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Abstract

Motivation: In recent years, nanopore sequencing technology has enabled inexpensive long-read sequencing,
which promises reads longer than a few thousand bases. Such long-read sequences contribute to the precise detec-
tion of structural variations and accurate haplotype phasing. However, deciphering precise DNA sequences from
noisy and complicated nanopore raw signals remains a crucial demand for downstream analyses based on higher-
quality nanopore sequencing, although various basecallers have been introduced to date.

Results: To address this need, we developed a novel basecaller, Halcyon, that incorporates neural-network techni-
ques frequently used in the field of machine translation. Our model employs monotonic-attention mechanisms to
learn semantic correspondences between nucleotides and signal levels without any pre-segmentation against input
signals. We evaluated performance with a human whole-genome sequencing dataset and demonstrated that
Halcyon outperformed existing third-party basecallers and achieved competitive performance against the latest
Oxford Nanopore Technologies’ basecallers.

Availabilityand implementation: The source code (halcyon) can be found at https://github.com/relastle/halcyon.

Contact: imoto@ims.u-tokyo.ac.jp

1 Introduction

Recently, long-read single-molecule sequencing (lengths up to 2.4
Mbp) has been realized by Oxford Nanopore Technologies (ONT)
with the introduction of MinION devices (Payne et al., 2019).
Nanopore sequencing has been utilized in various applications
such as in the detection of structural variation and cytosine
methylation, along with metagenome de novo assembly (Cretu
Stancu et al., 2017; De Coster et al., 2019; Gong et al., 2018;
Jain et al., 2018; Simpson et al., 2017). Basecalling, i.e. transla-
tion from complex nanopore raw signals into nucleotide sequen-
ces, is first performed in nanopore sequencing pipelines. Error-
prone basecalling adversely affects the entirety of downstream
analyses incorporating nanopore sequencing, and therefore, the
development of more accurate basecallers is critical. Although
ONT has officially developed several basecallers, the details of
their model specifications are not public. Thus, various third-party
basecallers based on deep learning have been developed based on
different approaches (Bo�za et al., 2017; Stoiber and Brown, 2017;
Teng et al., 2018; Wang et al., 2018). However, the accuracy
achieved by these basecallers at the individual read resolution is
insufficient [approximately � 90% (Wick et al., 2019)].
Considering the significance of recent studies driven by ONT’s

sequencing platform, there is high demand for the development of
a more sophisticated basecaller. In turn, sequence data obtained
from more accurate basecalling will enable more accurate detec-
tion of structural variations and cytosine methylation.

Almost all neural-network-based basecallers proposed to date
are dependent to some extent on the recurrent neural network
(RNN) model. The RNN is well-recognized to handle inputs with
variable lengths and interpret complicated timestep dependencies of
input sequences. Introducing such a technique in basecalling tasks
would be reasonable because nanopore raw signals are produced by
multiple nucleotides passing through a pore and interpreting such
dependencies from complicated raw signals is essential.

However, a single sequence of RNN cells cannot handle a
variable-length output from a given input. In the case of nanopore
basecalling, the length of an output nucleotide sequence cannot be
determined exactly from the length of the input raw signals.
DeepNano (Bo�za et al., 2017) tackled this problem by dividing input
raw signals into ‘events’ such that a single event corresponds to a
single nucleotide. Although such an approach can ensure the train-
ing of neural networks is simple and intuitively resolve the problem
of variable output dimension, the basecalling performance suffers
from a bottleneck in the heuristic segmentation of signals to events,
which is not exact.
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Alternatively, another neural network technique with the poten-
tial to handle variable output dimension is the connectionist tem-
poral classification (CTC) decoder (Graves et al., 2006); it has been
used in processing speech signals. This technique was incorporated
in the novel third-party basecaller, Chiron (Teng et al., 2018).
However, although this technique can resolve the variable output di-
mension problem and can enable end-to-end learning from input
raw signals into nucleotides, the CTC-decoder itself is not a tech-
nique proposed in current schemes; this implies that a more state-of-
the-art technique would likely be required to boost the basecalling
performance.

In addition, the encoder–decoder model has been frequently used
in machine translation (Sutskever et al., 2014). This model has two
RNNs, one of which, the encoder, can encode a variable-length in-
put, whereas the other ‘decoder’ RNN can decode a variable-length
output from the fixed dimensional encoded features. This model can
be trained using matched input and output sequences, without any
corresponding semantic information between the local parts of the
inputs and the outputs.

Another essential technique commonly used in sequence-to-
sequence learning is an attention mechanism (Bahdanau et al., 2015;
Luong et al., 2015). Prior to the emergence of attention mechanisms,
an encoder was used to represent the whole input sequence as a
fixed-dimensional vector and a decoder started decoding from the
vector. This manner of encoding was dependent largely on the end-
part of an input sequence, with the decoder being unable to use suf-
ficient information at the beginning of the input, especially when
longer input sequences were used. The attention mechanism
resolved this problem by representing a variable-length input se-
quence as a fixed-dimension context vector in each decoding time-
step. Each context vector is obtained by weighting all timestep
outputs of an encoder, wherein weights are calculated by a simple
feed-forward network given all outputs and a current decoder cell
state. An encoder–decoder model with attention mechanisms can
learn appropriate attention in a backpropagation scheme. Notably,
recent sequence-to-sequence models using this mechanism have
achieved remarkable performance (Chen et al., 2018; Chiu et al.,
2018). Moreover, recent studies have shown that the attention
mechanism is superior to a conventional CTC decoder-based model
even in speech recognition (Chorowski et al., 2015; Zeyer et al.,
2018).

Thus, we decided to develop an improved basecaller, Halcyon,
by utilizing an encoder–decoder model incorporating an attention
mechanism. Halcyon incorporates a ‘monotonic’ attention mechan-
ism, which enables the decoder to attend from an earlier part to a
later part along an input sequence. Although this technique was ori-
ginally introduced to accelerate decoding speed in inference at the
expense of a small decrease in inference speed (Raffel et al., 2017),
we incorporated this technique to stabilize the transition of atten-
tion, thereby improving basecalling precision.

2 Materials and methods

2.1 Deep neural network architecture
Halcyon combines a novel CNN module and RNN-based encoder
and decoder. Whereas the CNN module is based on architectures
commonly utilized in the field of image recognition, encoder and de-
coder modules are based on those used in the field of neural machine
translation. The entire network was implemented using TensorFlow
(Abadi et al., 2016).

2.1.1 Preliminaries

This study aimed to construct neural networks that directly translate
raw input signals measured by a pore into corresponding nucleotide
sequences that passed through the pore. Here, an input with a T-
timestep signal is denoted by s ¼ ½s1; s2; . . . ; sT �, and an N-base nu-
cleotide sequence is denoted by Y ¼ ½y1; y2; . . . ; yN �, where ykð1 �
k � NÞ is a 4-D vector indicating the probabilities of four nucleoti-
des (A, T, G and C) at position k.

2.1.2 Inception-block-based CNN module

Input raw signals are first fed into a CNN module. This module
incorporates inception blocks, which are state-of-the-art architec-
tures in the field of computer vision. A single inception block has
branches. Each branch has 1�1 convolution to prevent the expan-
sion of channel dimensionality and a convolution layer with differ-
ent widths of filters. Finally, output vectors from these branches are
concatenated in a channel axis and fed into the next layer.

The motivation behind using this module is the need to extract
local features of input raw signal and reduce the dimension of the in-
put timestep axis. As the time-complexity of RNN is severely influ-
enced by the timestep dimension, the reduction contributes to high
throughput inference.

Each convolution block consists of a single layer convolution
layer with a rectified linear unit (ReLU) activation function, fol-
lowed by a batch-normalization layer.

The ReLU activation function is defined as

ReLU ðxÞ ¼ f x ðx > 0Þ
0 ðotherwiseÞ

Batch normalization constitutes a technique to accelerate the
learning of neural networks by normalizing each layer’s input within
a training minibatch (Ioffe and Szegedy, 2015). Given a minibatch
output of a single unit x ¼ fx1; x2; . . . ; xng (where n is a minibatch
size), the batch normalization layer calculates the mean value and
variance value within the minibatch as

l ¼ 1

n

Xn

i¼1

xi

r2 ¼ 1

n

Xn

i¼1

xi � lð Þ2;

and the normalized output as

x̂i ¼
xi � lffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ �
p ði 2 1; . . . ; nf gÞ:

Then, it returns output y ¼ fy1; y2; . . . ; yng instead of returning
x, where yi ¼ cx̂i þ b. Here, �, c and b are parameters specific to the
unit and are optimized in a backpropagation scheme. In the test, l
and r2 are set to the average values over those used in training
minibatches.

2.1.3 Encoder module

An RNN-based encoder plays an important role in capturing long-
time dependencies in the timestep dimension and dealing with the
variable lengths of inputs. LSTM is used in Halcyon as an RNN-
based architecture. An LSTM layer is characterized by an LSTM cell
and its recursive computation.

The function of a single cell at the timestep of t can be formu-
lated as follows:

ft ¼ rðWf � ½ht�1; xt� þ bf Þ

it ¼ rðWi � ½ht�1; xt� þ biÞ

~ct ¼ tanhðWc � ½ht�1; xt� þ bcÞ

ct ¼ ft � ct�1 þ it � ~ct

ot ¼ rðWo � ½ht�1; xt� þ boÞ
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ht ¼ ot � tanhðctÞ;

where a � b denotes the Hadamard product between two vectors a

and b, and ½a; b� denotes their vector concatenation. xt denotes the

input from the previous network at t-timestep; in this case, the out-
put of stacked inception blocks. Wf ; Wi; Wc and Wo denote the
synaptic-weight matrices and bf ; bi; bc and bo denote bias vectors,

all of which are shared among LSTM over all timesteps. r denotes a
sigmoid activation function rðxÞ ¼ 1

1þexp ð�xÞ. Such calculation is

conducted recursively along the timestep axis.
To capture local dependencies in both the forward and back-

ward directions along the timestep axis, bidirectional recurrent

neural networks are incorporated (Schuster and Paliwal, 1997) in
Halcyon; these networks conduct the same recursive calculation in

the backward direction of the timestep axis. In each timestep, an
output vector of a forward RNN cell and that of a backward RNN
cell are concatenated, and the result is yielded to the next layer.

2.1.4 Decoder module using attention mechanisms

Given encoded features X ¼ ½x1;x2; . . . ;xn�, the goal is to estimate
the target nucleotide probabilities Y ¼ ½y1; y2; . . . ; ym�; i.e. to model
the conditional probability pðYjXÞ. The basic idea of modeling the

probability using an LSTM layer can be formulated as

pðYjXÞ ¼
Ym

t¼1

pðytjxn; fy1; . . . ; yt�1gÞ ;

where xn is the fixed-dimensional representation of X given by the

last hidden state of the encoder LSTM (theoretically, it has all infor-
mation over an input sequence). We note that an output sequence
length m cannot be defined by an input sequence length n as the

number of electrical signal values measured per nucleotide exhibits
some variation. We need to introduce an end-of-sequence symbol

<EOS> to model output nucleotide sequences with all possible
lengths. Here, each conditional probability pðytjxn; f y1; . . . ; yt�1gÞ
is represented by the output of the decoder LSTM at t-timestep, a

single fully connected layer, and a softmax function. Given the out-
put of the LSTM at the timestep of t ht and the weight matrix of the
fully connected layer W, the conditional probability for each nucleo-

tide base is

pðyt;ijxn; y1; . . . ; yt�1f gÞ ¼ exp ðgiÞ
Pl

j¼1

exp ðgjÞ
;

where l denotes the number of output tokens including an end
token, and gi denotes the ith element of the fully connected output
vector g ¼W � ht.

However, such a model has a problem whereby the fixed-
dimensional v contains little information for the beginning of an in-

put sequence, with the problem becoming more serious when input
sequences are longer. To handle this issue, we introduced attention

mechanisms. Each probability of the elements of joint probability is
formulated using attention mechanisms as

pðytjf y1; . . . ; yt�1g; XÞ ¼ gðyt�1; si; aiÞ;

where si is a hidden state of decoder LSTM at timestep i. The con-
text vector with attention ai is dependent on the previous decoder
hidden state si�1 and all hidden states of encoder LSTM cells X. The

context vector is defined as the weighted sum of encoder hidden
states as

ai ¼
Xn

j¼1

aij � xj;

where the weight aij for each hidden state xj is calculated by the soft-

max function to scored values as

aij ¼
exp ðvijÞ

Pn

k¼1

exp ðvikÞ
;

where

vij ¼ fscoreðsi�1; xjÞ:

A score function can be formulated as a simple trainable feed
forward network. Among some variations of such score functions,
we adopted Luong attention (Luong et al., 2015), in which the score
function is defined by fscoreðsi�1; xjÞ ¼ s>t Wsxj where Ws is a synap-
tic weight matrix for the score function and it is shared over all time-
steps. The score function calculates the importance of input features
xj when predicting the output in timestep i, which enables the de-
coder to retrieve essential information from all encoded features
selectively.

Further, we adopted a monotonic attention mechanism (Raffel
et al., 2017). Monotonic attention is an attention mechanism that
restricts the transition of attention in a left-to-right manner, which is
suitable for the task of basecalling nanopore sequences. In general,
monotonic attention is used to reduce the complexity in decoding; it
was incorporated in Halcyon to decode more accurately. A ‘soft’
monotonic attention mechanism was used in both training and infer-
ence time.

2.1.5 Training and inference decoder

In a training phase, each decoder cell outputs likelihoods of nucleoti-
des in each timestep, and then, the cell state is passed to the next de-
coder cell. In this timing, even if the decoder cell infers a wrong
nucleotide, a correct nucleotide from a ground truth sequence will
be passed to the next cell. Alternatively, in the inference for test
data, a decoder cell cannot use the output token of the previous de-
coder cell, unlike a training decoder. Therefore, an inference de-
coder cell infers the likely nucleotide given the previous cell state,
attended encoder’s features, and the token emitted by the previous
cell. However, searching for an optimal nucleotide sequence Y that
maximizes the conditional probability pðYjXÞ is too computational-
ly expensive because the complexity grows exponentially with the
number of nucleotide bases in the inferred sequence. To tackle this
problem, a beam search strategy is commonly used, which retains
the best k decoded paths with the highest probabilities at each time-
step; k is termed the beam search width. Halcyon incorporated this
strategy in the inference, with the beam search width set to 20 in all
experiments except for the performance assessment of using differ-
ent beam widths.

2.1.6 Scheduled sampling

Although each inference decoder cell can only use the previously
decoded token, the training decoder cell always uses the token from
the ground truth. Such discrepancy is known to produce rapidly
accumulated errors in the decoding of inference. To resolve this
issue, ‘schedule sampling’ was introduced (Bengio et al., 2015).
Scheduled sampling is a technique used in a training phase, and it
randomly samples the previously inferred token instead of sampling
from the ground truth. Halcyon used this technique in the training
phase against a longer input signal (3000 values long) with a sam-
pling ratio of 0.3.

2.2 Data preparation
2.2.1 ONT MinION and Illumina sequencing

Genomic DNA (#NA18943) used in the HapMap project was pur-
chased from the Coriell Institute (Camden, NJ). For MinION
sequencing, a sequencing library was prepared from 1.5 mg of the
DNA using Ligation Sequencing Kit 1D (SQK-LSK108; ONT,
Oxford, UK) and Library Loading Bead Kit (EXP-LLB001; ONT)
according to the manufacturer’s instructions. The library was loaded
onto the R9.4 flow cell of the MinION sequencing device (ONT)
and sequenced for 48 h. A total of 11 runs of MinION sequencing
were conducted. For Illumina sequencing, a sequencing library was
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prepared from 200 ng of the DNA using the TruSeq Nano DNA
Library Prep Kit (Illumina, San Diego, CA). Sequencing was per-
formed with paired-end reads of 101 bp on a HiSeq 2500 platform
according to the manufacturer’s instructions (Illumina).

2.2.2 Labeling of raw signals

Taiyaki (v5.1.0), the training models for basecalling Oxford
Nanopore reads, was used to obtain labeled sequences. By using
Taiyaki, nanopore raw signals are divided into segments, each of
which corresponds to one nucleotide. By using such labeled reads,
the arbitrary length of signals with a matched nucleotide sequence is
easily obtained. We generated labeled signals with a length of 1000
and those with a length of 3000.

2.2.3 Training and Validation dataset

Halcyon was trained and evaluated in a hold-out validation scheme.
Unlike other general machine learning problems such as image rec-
ognition, it is inappropriate to divide the dataset into a training
dataset and a test dataset. Among the obtained nanopore raw reads,
some reads are from the same region of a human whole genome se-
quence. If such sequences exist in both the training and test datasets,
correctly evaluating the generalization performance of nanopore
basecalling would be impossible because trivial overfitting to pat-
terns of consecutive nucleotide sequences of a human genome would
also contribute to an accurate basecalling. Therefore, a training
dataset was defined as paired signals and nucleotide sequences
aligned to even-numbered chromosomes (i.e. chr2, chr4,. . ., chr22),
and the test dataset as those aligned to odd-numbered chromosomes
(i.e. chr1, chr3, . . ., chr21).

2.3 Transfer learning against different input lengths
Halcyon was trained against different lengths of signals in a
transfer-learning scheme to train the model against longer inputs ef-
fectively because starting with longer inputs might render attention-
based training difficult. Therefore, Halcyon was trained against
1000-value-long signals and then against 3000-value-long signals.
Such transfer learning was possible because (i) RNN-based encoders
and decoders are applicable to inputs and outputs with different
lengths, which are attributed to recurrent RNN cells, and (ii) param-
eters of CNN are fully dependent on the convolution kernels, the
parameters of which are shared along the timestep axis.

2.4 Inference
In basecalling test data with arbitrary lengths, each set of input cur-
rent signals was segmented into 3000-value-long signals with 800-
value-long overlaps. These segmented reads were basecalled inde-
pendently and merged into a single nucleotide sequence. In merging
neighbor reads, pairwise local alignment against sequences supposed
to be overlapped was conducted. A match score of þ4, a mismatch
penalty of -4.5, and gap/extend penalties of -5/-3 were used in the
pairwise alignment.

2.5 Evaluation
The performance of Halcyon was compared with that of other exist-
ing basecallers with two viewpoints (i) ‘Individual read accuracy’:
how accurately can each model basecall an individual sequence, and
(ii) ‘SNV detection rate’: how accurately can SNVs be detected using
whole basecalled sequences obtained from each model.

We selected Guppy [v3.6.0], Bonito[v0.1.5], Chiron [v.0.5.1]
(Teng et al., 2018) and DeepNano [latest version from https://bit
bucket.org/vboza/deepnano] (Bo�za et al., 2017) as basecallers for
comparison. Guppy and Bonito were selected as basecallers devel-
oped by ONT officially, and the others were selected as third-party
basecallers.

2.5.1 Read accuracy

The performance of basecalling for an individual example of an in-
put current signal can be measured by calculating similarity between

a basecalled sequence and the corresponding ground truth sequence.
We defined the similarity according to the following criteria that
can be calculated after conducting pairwise alignment between the
two sequences; (i) the ratio of the number of nucleotide bases accur-

ately basecalled calculated as No: of correct matched bases
No:of all matched bases , (ii) the ratio of

the number of inserted nucleotide bases calculated as
No:of inserted bases in basecalled sequence

No:of bases in reference sequence and (iii) the ratio of number of

deleted bases calculated as No:of deleted bases in basecalled sequence
No:of bases in reference sequence . These

metrics were calculated by aligning basecalled reads from each base-
caller back to the reference sequence using minimap2 (Li, 2018).

2.5.2 SNV detection

SNV detection performance was measured by comparing the SNVs
detected using whole nanopore basecalled reads with those detected
using whole short read sequences. As short read sequences are highly
accurate, we used the results as ground truths. SNVs were detected
using basecalled nanopore reads obtained from our basecaller and
the other baselines, each of which was compared with the ground
truth SNVs.

Short-read sequences were aligned to the reference sequence
using BWA MEM and then processed by Strelka2 (Kim et al., 2018),
a fast and accurate variant caller. Resultant SNVs were then filtered
to extract only SNVs with high quality (QUAL > 500). Nanopore
basecalled reads were aligned using minimap2 (Edge and Bansal,
2019) and SNVs were detected by LongShot (Edge and Bansal,
2019). SNV detection recall and precision are calculated by using
hap.py (v0.3.8) (Krusche et al., 2019). True positive rates given
SNV positions for each depth (depth 6 20) are also calculated using
the tool for each basecaller.

2.5.3 Basecalling speed

Basecalling speed of five basecallers are measured (i) using only 1-
threaded CPU only and (ii) using 5-threaded CPU and 1 core of GPU
in Ubuntu 18.04.2 LTS x86 64 bit 257606MiB RAM with CPU:
Intel Xeon Gold 6130 @ 3.700 GHz, and GPU: NVIDIA Quadro
GV100.

3 Results

Whole genome sequencing was conducted using ONT’s MinION
device against one human sample, with these reads then being used
to train the neural network-based basecaller and evaluate the base-
calling performance. To obtain matched raw signals and the corre-
sponding nucleotide sequences for training, we used Taiyaki, ONT’s
training model. The statistics of resulting reads by Taiyaki are
shown in Table 1. These labeled raw reads were then divided into
training/test datasets according to the chromosomes.

Table 1. Metrics of all 11 runs of MinION sequencing

MinION run Number of reads Signals length Nucleotide length

RUN 1 198 318 50 408 6 37 154 4762 6 3577

RUN 2 90 619 53 587 6 42 081 4700 6 4220

RUN 3 720 885 65 579 6 41 308 6724 6 4345

RUN 4 605 642 72 292 6 74 283 7040 6 7380

RUN 5 541 783 76 314 6 76 775 7123 6 7347

RUN 6 255 240 75 450 6 79 599 6795 6 7372

RUN 7 665 879 82 656 6 82 728 7503 6 7715

RUN 8 1 016 413 72 082 6 42 833 6413 6 3905

RUN 9 946 914 72 807 6 44 096 6299 6 3929

RUN 10 569 715 72 186 6 43 109 6316 6 3866

RUN 11 220 199 70 420 6 46 432 5825 6 3905

Note: The number of reads obtained in each run, a mean and a standard

deviation of lengths of raw signals and the lengths of nucleotides basecalled

by Guppy (exploited by Taiyaki) observed in each run are also shown.
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The performance of Halcyon, was measured by comparing it
with the performance of Guppy, Bonito, Chiron and DeepNano.
The accuracy of basecallers in an individual read resolution was
measured by basecalling all raw signals in a test dataset and
aligning these reads to the reference sequence by minimap2
(Table 2). Figure 1a–c show the distribution of read identity, in-
sertion error rate and deletion error rate of reads from the five
evaluated basecallers. These metrics collectively constitute a
heuristic measurement for read precision. The results showed
that Halcyon achieved competitive performance against ONT’s
cutting edge basecallers and outperformed the other third-party
basecallers. Among baseline basecallers, Guppy achieved max-
imal performance, which is in agreement with recently reported
results (Wick et al., 2019).

Although these results are obtained using the test dataset, they
did not conclusively display Halcyon’s superiority in nanopore
sequencing for the following reasons: (i) the basecalled reads in the
test data were aligned to the reference sequences, which did not con-
sider individual genome variation such as SNVs, and (ii) accuracy in
a individual read resolution did not necessarily imply consensus ac-
curacy, which is more valuable in practice, as actual sequencing
analyses involve aggregating multiple-coverage sequences to obtain
a consensus result. Therefore, we assessed SNV detection perform-
ance by utilizing short read sequence data. Whole genome sequenc-
ing against the same sample was performed using Illumina HiSeq.
The obtained reads were aligned to the reference sequences using the

Fig. 2. (a) Overview of preparation of training datasets using ONT’s retraining model, Taiyaki. Labeled reads obtained by Taiyaki are then split into fixed-length raw signals and corre-

sponding nucleotide sequences. (b) Overview of evaluation of different basecallers in terms of SNV-detection performance assuming short-read sequencing as the ground truth

Fig. 1. Overview of the network architecture of Halcyon from the input (nanopore raw

signals) to the output (nucleotide sequence). Each convolution component is composed

of a one-dimensional convolution layer with a rectified linear unit (ReLU) activation

function followed by a batch normalization layer. A semantic relationship between the

last layer among five stacked bidirectional LSTM encoding layers and the first layer

among five stacked LSTM decoding layers is comprehended by monotonic attention
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Burrows-Wheeler aligner [BWA (Li and Durbin, 2010)], and then
SNVs were detected using Strelka2 (Kim et al., 2018). For nanopore
sequences, SNVs were detected by using LongShot (Edge and
Bansal, 2019).

The SNV detection performance was measured in recall and pre-
cision obtained by hap.py, haplotype comparison tools by Illumina
(Krusche et al., 2019). The evaluation pipeline is shown in
Figure 2b. The resulting SNV detection recall and precision are illus-
trated in Figure 3f. In addition to the performance in individual read
resolution, Halcyon achieved competitive performance against
ONT’s basecallers. These results demonstrated that the performance
of Halcyon was not overfitted against the utilized reference

sequences, and the model would be the most useful in practical
nanopore sequencing analyses.

Further we investigated SNV detection performance for each
read depth. Such investigation is important because (i) in the actual
clinical application of nanopore reads, it might be necessary to cre-
ate an important decision relying on limited coverage data, and (ii)
observing the saturation of SNV detection rate along with read
depth may aid in the determination of nanopore sequencing strat-
egy. The result is shown in Figure 3g. Halcyon consistently per-
formed similarly to ONT’s basecaller, with results similar to those
obtained in Figure 3f. As basecalling speed is an important aspect,
we measured the number of nucleotides basecalled in a second.

Fig. 3. Individual read statistics obtained by aligning basecalled reads to the reference sequence with minimap2. Distributions of (a) read identities, (b) insertion error rates and

(c) deletion error rates calculated over all basecalled reads are illustrated using letter-value plots. The SNV detection rate measured by comparing SNVs detected by LongShot

to those detected by Strelka2 using short-read sequences. (d) SNV detection rate overall each chromosome, and (e) true positive rate of SNV-detection for each read depth (6

20). Basecalling speed measured in terms of the number of nucleotide basecalled in a second. Speed of basecalling (f) measured using CPU with a single thread and (g) that

measured using a single GPU and CPU with five threads

Table 2. Read metrics for reads basecalled by five different basecallers

Basecaller Total reads Total yield (Gb) Read length Read identity Insertion rate Deletion rate

Halcyon 3 225 205 20.5 6359 6 5702 0.894 6 0.084 0.028 6 0.023 0.041 6 0.043

Guppy 3 150 600 20.5 6519 6 5748 0.905 6 0.080 0.021 6 0.018 0.041 6 0.044

Bonito 3 160 225 20.3 6410 6 5664 0.902 6 0.080 0.020 6 0.016 0.045 6 0.050

Chiron 2 129 764 17.4 8161 6 5384 0.800 6 0.061 0.047 6 0.019 0.072 6 0.033

Deepnano 2 783 926 18.4 6606 6 5616 0.805 6 0.055 0.042 6 0.014 0.075 6 0.030

Note: Except for total reads and total yield, the mean and standard deviation of each measurement is described. Read identity, insertion rate, deletion rate are

obtained by aligning basecalled reads to reference by minimap2.
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Figure 3f and g showed the result using CPU and GPU respectively.
The basecalling speed of Halcyon is slower than other basecaller ex-
cept for Chiron in the CPU, and the slowest in the GPU.

One advantage of incorporating the attention mechanism is that
one can understand semantic correspondence between raw signals
and basecalled sequences. As shown in Figure 4, an attention matrix
obtained in an inference phase represents the information, where
you can understand which part of the raw signals is referred by
Halcyon to infer a certain nucleotide. Retaining this information
will be helpful when investigating a single nucleotide in detail, such
as for the detection of cytosine methylation.

4 Conclusion

We developed a novel basecaller incorporating state-of-the-art neur-
al network techniques commonly utilized for sequence-to-sequence
learning. Our proposed basecaller, Halcyon, achieved high per-
formance for individual read resolution and the detection of SNVs
using multiple reads. Given the recent advances in downstream
analyses using long read sequences such as the detection of cyto-
sine methylation and structural variations, obtaining accurate
reads with semantic correspondence between raw signals and the
reads using Halcyon would accelerate such applications and lead
to biologically significant findings. Furthermore, as models of
nanopore basecallers officially developed by ONT are not public,
providing the neural network specification of a well-working base-
caller will facilitate the development of a more sophisticated base-
caller in the future.
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Fig. 4. Actual row signal input (top) and an attention matrix obtained in the base-

calling phase to infer nucleotides from the given signals (bottom). The number of
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idly at a certain point (indicated by a circle in the figure). In the corresponding part
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