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Abstract

Motivation: High-resolution microbial strain typing is essential for various clinical purposes, including disease out-
break investigation, tracking of microbial transmission events and epidemiological surveillance of bacterial infec-
tions. The widely used approach for multilocus sequence typing (MLST) that is based on the core genome, cgMLST,
has the advantage of a high level of typeability and maximal discriminatory power. Yet, the transition from a seven
loci-based scheme to cgMLST involves several challenges, that include the need by some users to maintain back-
ward compatibility, growing difficulties in the day-to-day communication within the microbiology community with
respect to nomenclature and ontology, issues with typeability, especially if a more stringent approach to loci pres-
ence is used, and computational requirements concerning laboratory data management and sharing with end-
users. Hence, methods for optimizing cgMLST schemes through careful reduction of the number of loci are expected
to be beneficial for practical needs in different settings.

Results: We present a new machine learning-based methodology, minMLST, for minimizing the number of genes in
cgMLST schemes by identifying subsets of informative genes and analyzing the trade-off between gene reduction
and typing performance. The results achieved with minMLST over eight bacterial species show that despite the re-
duction in the number of genes up to a factor of 10, the typing performance remains very high and significant with
an Adjusted Rand Index that ranges between 0.4 and 0.93 in different species and a P-value < 10�3. The identification
of such optimized MLST schemes for bacterial strain typing is expected to improve the implementation of cgMLST
by improving interlaboratory agreement and communication.

Availability and implementation: The python package minMLST is available at https://PyPi.org/project/minmlst/PyPI
and supported on Linux and Windows.

Contact: vaksler@post.bgu.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-resolution microbial strain typing, or classifying bacteria at
the strain level, is essential for various clinical purposes, including
disease outbreak investigation, tracking of microbial transmission
events and epidemiological surveillance of bacterial infections. In re-
cent years, Whole Genome Sequencing (WGS) of bacteria has be-
come increasingly available to microbiology laboratories and is
recognized to be a new gold standard for typing.

Strain typing is primarily achieved by single-nucleotide poly-
morphism (SNP) or gene-by-gene comparisons (Schürch et al.,
2018), where the latter approach provides the advantages of stand-
ardization, scalability, and ease of data sharing among laboratories.

The most widely used gene-by-gene approach is based on multilocus
sequence typing (MLST), comprised typing schemes that use a dif-
ferent number of loci (i.e. genes) each is suitable for addressing dif-
ferent levels of isolate discrimination (Maiden et al., 2013).
Approaches based on smaller subsets of genes are the 7-locus con-
ventional MLST (Li et al., 2009) and the 53-locus ribosomal MLST
(rMLST) (Jolley et al., 2012). The conventional MLST can discrim-
inate species and lineages but its discriminatory power is not suffi-
cient for high-resolution typing (Maiden et al., 2013). It has also
been shown that the 53 ribosomal genes are not necessarily superior
to the 7 traditional genes in the identification of bacterial strains
since these genes are very conserved (Alikhan et al., 2018; Pearce
et al., 2018).
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With the advent of WGS, MLST has been greatly enhanced and
schemes for typing based on the bacterial core genome (cgMLST) or
whole genome (wgMLST) are increasingly becoming available. A

typical cgMLST scheme involves hundreds or more than a thousand
loci, having a high level of typeability and maximal discriminatory

power (Dekker et al., 2016; Maiden et al., 2013).
The MLST schemes have been defined and adopted for many mi-

crobial species, and thousands of MLST profiles and sequences, es-
pecially of pathogens, are available online in continuously updated
public databases, such as (pubmlst.org), (mlst.net) and (cgMLST.

org) (Dekker et al., 2016; Zolfo et al., 2017). Such databases pro-
vide portable nomenclature schemes and enable convenient data

sharing within and across laboratories (Maiden et al., 2013; Schürch
et al., 2018).

While cgMLST has notable advantages, the transition from a
seven loci-based scheme to cgMLST involves several challenges.
These challenges include (i) the need by some users to maintain

backward compatibility, although this may prove difficult to main-
tain over time (ii) growing difficulties in the day-to-day communica-
tion within the microbiology community with respect to

nomenclature and ontology, especially in the light of the increasing
complexity of allelic profiles, (iii) issues with typeability, especially

if a more stringent approach to loci presence is used (since an
increasing number of loci increases the likelihood of typeability
issues) and (iv) computational requirements concerning laboratory

data management and sharing with end-users. Hence, methods for
optimizing cgMLST schemes through careful reduction of the num-

ber of loci are expected to be beneficial for practical needs in differ-
ent settings.

Several approaches have been suggested for identifying a reduced
subset of genes that preserves high discrimination. Following the
publication of the first cgMLST scheme for Legionella pneumophila
(Moran-Gilad et al., 2015), David et al. extracted random nested
subsets of 50, 100 and 500 genes from the core genes of the organ-
ism, and assessed the discriminatory power of these sets using the

index of discrimination (D) previously suggested by Hunter et al.
(1988). They found that a scheme of �50 genes offered the best

compromise between improved discrimination (D¼0.99) and good
epidemiological concordance (0.941). To identify potential discrim-
inatory genes of Mycoplasma hominis, Jironkin et al. (2016) sug-

gested a leave-one-out methodology according to which a gene is
selected for the minimal MLST scheme in case its removal from the

cgMLST scheme muddles the phylogenetic relationship of the iso-
lates with respect to the whole genome SNP phylogenetic tree. Their
minimal set included 48 genes required to recapitulate the phylogen-

etic relationships found using whole-genome SNPs.
In this article, we propose an efficient, generic and interpretable

machine learning-based methodology, which we call minMLST.
minMLST aims to minimize the number of genes in any given

MLST scheme by quantifying gene importance and evaluating the
strain typing performance on reduced subsets of informative genes.
Our methodology was implemented into a publicly available soft-

ware that can be easily installed from https://pypi.org/project/
minmlst/PyPl. We applied minMLST on eight different bacterial
schemes and achieved a reduction in the number of genes up to a

factor of 10 while preserving high discrimination among strains
with an Adjusted Rand Index (ARI) that ranges between 0.4 and

0.93 in different species with a P-value below 10�3.

2 Materials and methods

minMLST is a hybrid methodology that combines both supervised
and unsupervised machine learning algorithms, as outlined in
Figure 1. We first provide a formal description of the algorithmic

components, measures and statistical tests that are used in the meth-
odology. Then the algorithms of minMLST are outlined and elabo-
rated in detail.

2.1 XGBoost
The main building block of our proposed methodology is the
XGBoost algorithm that is used for identifying informative genes
(i.e. features) in an input bacterial scheme. XGBoost is a regularized
variant of Gradient Boosting Machines (GBM) (Chen et al., 2016),
which has demonstrated superior performance in many machine
learning competitions and studies in various fields (Babajide
Mustapha et al., 2016; Fan et al., 2018; Georganos et al., 2018;
Möller et al., 2016; Tamayo et al., 2016) including bioinformatics
(Pang et al., 2019; Wang et al., 2019; Yu et al., 2019; Zou et al.,
2018). Its objective function combines a loss function and additional
regularization factor to control the complexity of the model and re-
duce overfitting. XGBoost is an ensemble of Classification and
Regression Trees (CART), as each tree-classifier added to the ensem-
ble constantly improves over previous classifiers’ error (Georganos
et al., 2018).

2.2 Agglomerative hierarchical clustering
Agglomerative hierarchical clustering methods construct clusters by
recursively merging similar objects in a bottom-up manner. The
similarity between any pair of objects is usually quantified as a
measure of distance, and a linkage method is used to determine the
distance between any two clusters, as a function of the pairwise dis-
tances between their objects (Rokach et al., 2005). The result is a
dendrogram that demonstrates the nested grouping of objects and
the similarity levels measured at each grouping step. To obtain a
specific partition, a threshold is applied for the required level of
similarity.

2.3 Measures
The following measures are used in two parts of our methodology:
SHAP values and measures specific for tree-based models are used
for gene importance quantification, whereas the ARI and its signifi-
cance P-value are used for the evaluation of strain typing perform-
ance. Pearson’s and Spearman’s correlations are used for comparing
the gene importance values computed with different measures.

2.3.1 SHAP values

The SHapley Additive exPlanations (SHAP) values suggested by
Lundberg and Lee constitute a unified measure of feature import-
ance, which enables to interpret the predictions of complex models,
such as tree ensembles or deep neural networks (Lundberg et al.,
2017). The SHAP values attribute to each feature the change in the
expected model prediction when conditioning on that feature.
Unlike other feature attribution methods that are inconsistent and
may lower the feature’s assigned importance when the true impact
of that feature actually increases, the SHAP values are theoretically
optimal, being the unique consistent and locally accurate feature at-
tribution values (Lundberg et al., 2018). The SHAP values enable
local interpretability since they measure the contribution of each fea-
ture to the prediction of a specific sample, therefore different (local)
explanations can be provided for different samples. Computing the
SHAP values may be challenging, yet for tree-ensembles, the com-
plexity of computation can be reduced exponentially using a dedi-
cated algorithm, e.g. TreeSHAP (Lundberg et al., 2018). In our
methodology, we use the mean absolute value of the SHAP values,
a.k.a. the mean magnitude of the SHAP values, of each feature (i.e.
gene) to quantify its average impact on the model output magnitude.

2.3.2 Measures specific for tree-based models

We use additional measures that are specific to tree-based models
(including XGBoost) for quantifying feature importance: weight,
cover and gain. Weight (a.k.a. split-count) is the number of times a
given feature is used to split the data across all splits. The average
(or total) cover is the average (or total) quantity of samples condi-
tioned on a given feature across all splits. Average (or total) gain is
the average (or total) reduction in the Multiclass Log Loss (i.e. the
objective function) contributed by a given feature across all splits.
Given a dataset of N samples and K labels; Let Y be a binary
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indicator matrix that encodes true labels and P be a matrix of prob-
ability estimates, the Multiclass Log Loss is defined as:

Llog Y; Pð Þ ¼ � 1

N

XN�1

i¼0

XK�1

k¼0

yi;klogpi;k; (1)

where yi;k ¼
1 if sample i has label k
0 else

�

pi;k ¼ Pr yi;k ¼ 1
� �

:

2.3.3 Pearson’s and Spearman’s correlations

To compare gene importance values computed by different meas-

ures, we use Pearson’s correlation which assesses the linear relation-
ship between two continuous variables and Spearman’s rank-order

correlation which assesses the monotonic relationship between two
continuous or ordinal variables.

2.3.4 Adjusted Rand Index

The ARI is a known evaluation criterion, which measures the simi-
larity between two different partitions of a set of objects. It is based

on pair-wise comparisons of objects assignment to clusters (i.e. are
the two objects in the same cluster or not), in addition to being cor-
rected for chance (Hubert et al., 1985). Formally, given a dataset of

n objects, suppose U ¼ fu1; . . . ; ui; . . . ; urg and V ¼ fv1; . . . ;
vj; . . . ; vcg represent two different partitions of the objects set, the

ARI between U and V is defined as:
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(2)

where ni is the number of objects in cluster ui, n�j is the number of

objects in cluster vj, nij is the number of objects that are common to
clusters ui and vj.

To assess the significance of the observed ARI (ARI0) Qannari
et al. suggested a permutation test based on a Monte Carlo simula-
tion (Qannari et al., 2014). It involves the simulation of �1000 pairs
of partitions for estimating the distribution of the ARI test statistic,
under the null hypothesis stipulating the absence of association be-
tween the two partitions being compared (Qannari et al., 2014).
This significance test provides a good estimation but may be time
consuming.

2.4 Threshold definition
In our methodology, we use agglomerative hierarchical clustering
where the distance between any pair of isolates is defined as the pro-
portion of genes that disagree on their allelic assignment, and the
distance between any two clusters is determined by a linkage
method. To obtain the partition into clusters, we apply a threshold
on the distance between isolates belonging to the same cluster type.
As the distance between any pair of isolates is computed based on a
given subset of genes, we do not have any prior knowledge about
the distribution of the pairwise distances. This distribution may also
change when different subsets of genes are selected, e.g. the distan-
ces’ distribution of Enterococcus faecium when selecting all its 1423
genes versus a subset of 88 genes (see Supplementary Table S1).
Thus, we use percentile-based thresholds instead of constant thresh-
olds. For a given percentile, we dynamically calculate the threshold
value for each subset of genes.

2.5 Proposed methodology
The first step of our proposed minMLST methodology (Algorithm 1)
is the training of an XGBoost classifier. This is a supervised learning
process that requires ground-truth labels as input, which are, in our
case, the cluster types (CTs). To split the data into training and valid-
ation sets so that each type will be represented in both sets, we first fil-
tered out CTs with a single isolate (i.e. singletons) (Lines 1–2). The
exclusion of the singletons also removes some potential noise from the
training process, letting the XGBoost model focus on more prevalent
cluster types, under the assumption that the informative genes found
by this process will be able to generalize the entire dataset when per-
forming the strain typing (Algorithm 2). The XGBoost is trained for
minimizing the Multiclass Log Loss metric. To control overfitting, we

Fig. 1. The workflow of minMLST methodology in high-level. (a) Filtering cluster-types ( ) with a single isolate (singletons) from the original cgMLST scheme; then splitting

the isolates in the filtered scheme into train and validation sets. (b) Training an XGBoost classifier until a minimal Multiclass Log Loss is achieved on the validation set. (c)

Quantifying gene importance in the trained XGBoost model using a selected measure (the mean magnitude of the SHAP values, weight, gain, or cover). Next, repeating steps

(d) and (e) iteratively for a reduced number of most important genes: (d) Performing strain typing of all isolates in scheme using a distance-based hierarchical clustering; (e)

Evaluating typing performance by applying a significance test to the Adjusted Rand Index ( ), comparing the types induced by minMLST ( ) and the ground-truth cluster-types

predefined in the original cgMLST scheme
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track the performance of the model at each training epoch and stop
the training process when a minimal Multiclass Log Loss is achieved
on the validation set (Line 3). The second step of the methodology is
to quantify the importance level of each gene in the trained model
using one of the following measures: the mean magnitude of the
SHAP values, weight, average gain, total gain, average cover, or total
cover (Line 4). For each of the above measures, a high value reflects a
high importance level. Next, we iteratively examine various percen-
tiles to be used for calculating the thresholds in the clustering algo-
rithm (Lines 5–12).

The evaluation of the typing performance when using a certain
percentile is depicted in Algorithm 2. We analyze how a machine
learning-guided reduction in the least important genes affects the
typing performance, starting from the complete input scheme that
includes all genes (Line 1), continuing with a scheme that includes
only informative genes (Line 2) and then iteratively reducing the r
least important genes from the previous scheme (Line 3). Each sub-
set of genes is evaluated as follows: First, we compute the

normalized Hamming distance between every pair of isolates (their
allelic profiles) to quantify the proportion of the genes which dis-
agree on their allelic assignment. These pairwise distances between
all isolates are stored in a matrix (Line 8). Second, we perform ag-
glomerative hierarchical clustering based on the distances matrix,
while the distance between any two clusters is determined according
to a selected linkage method, e.g. single, complete, average,
weighted, centroid, median or ward (Rokach et al., 2005) (Line 9).
We compute the distribution of the pairwise distances and use the p
percentile as a threshold for clustering (Lines 10-11). Third, we
evaluate the typing performance by comparing the induced types
and the ground-truth cluster types predefined by the original
cgMLST scheme, using the ARI (Line 12). Fourth, we compute the
P-value of the observed ARI by implementing a permutation test
suggested by Qannari et al. (2014) (Line 13). The outputs of
Algorithm 2 are the ARI and P-value results computed for each sub-
set of genes, when using a given percentile.

The ARI results computed by Algorithm 2 are then used in
Algorithm 1 for the process of finding a recommended percentile.
This is the percentile with the best overall predictive performance,
which is equivalent to the ARI curve with the highest AUC, and is
referred to as ‘best’. At first, we initialize ‘best’ to the minimal

Algorithm 1 Pseudocode of the minMLST methodology

Inputs:

• S – a bacterial scheme in a matrix format with m rows and

n columns: the n-1 columns correspond to genes, the last

column n contains the ground-truth cluster-type (CT). Each

row m represents an allelic profile of a single isolate.
• measure – the measure according to which the importance

level of each gene is calculated. Can be either the mean

magnitude of the SHAP values, weight, average gain, total

gain, average cover, or total cover.
• r – the number of genes to be removed at each iteration.
• linkage – the linkage method to compute the distance be-

tween clusters. Can be either single, complete, average,

weighted, centroid, median, or ward.
• P – a list of percentiles to be evaluated, sorted in ascending

order.

1. Filter cluster-types with a single isolate (singletons)

from S, resulting in a filtered scheme S0.

2. Split isolates in S0 into train and validation sets in a

stratified manner, so that each cluster-type has at least

one isolate in each set.

3. Train an XGBoost classifier until a minimal Multiclass

Log Loss is achieved on the validation set.

4. Quantify gene importance GI in the trained model

according to measure.

5. ARIbest
				!

, p:vbest
			! ¼ Algorithm 2 (S; r; linkage; GI;P0)

6. For i in rangeð1; len Pð ÞÞ:
7. ARInext

					!
, p:vnext
				! ¼ Algorithm 2 (S; r; linkage;

GI;Pi)

8. d ¼
P

kðARInext
					!

k � ARIbest
				!

kÞ
9. if d � 0:

10. ARIbest
						!

, p:vbest
			! ¼ ARInext

					!
, p:vnext
				!

11. else:

12. break

Outputs:

• GI – importance score per gene according to measure.
• ARIbest
				!

, p:vbest
			!

– a vector of the Adjusted Rand Index (re-

spectively P-value) computed for each subset of most im-

portant genes, when using the best percentile in P:

Algorithm 2 Pseudocode of typing performance evaluation

for a given percentile

Inputs:

• S; r; linkage – see Algorithm 1.
• GI – importance score per gene.
• p – a percentile to be examined.

1. subsetcomplete¼ all genes in GI.

2. subsetimp ¼ all genes in GI with importance score > 0.

3. subsetimp�i�r ¼ the remaining genes after removing the i�r
least important genes from subsetimp i ¼ 1; 2;ð
. . . ; nÞ; where n <

lenðsubsetimpÞ
r :

4. subsets ¼ [subsetcomplete; subsetimp; subsetimp�i�r ; . . . ;

subsetimp�n�r]

5. ARI
		!

, p:v
	! ¼ [ ], [ ]

6. For each subset in subsets:

7. Minimize the input scheme S to include only the subset

of genes.

8. Compute a normalized Hamming distance between

each pair of isolates in S.

9. Construct agglomerative hierarchical clustering based

on the distances matrix between all isolates, using the

linkage method.

10. Compute distances’ distribution.

11. Set threshold ¼ percentile p of distances’ distribution.

12. Apply the threshold to get an induced cluster-type per

isolate (i.e. induced partition).

13. Compute the Adjusted Rand Index (ARI) between the

induced cluster-types and the ground-truth cluster-

types (provided in the last column of S).

14. Compute the P-value of the ARI using a permutation

test.

15. Append ARI and P-value to ARI
		!

, p:v
	!

respectively.

Ouput:

• ARI
		!

, p:v
	!

– Adjusted Rand Index (corresponding P-value)

computed for each subset of genes when using a given

percentile.
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percentile in search space P (Line 5). Then we compare ‘best’ to the
successor percentile in P, referred to as ‘next’, by computing the
‘non-absolute’ L1 distance between their ARI vectors. This distance
equals to the sum of the differences between the two vectors when
subtracting the ‘best’ from the ‘next’ (Lines 6–8). In case the distance
is not negative (i.e. ‘next’ performs better or the same), ‘next’ is
defined as the new ‘best’ (Lines 9–10). Otherwise, the search is com-
pleted and ‘best’ is selected as the recommended percentile (Lines
11-12). The outputs of Algorithm 1 are the gene importance scores
according to the input measure, and the ARI and P-value results
computed for each subset of genes when using the best percentile in
P:

2.5.1 Implementation

The minMLST tool is implemented in Python 3 and is applicable for
both Windows and Linux platforms. It supports parallel computing
and can be easily installed from https://pypi.org/project/minmlst/
PyPI. Detailed documentation and usage examples are available on
https://github.com/shanicohen33/minMLSTGitHub.

3 Results

3.1 Datasets
Data were retrieved on June 2018 from the cgMLST.org server
which hosts the allelic nomenclature of core genome MLST
(cgMLST) gene schemes, generated by the (Ridom SeqSphereþ)
commercial software. We used the allelic profiles of thousands of
isolates belonging to eight different pathogenic species that are re-
sponsible for a significant global bacterial disease burden. The char-
acteristics of the cgMLST scheme of each bacterial species are
detailed in Table 1.

3.2 XGBoost training and validation
We trained an XGBoost model for each bacterial species, tracking both
the Multiclass Log Loss and the Multiclass error over the train and the
validation sets. For most bacterial datasets, 100 training epochs were suf-
ficient to reach a minimal Multiclass Log Loss over the validation set,
with the exception of Staphylococcus aureus and E.faecium that reached
a plateau after 170 and 400 epochs, respectively. For space considera-
tions, Figure 2 and all the following figures present the results for
L.pneumophila and E.faecium. The results for the remaining six bacter-
ial species are provided in Supplementary Materials (see Supplementary
Fig. S1 for XGBoost performance evaluation).

3.3 Quantification of gene importance
Gene importance was quantified with six different measures
(described in Section 2.2): the mean magnitude of the SHAP values,
weight, average gain, average cover, total gain and total cover. We

then compared the gene importance values for each pair of meas-
ures. We found a high Pearson’s (P) and Spearman’s (S) correlations
between the SHAP and total gain importance values computed for
L.pneumophila (P¼0.85, S¼0.88) and E.faecium (P¼0.77, S¼0.87),
as presented in Figure 3. Similar results were also found for
Francisella tularensis (P¼0.96, S¼0.88), Clostridioides difficile
(P¼0.55, S¼0.89), Acinetobacter baumannii (P¼0.72, S¼0.86),
Klebsiella pneumoniae (P¼0.84, S¼0.88), Listeria monocytogenes
(P¼0.9, S¼0.79) and S.aureus (P¼0.24, S¼0.83), as presented in
Supplementary Figure S2. In all bacteria, relatively high Spearman’s
correlations (S �0.64) were observed between the SHAP, total
cover, total gain and weight importance values, as presented in
Figure 3 and Supplementary Figure S2. Gene importance values for
all bacteria are provided in Supplementary File S1.

3.4 Analyzing the trade-off between gene reduction and

strain typing performance
We applied the minMLST methodology on the eight bacterial data-
sets to analyze the trade-off between learning-based gene reduction

Table 1. Characteristics of cgMLST schemes of selected pathogens

Scheme No. of loci No. of isolates

indexed

Cluster type count Cluster type

distance

Distance/no.

of genes

References

F.tularensis 1147 240 145 1 0.087 Antwerpen et al. (2015)

L.pneumophila 1521 811 356 4 0.263 Moran-Gilad et al. (2015)

C.difficile 2270 4450 2425 6 0.264 Bletz et al. (2018)

A.baumannii 2390 4594 1936 9 0.377 Higgins et al. (2017)

K.pneumoniae 2358 5833 2174 15 0.636 Weber et al. (2019) and

Piazza et al. (2019)

E.faecium 1423 10 550 1833 20 1.405 de Been et al. (2015)

L.monocytogenes 1701 17 566 6426 10 0.588 Ruppitsch et al. (2015)

S.aureus 1861 20 136 9868 24 1.29 Leopold et al. (2014)

Scheme ¼ bacterial species; No. of loci ¼ number of core genes included in the scheme; No. of isolates indexed ¼ number of isolates (allelic profiles) deposited

in the database; Cluster type count ¼ number of different types (different allelic profiles) assigned to deposited isolates; Cluster type distance ¼ threshold for the

maximal number of different alleles between isolates of the same cluster type, as described in the original publication of each scheme; Distance/No. of genes ¼
cluster type distance divided by the number of core genes.

Fig. 2. Metrics of the XGBoost model along the training process. Multiclass Log

Loss (objective function) and multiclass error values on the train and validation sets

are presented as a function of the training epochs for (a) L.pneumophila and (b)

E.faecium
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and strain typing performance. Gene importance was calculated
based on the mean magnitude of the SHAP values as these values
are consistent and locally accurate (Lundberg et al., 2017). The
number of informative genes (importance score > 0) found for each
bacteria was 133 (11.5%) for F.tularensis, 1030 (67.7%) for
L.pneumophila, 2169 (95.5%) for C.difficile, 2347 (98.2%) for
A.baumannii, 2100 (89%) for K.pneumoniae, 1088 (76.4%) for
E.faecium, 1692 (99.4%) for L.monocytogenes and 1860 (99.9%)
for S.aureus. We removed the least informative genes from each
scheme in intervals of 100 genes, except for F.tularensis where inter-
vals of 40 genes were used due to a low number of informative
genes. For all bacteria, the distance between clusters was computed
with the complete linkage method, and P-value calculations were
based on 1000 simulated samples. For each bacterial species, we
show the results obtained in the last three iterations of Algorithm 1,
i.e. the results obtained with the best percentile and its two adjacent
percentiles (predecessor and successor) in the search space of the al-
gorithm (Fig. 4 and Supplementary Fig. S3). The search space
included the following percentiles of distances’ distribution: [0.005,
0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, . . ., 10]. For each iteration, we present
the ARI and P-value results computed for every subset of genes. In
most bacteria, except for E.faecium, the best percentile was either
the 0.5th or the 1st percentile of distances’ distribution. As for
E.faecium, the algorithm found the 9th percentile as the best. This
exception can be explained by the relatively high ratio of Distance/
No. of genes that equals to 1.405 in the scheme of E.faecium
(Table 1). This high ratio indicates that a higher percentage of differ-
ent alleles was allowed between isolates belonging to the same clus-
ter type of this bacterial species. Hence, it is reasonable that the best
percentile found for this bacterium was higher, resulting in relatively
higher thresholds for the distance between isolates of the same clus-
ter type. To enable comparison with other bacteria, the results pre-
sented for E.faecium include also the 1st percentile of distances’
distribution (Fig. 4). The actual values of the thresholds are pre-
sented in Supplementary Table S1 per bacterial species and for each
subset of genes.

Figure 4 shows that despite the reduction in the number of genes
up to a factor of 10, the ARI remains very high and stable, �0.8 for
L.pneumophila and between 0.8 and 0.93 for E.faecium. Also in the
remaining bacterial species, the ARI results are high, significant and
decline very moderately with a tenfold reduction in the number of
genes. The specific ARI results are �0.5 for F.tularensis, 0.4–0.5 for
C.difficile, �0.6 for A.baumannii, 0.5–0.6 for K.pneumoniae, 0.7–
0.8 for L.monocytogenes and 0.5–0.6 for S.aureus (Supplementary
Fig. S3). In all bacteria, the ARI results were very significant with a
P-value < 10�3.

3.5 Visualization of strain typing results using

phylogenetic trees
We next reconstructed phylogenetic trees based on the cgMLST al-
lelic profiles of the bacterial isolates using a minimum spanning tree
algorithm, MSTree V2, implemented in the GrapeTree tool (Zhou
et al., 2018). We used the iTOL online tool (Letunic et al., 2007) to
generate a visualization of the phylogenetic trees alongside a parti-
tion into cluster types, so that each cluster type is represented by a
different color. This view provides a visual comparison between the
cluster types induced by minMLST based on a minimal subset of
genes and the ground-truth cluster types predefined by Ridom
SeqSphereþ based on all core genes. The specific logic we developed
for setting the colors is outlined in Supplementary Algorithm S1.

We present the phylogenetic trees of L.pneumophila and
E.faecium in Figure 5. The inner colors’ ring (as well as the colors of
the leaves) represents the predefined partition into cluster types pro-
vided by Ridom SeqSphereþ and the outer colors’ ring represents
the partition induced by minMLST: 230 (15.1%) and 188 (13.2%)
most informative genes obtained with the 0.5th percentile and 9th
percentile for L.pneumophila and E.faecium, respectively. The vis-
ual comparison of typing results for the remainder bacteria is pre-
sented in Supplementary Figure S5, and is based on 133 (11.5%),

Fig. 3. Pearson’s and Spearman’s correlations between gene importance values com-

puted by six different measures for (a) L.pneumophila and (b) E.faecium. The meas-

ures that were used for gene importance quantification are the mean magnitude of

the SHAP values, weight, average gain, average cover, total gain and total cover

Fig. 4. ARI and P-value computed for each subset of most informative genes for (a)

L.pneumophila and (b) E.faecium. We present the results obtained when using the

complete linkage method with the best percentile and its two adjacent percentiles

(predecessor and successor) in the search space of Algorithm 1. The search space

included the following percentiles of distances’ distribution: [0.005, 0.01, 0.05, 0.1,

0.5, 1, 1.5, 2, . . ., 10]. For E.faecium, we also present the results with the 1st per-

centile of distances’ distribution, for comparison with the other bacteria
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1569 (69.1%), 1547 (64.7%) and 700 (29.6%) most informative
genes obtained with the 1st, 1st, 0.5th and 1st percentile for
F.tularensis, C.difficile, A.baumannii and K.pneumoniae, respective-
ly. Due to a memory limitation of the GrapeTree tool, we could not
use the MSTree V2 algorithm for reconstructing the polygenetic
trees of L.monocytogenes and S.aureus.

4 Discussion

Using optimized MLST schemes for bacterial strain typing is
expected to improve the implementation of cgMLST by improving
interlaboratory agreement and communication. In this article, we
introduced a new hybrid methodology, minMLST, for minimizing
the number of genes in cgMLST schemes by identifying subsets of
informative genes and analyzing the trade-off between gene reduc-
tion and typing performance, allowing users to choose the preferable
balance point. The visual comparison of the strain typing results
illustrated the ability to discriminate among strains when using a
compact set of informative genes found by minMLST. We also pro-
vided a generic implementation of our methodology, the minMLST
tool, which supports the continuous growth in the number of iso-
lates, as well as new CTs that are submitted to online databases.

Compared to previous studies in which the contribution of each
gene to discrimination between strains was evaluated separately re-
gardless of other genes (Jironkin et al., 2016), minMLST takes ad-
vantage of a tree-based ensemble which considers the marginal
addition of information provided by a certain gene given various
compositions of other genes. Moreover, in our experiments, genes
were selected for reduced schemes based on the SHAP values that
are consistent and theoretically optimal feature attribution values
(Lundberg et al., 2018). This might be advantageous compared to
random gene selection aimed at generating lean schemes (David
et al., 2016). In our methodology, strain typing performance is
measured by the ARI that compares the partition into cluster types
induced by a minimal subset of genes versus a predefined partition
that is based on a complete set of genes. The Index of discrimination
previously used by (David et al., 2016) was not suitable for this
work as it gives higher values to partitions with lower variance in
the number of isolates belong to each cluster type, whereas
minMLST strives to preserve the typing results achieved based on
the full set of genes, even when this partition demonstrates an un-
even distribution of isolates into cluster types.

The clustering of strains into types is an unsupervised problem
by definition. The methodology, we proposed is not aimed for

predicting CTs for new and unseen isolates, but rather optimizing
the core genome MLST (cgMLST) scheme for isolates that already
exist in the database, by minimizing the number of genes in the
scheme. The evaluation of the typing performance is done by com-
paring the results of an unsupervised clustering algorithm when
using different subsets of genes, whereas a supervised XGBoost algo-
rithm is used only for the purpose of identifying informative genes in
the given scheme. To avoid overfitting, the training and validation
process (i.e. hyperparameter setting) of the XGBoost model is done
over a filtered dataset that excludes all singletons (see singletons per-
centage in Table 2), which results in a model that is more general
and less prone to explain idiosyncrasies in the data. The validation
set enables us to stop the training process of the XGBoost at the
transition point from the generalization stage to the memorization
stage and hence limit the selection of non-cost-effective genes, i.e.
genes that are non-informative for the clustering of most isolates. In
Supplementary Figure S6, we demonstrate how the exclusion of sin-
gletons during the training and validation process affects the result-
ing schemes of different bacteria. For each subset of most
informative genes, we compare the ARI achieved when the
XGBoost model was trained without singletons versus trained with
half of the singletons selected randomly. For all bacteria, the results
show either similar ARI values for the two models or an advantage
(a higher ARI on average) to the model trained without singletons.
In addition, we present how the reduction in the number of inform-
ative genes affects the number of singleton CTs in the resulting
scheme generated by minMLST for each bacteria (see

Fig. 5. Phylogenetic trees of (a) L.pneumophila and (b) E.faecium reconstructed by the GrapeTree tool using the full cgMLST scheme. The inner colors’ ring represents the CTs

predefined by Ridom SeqSphereþ based on all core genes, the outer colors’ ring represents the CTs induced by minMLST based on a minimal subset of informative genes. To

keep a clear view, only CTs with more than five related isolates are colored in the inner ring, whereas the outer ring shows the corresponding typing results of these isolates

according to minMLST (logic for color settings is depicted in Supplementary Algorithm S1). *No. of CTs—in Ridom’s scheme, it refers to the number of CTs with more than

five related isolates, i.e. the number of CTs presented in the inner colors’ ring. In minMLST’s scheme, it refers to the number of CTs defined for these isolates according to

minMLST, i.e. the number of CTs presented in the outer colors’ ring. The ARI and P-value were calculated based on the typing results of all isolates

Table 2. Percentage of singleton clusters (CTs with a single related

isolate)

Scheme Singleton CTs (%)

F.tularensis 75.9

L.pneumophila 60.4

C.difficile 74.4

A.baumannii 52.6

K.pneumoniae 65.9

E.faecium 61.5

L.monocytogenes 64.8

S.aureus 70.4
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Supplementary Fig. S7). It can be seen that for most bacteria, the
reduction in the number of informative genes leads to a moderate
decrease in the number of singleton CTs in the resulting scheme.

In our study, we had to deal with two data-related challenges.
The first challenge is related to clone-types’ assignment in the
(Ridom SeqSphereþ) system. This assignment is influenced by the
order of submission of the original allelic profiles as well as by miss-
ing genotyping data, as described in detail in Supplementary
Materials. As a result, we did not achieve ARI¼1 when comparing
Ridom’s predefined CTs to the minMLST CTs induced based on all
genes, as one would expect. To overcome this issue, we generated
new ground-truth CTs by applying hierarchical clustering over the
complete cgMLST scheme with the thresholds defined in the original
publication of each bacterial scheme (Table 1). These thresholds are
controversial as they were defined arbitrarily by each study, and
hence were used only for validation of the ARI. The comparison of
the minMLST CTs induced based on all genes with the new ground-
truth CTs resulted in ARI ¼1 in all bacterial datasets. The second
challenge we faced was a significantly high number of singleton clus-
ters, i.e. CTs with a single related isolate (Table 2), as well as a high
number of 2, 3 and 4 size clusters (see Supplementary Table S3).
Such data structure limits the application and evaluation of ‘pure’
supervised machine learning methods for CT assignment (e.g. k-fold
cross-validation of a multiclass classifier). These unique characteris-
tics of the MLST data motivated us to develop a hybrid method-
ology, minMLST, which combines a ‘supervised’ approach for
identifying informative genes along with an ‘unsupervised’ approach
for CT assignment and typing evaluation.

In conclusion, this study showed that the minMLST method-
ology successfully identifies reduced subsets of genes, up to a factor
of 10 from the complete set, that perverse a high discrimination
among strains, as demonstrated for eight different bacterial species.
Our tool enables to analyze the trade-off between reducing the num-
ber of genes in the cgMLST scheme versus preserving a high reso-
lution between different strains, so one can select the desired
balance point. Our methodology will contribute to the generation of
optimized and potentially more compact bacterial cgMLST schemes
consisting of the most informative genes, which is expected to im-
prove the uptake and usability of cgMLST even further as well as to
improve communications and data sharing across the microbiology
community without hampering the resolution and discriminatory
power of genomic typing for public health.
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