
Sequence analysis

ClusTCR: a python interface for rapid clustering of large

sets of CDR3 sequences with unknown antigen

specificity

Sebastiaan Valkiers 1,2, Max Van Houcke1, Kris Laukens 1,2 and

Pieter Meysman 1,2,*

1Adrem Data Lab, Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium and 2Antwerp Unit for Data

Analysis and Computation in Immunology and Sequencing (AUDACIS), Interdepartmental Consortium, University of Antwerp, 2020

Antwerp, Belgium

*To whom correspondence should be addressed.

Associate Editor: Dr. Valentina Boeva

Received on February 22, 2021; revised on May 12, 2021; editorial decision on June 11, 2021; accepted on June 15, 2021

Abstract

Motivation: The T-cell receptor (TCR) determines the specificity of a T-cell towards an epitope. As of yet, the rules for
antigen recognition remain largely undetermined. Current methods for grouping TCRs according to their epitope
specificity remain limited in performance and scalability. Multiple methodologies have been developed, but all of
them fail to efficiently cluster large datasets exceeding 1 million sequences. To account for this limitation, we devel-
oped ClusTCR, a rapid TCR clustering alternative that efficiently scales up to millions of CDR3 amino acid sequences,
without knowledge about their antigen specificity.

Results: Benchmarking comparisons revealed similar accuracy of ClusTCR as compared to other TCR clustering
methods, as measured by cluster retention, purity and consistency. ClusTCR offers a drastic improvement in cluster-
ing speed, which allows the clustering of millions of TCR sequences in just a few minutes through ultraefficient simi-
larity searching and sequence hashing.

Availability and implementation: ClusTCR was written in Python 3. It is available as an anaconda package (https://
anaconda.org/svalkiers/clustcr) and on github (https://github.com/svalkiers/clusTCR).

Contact: pieter.meysman@uantwerpen.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

T-cells constitute a key component of the adaptive immune system
and are one of the primary determinants of distinguishing self from
nonself. The T-cell receptor (TCR) is responsible for the recognition
of peptide antigens presented by the major histocompatibility com-
plex (MHC). The TCR complex is a heterodimer expressed on the
T-cell surface, consisting of two distinct chains (a and b) that both
contribute to the recognition of the cognate antigen. High-
throughput targeted sequencing technology enables sequencing of
the unique and diverse TCR a and/or b nucleotide sequences in a
sample, allowing quantitative mapping of the immune receptor rep-
ertoire. One of the major goals of quantitative immunology is the
identification of groups of T-cells with common specificity towards
an antigen. Exactly determining a TCR’s epitope specificity requires
knowledge about the epitope and demands for time-consuming
in vitro experiments such as MHC multimer assays (Davis et al.,

2011). An alternative way of characterizing specificity groups is un-
supervised clustering of TCR sequences (Meysman et al., 2019).
This does not require prior knowledge of specific epitopes and
allows interrogation of complete repertoire datasets by searching for
sequentially similar TCRs. In spite of being a powerful approach to
drastically reduce the repertoire complexity, sequence-based cluster-
ing has various complications. The most pronounced bottleneck of
clustering sequence data is the scalability of pairwise distance calcu-
lations. Calculating pairwise distances scales quadratically with the
number of input sequences (O(n2)). Current methods for TCR clus-
tering such as TCRDist (Dash et al., 2017), iSMART (Zhang et al.,
2020) and GLIPH2 (Huang et al., 2020), rely on demanding pair-
wise distance calculations, from which clusters can be determined.
Other methods like TCRNET and ALICE can also be used to parti-
tion repertoires into epitopes-specific groups. These methods apply
an enrichment strategy in which they identify clones that show stron-
ger enrichment as compared to their theoretical generation

VC The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4865

Bioinformatics, 37(24), 2021, 4865–4867

doi: 10.1093/bioinformatics/btab446

Advance Access Publication Date: 16 June 2021

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/24/4865/6300511 by guest on 20 April 2024

https://orcid.org/0000-0002-4940-1310
https://orcid.org/0000-0002-8217-2564
https://orcid.org/0000-0001-5903-633X
https://anaconda.org/svalkiers/clustcr
https://anaconda.org/svalkiers/clustcr
https://github.com/svalkiers/clusTCR
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/


probabilities. Although these algorithms have been successfully used
to cluster individual repertoires, they are not designed to partition
large groups of repertoires spanning multiple disease states. With
ClusTCR, we created an unsupervised clustering procedure that can
efficiently classify large sets of CDR3 sequences into specificity
groups by drastically limiting the number of required pairwise
comparisons.

2 Approach

The complete workflow of ClusTCR is illustrated in Figure 1. In
brief, the clustering approach works in two steps, one to allow fast
and efficient clustering and a second to perform accurate clustering.

In the first step, ClusTCR queries the search space in order to
roughly divide the dataset into what we defined as ‘superclusters’.
To determine these superclusters, ClusTCR utilizes the Faiss
Clustering Library (Johnson et al., 2019), which is specifically devel-
oped for rapid clustering of dense vectors through efficient indexing.
For this, input sequences are mapped to an embedding that reflects
their physicochemical properties. No specific combination of physi-
cochemical features was found to significantly outperform others
(Supplementary Fig. S1). Next, ClusTCR applies a very efficient K-
means implementation to compute n centroids, generating an index.
Next, a similarity search is performed on the index to assign each se-
quence to its nearest centroid. The default cluster size is 5000
(Supplementary Fig. S2A).

In the second step, ClusTCR reclusters each individual super-
cluster to accurately identify specificity groups within. Adaptive im-
mune receptor repertoires can be represented as graphs in which
nodes represent the sequences and the edges represented similarity
between sequences (Madi et al., 2017). To create this graph,
ClusTCR uses efficient sequence hashing to determine each pair of
sequences with a maximum edit distance of 1. Here, the Hamming
distance (HD) is used as the default metric to express similarity be-
tween TCRs, implying equal length of sequences within a single clus-
ter. From our observations, this restriction does not impact the
clustering quality (Supplementary Fig. S4A–D). Moreover, the use of
HD drastically improves runtime over Levenshtein distance
(Supplementary Fig. S4E). Next, ClusTCR uses the corresponding
similarity-grouped graph to identify potential epitope-specific clus-
ters. Evaluating the graph structure allows the interrogation of
sequence-based relationship in the repertoire because similar sequen-
ces will share edges within the graph. To this end, ClusTCR applies
the Markov clustering algorithm (MCL) for the identification of
dense network substructures (Enright et al., 2002), representing

dense groups of CDR3 sequences with similar sequential characteris-

tics. MCL simulates stochastic flow inside the graph, thereby identi-

fying dense network substructures where flow is high. These

network substructures represent the clusters in ClusTCR’s output.
This allows efficient and accurate clustering of relatively small sets

of CDR3 sequences (up to 50 000). Combined with the first step, the

clustering can be made efficient for any TCR dataset
(Supplementary Fig. S3).

3 Performance

The efficient K-means implementation of the Faiss library allows for

rapid subdivision of large repertoire files into rough clusters of

CDR3 sequences with some degree of similarity. The second step

involves the construction of a similarity graph and subsequent clus-
tering with MCL. Combining both steps allows for substantial clus-

tering flexibilty, while still being significantly faster than a simple

greedy network clustering approach (Supplementary Fig. S5). To
speed up the second part of the algorithm, ClusTCR applies multi-

processing, parallelizing subclustering with MCL. By balancing the

MCL hyperparameters, additional improvements in speed could be

realized without sacrificing clustering accuracy (Supplementary Fig.
S2B). In conjunction, this results in a fast clustering methodology

that outcompetes other TCR clustering approaches, while retaining

comparable clustering accuracy (Supplementary Figs S6 and S7). To

benchmark our algorithm, we compared it to three existing cluster-
ing methods for TCRs or CDR3 sequences: GLIPH2 (Huang et al.,
2020), iSMART (Zhang et al., 2020) and TCRDist (Glanville et al.,
2017; Mayer-Blackwell et al., 2020). Clustering accuracy was meas-
ured by means of cluster retention, purity and consistency (see

Supplementary Materials). Benchmarking was performed on a 64-

bit machine with 15.3 GB RAM, and an IntelV
R

CoreTMi7-10875H

CPU @ 2.30 GHz, running Ubuntu 20.04.2.LTS. We illustrate that
ClusTCR offers a 50� performance increase (at 1 million sequences)

compared to GLIPH2, which was found to be the second-fastest

clustering algorithm (Supplementary Fig. S8). At the same time,

ClusTCR shows comparable clustering accuracy compared to other
TCR clustering methods as determined by the percentage of clusters

with purity > 90%, both for a and b chain clustering

(Supplementary Figs S6 and S7, respectively).
There does exist a trade-off between all TCR clustering methods

between the number of clusters and the size or quality of the clusters.

As illustrated, ClusTCR achieves 20–25% retention. This is lower

compared to GLIPH2, but equal to iSMART (Supplementary Fig.

S5C). However, GLIPH2’s increased cluster retention comes at the
cost of clustering consistency (Supplementary Fig. S5D). ClusTCR’s

consistency is higher than GLIPH2, but lower than iSMART.

Collectively, these results indicate that there is no single approach

that clearly outperforms all others with regards to the final cluster
quality.

4 Downstream clustering analysis

Along with clustering functionality, ClusTCR provides tools for

downstream analysis of the clustering results. These include calcula-

tion of cluster features such as cluster entropy, physicochemical
properties and generation probability. Cluster features are particu-

larly useful for downstream machine learning applications for TCR

repertoire data. To this end, ClusTCR may serve as an efficient tool

for generating lower-dimensional representations of highly complex
immunosequencing data, while retaining the bulk of the information

contained in the original dataset.

Fig. 1. Workflow of ClusTCR. (a) Sequences are first roughly categorized into super-

clusters through efficient K-means clustering. (b) Within each supercluster, a hash

function is applied to sort sequences. Sequence pairs with a maximum edit distance

of 1 are selected from each hash. These sequence pairs are used to construct a graph.

(c) MCL is used to find dense network substructures.

4866 S.Valkiers et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/24/4865/6300511 by guest on 20 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab446#supplementary-data


Funding

This work was supported by the Research Foundation Flanders (FWO)

[Project No. 1S40321N] and the Flemish Government under the

‘Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen’

programme.

Conflict of Interest: none declared.

References

Dash,P. et al. (2017) Quantifiable predictive features define epitope-specific t

cell receptor repertoires. Nature, 547, 89–93.

Davis,M.M. et al. (2011) Interrogating the repertoire: broadening the scope of

peptide-MHC multimer analysis. Nat Rev Immunol, 11, 551–558.

Enright,A.J. et al. (2002) An efficient algorithm for large-scale detection of

protein families. Nucleic Acids Res, 30, 1575–1584.

Glanville,J. et al. (2017) Identifying specificity groups in the t cell receptor rep-

ertoire. Nature, 547, 94–98.

Huang,H. et al. (2020) Analyzing the mycobacterium tuberculosis immune re-

sponse by T-cell receptor clustering with GLIPH2 and genome-wide antigen

screening. Nat Biotechnol, 38, 1194–1199.

Johnson,J. et al. (2019). Billion-scale similarity search with gpus. IEEE

Transactions on Big Data, 1–1. doi: 10.1109/TBDATA.2019.2921572.

Madi,A. et al. (2017) T cell receptor repertoires of mice and humans are clus-

tered in similarity networks around conserved public CDR3 sequences.

Elife, 6, e22057.

Mayer-Blackwell,K. et al. (2020). TCR meta-clonotypes for biomarker discov-

ery with tcrdist3: quantification of public, HLA-restricted TCR biomarkers

of SARS-CoV-2 infection. doi: 10.1101/2020.12.24.424260.

Meysman,P. et al. (2019) On the viability of unsupervised T-cell receptor

sequence clustering for epitope preference. Bioinformatics, 35,

1461–1468.

Zhang,H. et al. (2020) Investigation of antigen-specific T-cell receptor clusters

in human cancers. Clin Cancer Res, 26, 1359–1371.

ClusTCR 4867

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/24/4865/6300511 by guest on 20 April 2024


