learning and semi-supervised learning. GCN updates node represen-
tations by propagating information among connected nodes. In our
case, the GCN takes H and A 2 R

n�n as the input, and updates the
representation of n isoforms layer-by-layer. The updated representa-
tion of n isoforms in the l þ 1 layer is defined as follows:

Hlþ1 ¼ /ðÂHlWlÞ; (8)

where Â is the normalized version of A, and /ð�Þ denotes a non-
linear activation function (LeakyRelu is used in this work), Wl 2
R

dl�dlþ1 is a transformation matrix to be learned, d1 ¼ d and
H1 ¼ H.

To consider higher-order relations between isoforms, the convo-
lution on the attributed network Â can depend on the nodes that are
S steps away from the target node. The output signals of the GCN
are defined by an S-order approximation of localized spectral filters
on the network. Then, the convolution operation can be further for-
mulated as:

Hlþ1 ¼ /ð
XS

s¼1
Â

s
HlWlÞ: (9)

We can learn a deep representation of isoforms by stacking the
GCN layers and the non-linear mapping from isoform representa-
tions to GO terms. We take the final output as the predicted associ-
ation likelihood between isoforms and GO terms. Unlike the
convolution part, we train a GCN classifier for each GO term:

Ẑ ¼ GCNðA;H;ZÞ: (10)

Class imbalance is one of the main obstacles that impede deep
neural networks from achieving state-of-the-art accuracy.
Unfortunately, the GO annotations of genes and their hosted iso-
forms are rather imbalanced and sparse. Given this, we use the focal
loss (Lin et al., 2020) to deal with imbalanced annotations. Different
from the traditional cross-entropy loss, the focal loss is a dynamical-
ly scaled cross-entropy loss, which can automatically down-weight
‘easy’ isoforms that can be correctly predicted without much effort,
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and rapidly leads the model to focus on ‘hard’ ones. The focal loss
on a particular isoform is defined as:

lossgcnðX; tÞ ¼
Xn

k¼1

að1� zktÞc log ẑkt þ ð1� aÞzc
kt logð1� ẑktÞ; (11)

where zkt denotes the initial association probability between the k-th
isoform and GO term t, and ẑkt is the predicted likelihood for this
association. Focal loss assigns a weight a to the negative isoforms,
thus focusing more on positive isoforms. When a positive isoform is
judged to be negative, a large weight is imposed on the loss accord-
ing to the a. c adjusts the rate of sample weight reduction. For ex-
ample, for a positive isoform with respect to t, the prediction value
of 0.95 is definitely an easy isoform, so the power (1–0.95) of c will
be small, and the loss function value will become smaller at this
time. On the other hand, an isoform with a predicted probability of
0.3 has a relatively larger loss. For negative isoforms with respect to
t, the loss for an isoform with prediction value as 0.1 should be
much smaller than for an isoform with the prediction value as 0.7.
When the predicted probability is 0.5, the loss is only reduced by
0.25 times. In this way, focal loss pays more attention to this hard
isoform, while reduces the impact of easy isoforms. In addition, the
balance factor a is added to balance the uneven ratio of positive and
negative isoforms.

In our experiments, the value of a is set to 0.25 and the value of c

is set to 2. By minimizing the above loss and back propagating the
loss to the network to learn Wl, we can differentiate the annotations
of individual isoforms at the isoform-level. The pseudo-code of
DMIL-IsoFun is summarized in Algorithm 1.

3 Results and validation

In this section, we first compare the performance of DMIL-IsoFun
against six state-of-the-art methods on the prediction of the func-
tions of maize isoforms. We then analyze the respective contribu-
tions of each subnet of DMIL-IsoFun, of the sequence similarity and
the co-expressed network and of differentiating isoforms associated
with photosynthesis. We further test DMIL-IsoFun on the human
genome.

3.1 Performance comparison with the existing methods
The 2020 B73 v5 genome assembly project provides annotations,
which enable direct performance evaluation and comparison at the
isoform-level, instead of the typical approximate gene-level evalu-
ation done by aggregating isoform-level predictions. We randomly
partition the isoforms into a training set (80%) and a validation set
(20%) for 10 independent rounds, and ensure that the isoforms of
the same gene are partitioned into the same set in each round. We
compare DMIL-IsoFun against miSVM (Eksi et al., 2013), iMILP
(Li et al., 2014b), DeepIsoFun (Shaw et al., 2019), DIFFUSE (Chen
et al., 2019), IsoFun (Yu et al., 2020) and Disofun (Wang et al.,
2020). All the input parameters are set as suggested by the authors,
or optimized in the suggested ranges. The values of the parameters
for DMIL-IsoFun are given in the Supplementary Table S4.

For a comprehensive evaluation, we use four widely used evalu-
ation metrics: AUROC, AUPRC, Fmax and Smin (Jiang et al., 2016).
AUPRC and AUROC are widely adopted for binary classification; we
compute them for each GO term and report the average of all terms.
AUROC is the area under the receiver operator characteristics curve.
AUPRC is the area under the precision-recall curve that is more sensi-
tive to class-imbalance than AUROC. Fmax is the overall maximum
harmonic mean of precision and recall across all possible thresholds
on the predicted isoform-term association matrix Z 2 R

n�jT j (Jiang
et al., 2016). Smin uses the information theoretic analogs of precision
and recall based on the GO hierarchy to measure the minimum seman-
tic distance between the predictions and ground truths across all pos-
sible thresholds (Jiang et al., 2016; Zhou et al., 2019). The first two
evaluation metrics are term-centric and the last two are gene(isoform)-
centric. These metrics quantify the performance of isoform function
prediction from different perspectives; as such, it is difficult for an ap-
proach to consistently outperform the other ones across all the metrics.
It is worth mentioning that unlike other evaluation metrics, the smaller
the value of Smin, the better the performance is.

From the average results in Table 1, we can see that DMIL-
IsoFun almost always achieves a performance superior to the other
compared methods across the four evaluation metrics. More specif-
ically, DMIL-IsoFun improves the AUROC, Smin and Fmax of the
second-best method (DIFFUSE) by at least 63.3%, 29.6% and
40.8%, which proves the effectiveness of DMIL-IsoFun on leverag-
ing isoform sequences, RNA-seq datasets and gene–isoform relations
to differentiate the functions of individual isoforms. Like DMIL-
IsoFun and DIFFUSE, DeepIsofun also builds on deep neural net-
works, but it is outperformed by the former two. This is because
DeepIsoFun solely uses isoform expression data and equally initial-
izes all annotations of a gene to its isoforms, without accounting for
the important gene-isoform relation. For similar reasons, iMILP also
loses to DIFFUSE and DMIL-IsoFun. miSVM takes into account the
gene–isoform relations, but it is still outperformed by the other
methods due to the sole utilization of isoform expression data.
DIFFUSE also leverages the sequence and co-expression information,
but it does not model well the gene–isoform relation. As a result, it
loses to DMIL-IsoFun by a large margin. Another possible cause of
this is that DMIL-IsoFun combines more effectively sequence and
co-expression network data by using a GCN than DIFFUSE. The
performance margin between DMIL-IsoFun and DIFFUSE suggests
that our choice of GCN for refining isoform-level annotations is
more effective than the CRF approach adopted by DIFFUSE. Both
Disofun and IsoFun integrate the gene-level interactions and the co-
expression network; they neglect the important isoform sequence
data, which encode important functional sites and domains that help
differentiate the functions of individual isoforms. As such, they often
lose to DIFFUSE and DMIL-IsoFun. We observe that the AUPRC
value of MF and BP is significantly lower than that of CC. That is
because among 387 GO terms and 31 040 isoforms retained for ex-
periment, 32 CC terms have an average of 1054 annotations for
each term, and 128 MF terms have an average of 1023 annotations
for each term and 227 BP terms have an average of 919 annotations

Algorithm 1 DMIL-IsoFun: Deep Multi-Instance Learning for

Isoform Function prediction

Input: Isoform sequences X, isoform co-expression network Wc, gene

annotations Y, Max epochs Mep, a ¼ 0:25, c¼2

Output: Network parameters fm for MILCNN and fg for GCN;

1: for e ¼ 1!Mep do

2: for each gene Xi do

3: ½xi; . . . ;xis� ¼ pPoolðiConvðwEmbedðXiÞÞÞ;
4: Hi ¼ ½xi; . . . ; xis�; B Representation of isoforms

5: Zi ¼ mPoolðHiÞ; BInitial annotations of isoforms

6: Ŷ i ¼ mPoolðZiÞ; B Gene annotations from isoforms

7: lossMIL ¼ CELoss(Y, Ŷ); B Compute the cross-entropy loss

8: end for

9: Update fm based on lossMIL by gradient descent.

10: A ¼ maxðWc
ij;W

s
ijÞ; B Construct the composite network

11: for each each term t do

12: Ẑ ¼ GCN(A, H, Z); B Predict isoform annotations

13: lossgcn¼ FocalLoss(Z,Ẑ); B Compute focal loss

14: end for

15: Update fg based on lossgcn by gradient descent.

16: end for
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for each term. Each CC term has more annotated isoforms than
others, 14.7% larger than BP and 3% higher than MF. The number
of CC terms used for experiments is also the smallest. So the predic-
tion of CC terms is relatively easier than BP and MF. We further
used a signed rank test to check the difference between DMIL-
IsoFun and each compared method; all the P-values are smaller than
0.01. In summary, these results and comparisons demonstrate the ef-
fectiveness of leveraging deep MIL and GCNs for isoform function
prediction.

Besides the isoform-level evaluation, we report the gene-level
evaluation results of DMIL-IsoFun and other compared methods in
the Supplementary Table S3. Moreover, we applied DMIL-IsoFun
and the other methods on the Human dataset and report the results
(approximate evaluation at the gene-level) in the Supplementary
Table S4. We observe that DMIL-IsoFun again achieves significantly
better results than the competitive methods on different genomes
and evaluation measures.

3.2 Further analysis
3.2.1 Analyzing the effects of model components

To investigate which component of DMIL-IsoFun contributes to the
improved performance of DMIL-IsoFun, we perform an ablation
study by removing the components from our model and measuring
how the performance of the model is affected. We introduced two
variants: (i) DMIL-IsoFun-GCN only uses one-hot encoding to en-
code the isoform sequence and the GCN to fuze sequence and ex-
pression data, along with the known isoform-level annotations; (ii)
DMIL-IsoFun-CNN directly uses the initialized annotations of iso-
forms from MILCNN, without using the RNA-seq data and GCN.
Following the same experimental configuration, we list the predic-
tion results of these variants in Table 2. We observe that the results
of DMIL-IsoFun-CNN are the lowest. This proves the necessity of
utilizing GCN and RAN-seq datasets to further differentiate the
annotations of individual isoforms initialized by MILCNN subnet.
DMIL-IsoFun-GCN ranks second, which again confirms the power
of the GCN on merging sequence and expression data to explore the

non-linear relationship between isoforms and GO terms. In practice,
the AUROC of DMIL-IsoFun-GCN reduces by at least 12.2%, and
the AUPRC drops by at least 25.1% when not using the sequence
data, which is consistent with previous study that sequence data con-
tain important functional sites and domains that help differentiate
the function of individual isoforms (Chen et al., 2019). From the ab-
lation study, we can conclude that both the MILCNN and the GCN
subnets contribute to the improved performance of isoform function
prediction.

3.2.2 Validation of predicted isoform functions

We further take ‘DNA binding’ (GO: 0003677), ‘zinc ion binding’
(GO: 0008270) and ‘phosphatidylinositol phosphate kinase activity’
(GO: 0016307) as the testbed, which contains annotated isoforms
spliced from the same gene (Breuza et al., 2016). Table 3 lists the
known annotations of 10 isoforms of 4 genes. DMIL-IsoFun correct-
ly differentiates 9 out of 10, which results in higher accuracy than
the other methods. We observe that the two deep neural network-
based models (DeepIsoFun and DIFFUSE) are inclined to assign the
same GO term to all isoforms of a multi-isoform gene, since they ini-
tialize all annotations of a gene without differentiation, and do not
capture well the gene–isoform relation. In contrast, our DMIL-
IsoFun takes into account this important relation and differentiates
the initial annotations by MILCNN. We also see that the other four
methods (Disofun, IsoFun, iMILP and miSVM) are biased toward
negative predictions. This is because the positive annotations of iso-
forms are much fewer than the negative ones, and these methods do
not take into account the intrinsic class imbalance issue of isoform
function prediction. For a similar reason, DIFFUSE and DeepIsoFun
also make more negative predictions than DMIL-IsoFun, which in-
stead accounts for the class imbalance issue. We also observe that
DMIL-IsoFun has a higher recall than the other methods, owing to
the consideration of class-imbalance. Overall, these case studies con-
firm that DMIL-IsoFun can differentiate the GO annotations of indi-
vidual isoforms spliced from the same gene.

In B73 v5 genome assembly data, the protein produced by
‘Zm00001e042100-T001’ is a component of psaA/psaB protein
engaged in the Photosystem (Jiao et al., 2005). This isoform is
unique to plants (i.e. maize and Arabidopsis) and participates in the
photosynthesis. GO: 0015979 corresponds to ‘photosynthesis’.
Among the nine terms positively annotated to ‘Zm00001e042100-
T001’, our DMIL-IsoFun correctly identifies six (see Table 4), which
is more than any of the compared methods. This study confirms that
DMIL-IsoFun can more effectively integrate multi-type data to dif-
ferentiate GO annotations of isoforms at a finer granular level.

4 Discussion

The differentiation of functions of alternatively spliced isoforms
helps explaining the proteome complexity and various complex dis-
eases at a higher resolution than the canonical gene-level analysis. In
this article, we introduced DMIL-IsoFun, a method that merges gen-
omics and transcriptomics data to identify the functions of individ-
ual isoforms spliced from the same gene. DMIL-IsoFun builds on the

Table 1. Experimental results of predicting GO annotations of individual isoforms of maize

Methods CC MF BP

AUROC AUPRC Smin # Fmax AUROC AUPRC Smin # Fmax AUROC AUPRC Smin # Fmax

miSVM 0.470 0.492 2.218 0.417 0.505 0.074 1.259 0.063 0.528 0.033 1.007 0.107

iMILP 0.628 0.494 2.265 0.554 0.530 0.119 3.351 0.089 0.579 0.044 3.351 0.106

IsoFun 0.557 0.467 2.030 0.674 0.561 0.149 3.445 0.250 0.529 0.099 3.445 0.347

Disofun 0.595 0.510 2.112 0.381 0.526 0.123 3.451 0.177 0.579 0.055 4.615 0.180

DeepIsoFun 0.604 0.554 0.869 0.408 0.576 0.202 2.275 0.303 0.552 0.178 2.501 0.420

DIFFUSE 0.516 0.553 0.801 0.512 0.502 0.179 2.307 0.289 0.505 0.177 2.561 0.396

DMIL-IsoFun 0.854 0.789 0.564 0.721 0.846 0.265 1.259 0.705 0.825 0.093 1.576 0.724

Note: The data in boldface are the statistically best result per column by pairwise t-test.

Table 2. Prediction results of DMIL-IsoFun and its variants

AUC AUPRC Smin # Fmax

CC DMIL-IsoFun 0.854 0.789 0.564 0.721

DMIL-IsoFun-GCN 0.693 0.693 0.898 0.540

DMIL-IsoFun-CNN 0.508 0.508 0.953 0.307

MF DMIL-IsoFun 0.846 0.265 1.259 0.705

DMIL-IsoFun-GCN 0.711 0.193 1.817 0.361

DMIL-IsoFun-CNN 0.499 0.105 2.562 0.086

BP DMIL-IsoFun 0.825 0.093 1.576 0.635

DMIL-IsoFun-GCN 0.684 0.071 2.833 0.436

DMIL-IsoFun-CNN 0.486 0.041 3.692 0.109

Note: DMIL-IsoFun-GCN only uses the GCN, i.e. the features of isoform

nodes use one-hot encoding; DMIL-IsoFun-CNN directly uses the MILCNN,

i.e. this variant does not use co-expression data.
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principle that the functions of a gene are aggregated from its isoforms,
and isoforms with similar sequences and co-expression share similar
functions. DMIL-IsoFun firstly introduces a MIL CNN to extract the
feature vectors of isoform sequences and to initialize the annotations of
individual isoforms using gene–isoform relations; then, it alters the
GCN to account for the class-imbalance data to further differentiate
annotations of individual isoforms. DMIL-IsoFun significantly outper-
forms state-of-the-art methods for predictions at both the gene and iso-
form-levels. In the future, we will study how to reliably combine
multiple gene-level, transcript-level and phenotype heterogeneous data
sources to further improve the performance of DMIL-IsoFun, and to ex-
plore isoform–disease associations.
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