
Gene expression

Bipartite tight spectral clustering (BiTSC) algorithm for

identifying conserved gene co-clusters in two species

Yidan Eden Sun 1, Heather J. Zhou1 and Jingyi Jessica Li1,2,3,*

1Department of Statistics, University of California, Los Angeles, CA 90095-1554, USA, 2Department of Human Genetics, University of

California, Los Angeles, CA 90095-7088, USA and 3Department of Computational Medicine, University of California, Los Angeles, CA

90095-1766, USA

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol

Received on December 6, 2019; revised on May 20, 2020; editorial decision on August 11, 2020; accepted on August 13, 2020

Abstract

Motivation: Gene clustering is a widely used technique that has enabled computational prediction of unknown gene
functions within a species. However, it remains a challenge to refine gene function prediction by leveraging evolu-
tionarily conserved genes in another species. This challenge calls for a new computational algorithm to identify
gene co-clusters in two species, so that genes in each co-cluster exhibit similar expression levels in each species
and strong conservation between the species.

Results: Here, we develop the bipartite tight spectral clustering (BiTSC) algorithm, which identifies gene co-clusters
in two species based on gene orthology information and gene expression data. BiTSC novelly implements a formu-
lation that encodes gene orthology as a bipartite network and gene expression data as node covariates. This formu-
lation allows BiTSC to adopt and combine the advantages of multiple unsupervised learning techniques: kernel
enhancement, bipartite spectral clustering, consensus clustering, tight clustering and hierarchical clustering. As a
result, BiTSC is a flexible and robust algorithm capable of identifying informative gene co-clusters without forcing
all genes into co-clusters. Another advantage of BiTSC is that it does not rely on any distributional assumptions.
Beyond cross-species gene co-clustering, BiTSC also has wide applications as a general algorithm for identifying
tight node co-clusters in any bipartite network with node covariates. We demonstrate the accuracy and robustness
of BiTSC through comprehensive simulation studies. In a real data example, we use BiTSC to identify conserved
gene co-clusters of Drosophila melanogaster and Caenorhabditis elegans, and we perform a series of downstream
analysis to both validate BiTSC and verify the biological significance of the identified co-clusters.

Availability and implementation: The Python package BiTSC is open-access and available at https://github.com/
edensunyidan/BiTSC.

Contact: jli@stat.ucla.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In computational biology, a long-standing problem is how to predict
functions of the majority of genes that have not been well under-
stood. This prediction task requires borrowing functional informa-
tion from other genes with similar expression patterns in the same
species or orthologous genes in other species. Within a species, how
to identify genes with similar expression patterns across multiple
conditions is a clustering problem, and researchers have successfully
used clustering methods to infer unknown gene functions (Lee,
2004; Ruan et al., 2010). Specifically, functions of less well-
understood genes are inferred from known functions of other genes
in the same cluster. The rationale is that genes in one cluster are

likely to encode proteins in the same complex or participate in a
common metabolic pathway and thus share similar biological func-
tions (Stuart et al., 2003). In the past two decades, gene clustering
for functional prediction has been empowered by the availability of
abundant microarray and RNA-seq data (Bergmann et al., 2003; Le
et al., 2010; Mortazavi et al., 2008; Söllner et al., 2017; Wang et al.,
2009). Cross-species analysis is another approach to infer gene func-
tions by borrowing functional information of orthologous genes in
other species, under the assumption that orthologous genes are like-
ly to share similar functions (Chen et al., 2016; Dede and O�gul,
2013; Fujibuchi et al., 2000; Kristiansson et al., 2013; Le et al.,
2010; Sudmant et al., 2015). Although computational prediction of
orthologous genes remains an ongoing challenge, gene orthology
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information with increasing accuracy is readily available in public
databases such as TreeFam (Schreiber et al., 2014) and PANTHER
(Mi et al., 2019). Hence, it is reasonable to combine gene expression
data with gene orthology information to increase the accuracy of
predicting unknown gene functions.

Given two species, the computational task is to identify con-
served gene co-clusters containing genes from both species. The goal
is to make each co-cluster enriched with orthologous gene pairs and
ensure that its genes exhibit similar expression patterns in each spe-
cies. Among existing methods for this task, the earlier methods (Snel
et al., 2004; Teichmann and Babu, 2002; van Noort et al., 2003)
took a two-step approach: in step 1, genes are clustered in each spe-
cies based on gene expression data; in step 2, the gene clusters from
the two species are paired into co-clusters based on gene orthology
information. This two-step approach has a major drawback: there is
no guarantee that gene clusters found in step 1 can be paired into
meaningful co-clusters in step 2. The reason is that step 1 performs
separate gene clustering in the two species without accounting for
gene orthology, and as a result, any two gene clusters from different
species may share few orthologs and should not be paired into a co-
cluster. More recent methods abandoned this two-step approach.
For example, SCSC (Cai et al., 2010) took a model-based approach,
and MVBC (Sun et al., 2016) took a joint matrix factorization ap-
proach. Both SCSC and MVBC require that genes in two species are
in one-to-one ortholog pairs. This notable limitation prevents SCSC
and MVBC from considering the majority of genes that do not have
known orthologs or have more than one ortholog in the other spe-
cies. Furthermore, SCSC assumes that each orthologous gene pair
has expression levels generated from a Gaussian mixture model and
the gene expression levels are independent between the two species.
This strong distributional assumption does not hold for gene expres-
sion data from RNA-seq experiments. MVBC is also limited by its
required input of verified gene expression patterns, which are often
unavailable for many gene expression datasets. OrthoClust (Yan
et al., 2014) is a network-based gene co-clustering method that con-
structs a unipartite gene network with nodes as genes in two species.
Edges are established based on gene co-expression relationships to
connect genes of the same species, or gene orthology relationships to
connect genes from different species. OrthoClust identifies gene
clusters from this network using a modularity maximization ap-
proach, which cannot guarantee that each identified cluster contains
genes from both species. There are also two open questions regard-
ing the use of OrthoClust in practice: (i) how to define within-
species edges based on gene co-expression and (ii) how to balance
the relative weights of within-species edges and between-species
edges in clustering. Another class of methods is biological network
alignment (Neyshabur et al., 2013; Saraph and Milenkovi�c, 2014;
Singh et al., 2008; Sun et al., 2015), whose aim is to find conserved
node and edge mapping between networks of different species.
These methods have been mostly applied to protein–protein inter-
action networks. If applied to gene co-clustering, they would have
the same requirement as OrthoClust has for pre-computed within-
species gene networks, whose construction from gene expression
data, however, has no gold standards.

Here, we propose bipartite tight spectral clustering (BiTSC), a
novel cross-species gene co-clustering algorithm, to overcome the
above-mentioned disadvantages of the existing methods. BiTSC for
the first time implements a bipartite-network formulation to tackle
the computational task: it encodes gene orthology as a bipartite net-
work and gene expression data as node covariates. This formulation
was first mentioned by Razaee et al. (2019) but not implemented.
BiTSC implements this formulation to simultaneously leverage gene
orthology and gene expression data to identify tight gene co-
clusters, each of which contains similar gene expression patterns in
each species and rich gene ortholog pairs between species. Existing
bipartite network clustering methods, which were developed for
general bipartite networks, are not well suited for this task. Some of
them cannot account for node covariate information (Dhillon,
2001; Larremore et al., 2014; Nie et al., 2017), while others have
strong distributional assumptions that do not hold for gene orthol-
ogy networks and gene expression data measured by RNA-seq

(Razaee et al., 2019; Whang et al., 2013). In contrast, BiTSC adopts
and combines the advantages of multiple unsupervised learning
techniques, including kernel enhancement (Razaee, 2017), bipartite
spectral clustering (Dhillon, 2001), consensus clustering (Monti
et al., 2003), tight clustering (Tseng and Wong, 2005) and hierarch-
ical clustering (Johnson, 1967). As a result, BiTSC has three main
advantages. First, BiTSC is the first gene co-clustering method that
does not force every gene into a co-cluster; in other words, it only
identifies tight gene co-clusters and allows for unclustered genes.
This is advantageous because some genes have individualized func-
tions (Koonin, 2005; Ohno, 1970; Tatusov, 1997) and thus should
not be assigned into any co-cluster. BiTSC is also flexible in allowing
users to adjust the tightness of its identified gene co-clusters. Second,
BiTSC is able to consider all the genes in two species, including those
genes that do not have orthologs in the other species. Third, BiTSC
takes an algorithmic approach that does not rely on any distribu-
tional assumptions, making it a robust method. Moreover, we want
to emphasize that BiTSC is not only a bioinformatics method but
also a general algorithm for network analysis. It can be used to iden-
tify tight node co-clusters in a bipartite network with node
covariates.

2 Materials and methods

2.1 Bipartite network formulation of gene co-clustering
BiTSC formulates the cross-species gene co-clustering problem as a
community detection problem in a bipartite network with node
covariates. A bipartite network contains two sides of nodes, and
edges only exist between nodes on different sides, not between nodes
on the same side. Each node is associated with a covariate vector,
also known as node attributes. In bipartite network analysis, the
community detection task is to divide nodes into co-clusters based
on edges and node covariates, so that nodes in one co-cluster have
dense edge connections and similar node covariates on each side
(Razaee et al., 2019). In its formulation, BiTSC encodes genes of
two species as nodes of two sides in a bipartite network, where an
edge indicates that the two genes it connects are orthologous; BiTSC
encodes each gene’s expression levels as its node covariates, with the
requirement that all genes in one species have expression measure-
ments in the same set of biological samples. For the rest of the
Section 2, the terms ‘nodes’ and ‘genes’ are used interchangeably, so
are ‘sides’ and ‘species,’ as well as ‘node covariates’ and ‘gene ex-
pression levels.’

In mathematical notations, there are m and n nodes on sides 1
and 2, respectively. Edges are represented by a binary bi-adjacency
matrix A ¼ ðaijÞm�n, where aij ¼ 1 indicates that there is an edge be-
tween node i on side 1 and node j on side 2, i.e. gene i from species 1
and gene j from species 2 are orthologous. Note that A is allowed to
be a weighted bi-adjacency matrix with aij 2 ½0;1� when weighted
orthologous relationships are considered. Node covariates are
encoded in two matrices, X1 and X2, which have dimensions m� p1

and n� p2, respectively, i.e. species 1 and 2 have gene expression
levels measured in p1 and p2 biological samples, respectively. The
ith row of X1 is denoted as xT

1i, and similarly for X2. Note that all
vectors are column vectors unless otherwise stated.

2.2 The BiTSC algorithm
BiTSC is a general algorithm that identifies tight node clusters from
a bipartite network with node covariates. Table 1 summarizes the
input data, input parameters and output of BiTSC. Figure 1 illus-
trates the idea of BiTSC, and Supplementary Figure S4 shows the
detailed workflow. In the context of cross-species gene co-
clustering, BiTSC inputs A, which contains gene orthology informa-
tion, and X1 and X2, which denote gene expression data in species 1
and 2. BiTSC outputs tight gene co-clusters such that genes within
each co-cluster are rich in orthologs and share similar gene expres-
sion levels across multiple biological samples in each species. A
unique advantage of BiTSC is that it does not force all genes into co-
clusters and allows certain genes with few orthologs or outlying
gene expression levels to stay unclustered.
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As an overview, BiTSC is an ensemble algorithm that takes mul-
tiple parallel runs. In each run, BiTSC first identifies initial node co-
clusters in a randomly subsampled bipartite subnetwork; next, it
assigns the unsampled nodes to these initial co-clusters based on node
covariates. Then BiTSC aggregates the sets of node co-clusters resulted
from these multiple runs into a consensus matrix, from which it identi-
fies tight node co-clusters by hierarchical clustering. This subsampling-
and-aggregation idea was inspired by consensus clustering (Monti
et al., 2003) and tight clustering (Tseng and Wong, 2005).

BiTSC has five input parameters (Table 1): H, the number of
subsampling runs; q 2 ð0; 1Þ, the proportion of nodes to subsample
in each run; s, the tuning parameter for constructing the enhanced
bi-adjacency matrix; K0, the number of node co-clusters in each run;
a 2 ð0;1Þ, the tightness parameter used to find tight node co-clusters
in the last step. In the hth run, h ¼ 1; . . . ;H, BiTSC has the follow-
ing four steps.

1. Subsampling. BiTSC randomly samples without replacement

~m ¼ bqmc nodes on side 1 and ~n ¼ bqnc nodes on side 2, where

the floor function bxc gives the largest integer less than or equal

to x. We denote the subsampled bi-adjacency matrix as ~A,

whose dimensions are ~m � ~n, and the two subsampled covariate

matrices as ~X1 and ~X2, whose dimensions are ~m � p1 and

~n � p2, respectively.

2. Kernel enhancement. To find initial node co-clusters from this

bipartite subnetwork ~A with node covariates ~X1 and ~X2, a tech-

nical issue is that this subnetwork may have sparse edges and

disconnected nodes. To address this issue, BiTSC uses the kernel

enhancement technique proposed by Razaee (2017) to comple-

ment network edges by integrating node covariates. This kernel

enhancement step will essentially reweight edges by incorporat-

ing pairwise node similarities on both sides. Technically, BiTSC

defines two kernel matrices ~K1 and ~K2, which are symmetric

and have dimensions ~m � ~m and ~n � ~n, for nodes on sides 1 and

2, respectively. In ~Kr, r ¼ 1, 2, the (i, j)th entry is

krð~xri; ~xrjÞ ¼ exp ð�jj~xri � ~xrjjj2=prÞ, where jj~xri � ~xrjjj is the

Euclidean distance between nodes i and j on side r in this subnet-

work. Then BiTSC constructs an enhanced bi-adjacency matrix
~B ¼ ð~K1 þ s1I ~m Þ~Að~K2 þ s2I~n Þ, whose dimensions are ~m � ~n,

where I ~m and I~n are the ~m- and ~n-dimensional identity matrices,

and s ¼ ðs1; s2Þ 2 ½0;1Þ2 is a tuning parameter that balances

the information from the subsampled bi-adjacency matrix and

the two kernel matrices. Since ~B can be rewritten as
~K1

~A ~K2 þ s1
~A ~K2 þ s2

~K1
~A þ s1s2

~A, when s1 and s2 are large,

s1s2
~A dominates and covariate information has little to no im-

pact on ~B; when s1 and s2 are both close to 0, ~K1
~A ~K2 dominates

and covariate information contributes more to the enhanced bi-

adjacency matrix.

3. Bipartite spectral clustering. BiTSC identifies initial node co-

clusters from ~B, the enhanced bi-adjacency matrix of the bipart-

ite subnetwork, by borrowing the idea from Dhillon (2001).

Technically, BiTSC first constructs

~W ¼ ð ~wijÞð ~mþ~nÞ�ð ~mþ~nÞ ¼
0 ~m� ~m

~B ~m�~n

~B
T

~n� ~m 0~n�~n

" #
; (1)

which may be viewed as the adjacency matrix of a unipartite net-
work with ð ~m þ ~nÞ nodes. Then BiTSC identifies K0 mutually ex-
clusive and collectively exhaustive clusters from ~W via normalized
spectral clustering (Ng et al., 2001) as follows:

a. BiTSC computes a degree matrix ~D, an ð ~m þ ~nÞ-dimensional

diagonal matrix whose diagonal entries are the row sums

of ~W.

b. BiTSC computes the normalized Laplacian of ~W as
~L ¼ I ~mþ~n � ~D

�1
2 ~W ~D

�1
2. Note that ~L is a positive semi-

definite ð ~m þ ~nÞ � ð ~m þ ~nÞ matrix with ð ~m þ ~nÞ non-

negative real-valued eigenvalues: 0 ¼ k1 � � � � � k ~mþ~n .

c. BiTSC finds the first K0 eigenvectors of ~L that correspond to

k1; . . . ; kK0
. Each eigenvector has length ð ~m þ ~nÞ. Then

BiTSC collects these K0 eigenvectors column-wise into a ma-

trix ~U, whose dimensions are ð ~m þ ~nÞ � K0.

Fig. 1. Diagram illustrating the input and output of BiTSC. The identified tight node co-clusters satisfy that, within any co-cluster, nodes on the same side share similar covari-

ates, and nodes from different sides are densely connected. In the context of gene co-clustering, within any co-cluster, genes from the same species share similar gene expression

levels across multiple conditions, and genes from different species are rich in orthologs

Table 1. Input and output of BiTSC

Input data: bipartite network with node covariates

� A: m � n bi-adjacency matrix

� X1: m � p1 covariate matrix for side 1

� X2: m � p2 covariate matrix for side 2

Input parameters:

� H: number of subsampling runs

� q 2 ð0;1Þ: proportion of nodes to subsample in each run

� s: tuning parameter for constructing the enhanced bi-adjacency

matrix

� K0: number of node co-clusters to identify in each run

� a 2 ð0; 1Þ: tightness parameter

Output:

� Tight node co-clusters that are mutually exclusive subsets of

the ðmþ nÞ nodes

Bipartite tight spectral clustering (BiTSC) 1227
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d. BiTSC normalizes each row of ~U to have a unit ‘2 norm and

denotes the normalized matrix as ~V. Specifically, ~V also has

dimensions ð ~m þ ~nÞ � K0, and its ith row ~vT
i ¼ ~uT

i =jj~uijj,
where ~uT

i is the ith row of ~U and jj � jj denotes the ‘2 norm.

e. BiTSC applies K-means clustering to divide the ð ~m þ ~nÞ rows

of ~V into K0 clusters. In detail, Euclidean distance is used to

measure the distance between each row and each cluster

center.

The resulting K0 clusters of ð ~m þ ~nÞ nodes are regarded as the
initial K0 node co-clusters.

4. Assignment of unsampled nodes. BiTSC assigns the unsampled

nodes, which are not subsampled in step 1, into the initial K0

node co-clusters. Specifically, there are ðm� ~mÞ and ðn� ~nÞ
unsampled nodes on sides 1 and 2, respectively. For each initial

node co-cluster, BiTSC first calculates a mean covariate vector

on each side. For example, if a co-cluster contains nodes i and j

on side 1 of the bipartite subnetwork, its mean covariate vector

on side 1 would be computed as ð~x1i þ ~x1jÞ=2. BiTSC next

assigns each unsampled node to the co-cluster whose mean cova-

riate vector (on the same side as the unsampled node) has the

smallest Euclidean distance to the node’s covariate vector.
With the above four steps, in the hth run, h ¼ 1; . . . ;H, BiTSC

obtains K0 node co-clusters, which are mutually exclusive and col-
lectively containing all the m nodes on side 1 and n nodes on side 2.
To aggregate the H sets of K0 node co-clusters, BiTSC first con-
structs a node co-membership matrix for each run. Specifically,

MðhÞ ¼ ðmðhÞij ÞðmþnÞ�ðmþnÞ denotes a node co-membership matrix

resulted from the hth run. MðhÞ is a binary and symmetric matrix
indicating the pairwise cluster co-membership of the ðmþ nÞ nodes.

That is, an entry in MðhÞ is 1 if the two nodes corresponding to its
row and column are assigned to the same co-cluster; otherwise, it is

0. Then BiTSC constructs a consensus matrix M ¼ ðmijÞðmþnÞ�ðmþnÞ

by averaging Mð1Þ; . . . ;MðHÞ, i.e. mij ¼
PH
h¼1

m
ðhÞ
ij =H 2 ½0; 1�. An entry

of M indicates the frequency that the two nodes corresponding to its
row and column are assigned to the same co-cluster, among the H
runs.

Finally, BiTSC identifies tight node co-clusters from M such that
within every co-cluster, all pairs of nodes have been previously clus-
tered together at a frequency of at least a, the input tightness param-
eter. Specifically, BiTSC considers ð1�MÞ as a pairwise distance
matrix of ðmþ nÞ nodes. Then BiTSC applies hierarchical clustering
with complete linkage to ð1�MÞ, and it subsequently cuts the
resulting dendrogram at the distance threshold ð1� aÞ. This guaran-
tees that all the nodes within each resulting co-cluster have pairwise
distances no greater than ð1� aÞ, which is equivalent to being previ-
ously clustered together at a frequency of at least a. A larger a value
will lead to finer co-clusters, i.e. a greater number of smaller clusters
and unclustered nodes. BiTSC provides a visualization-based ap-
proach to help users choose a: for each candidate a value, BiTSC col-
lects the nodes in the resulting tight co-clusters and plots a heatmap
of the submatrix of M that corresponds to these nodes; users are
encouraged to pick an a value whose resulting number of tight co-
clusters is close to the number of visible diagonal blocks in the heat-
map. (Please see Supplementary Materials for a demonstration in
the real data example in Section 3.2) Regarding the choice of K0, i.e.
the input number of co-clusters in each run, the entries of M provide
a good guidance. A reasonable K0 should lead to many entries equal
to 0 or 1 and few having fractional values in between (Monti et al.,
2003). Following this reasoning, BiTSC implements a computation-
ally efficient algorithm to automatically choose K0 (Algorithm S1 in
Supplementary Section S6) while also giving users the option to in-
put their preferred K0 value. In Supplementary Section S6, we

demonstrate the use of Algorithm S1 for the real data application
(Section 3.2).

To summarize, BiTSC leverages joint information from bipart-
ite network edges and node covariates to identify tight node co-
clusters that are robust to data perturbation, i.e. subsampling. In
its application to gene co-clustering, BiTSC integrates gene orthol-
ogy information with gene expression data to identify tight gene
co-clusters, which are enriched with orthologs and contain genes
of similar expression patterns in both species. In particular, within
each subsampling run, the bipartite spectral clustering step identi-
fies co-clusters enriched with orthologs; another two steps, the
kernel enhancement and the assignment of unsampled nodes, en-
sure that genes with similar expression patterns in each species
tend to be clustered together. Moreover, the subsampling-and-
aggregation approach makes the output tight gene co-clusters ro-
bust to the existence of outlier genes, which may have few ortho-
logs or exhibit outlying gene expression patterns. The pseudocode
of BiTSC is in Algorithm 1.

3 Results

3.1 Simulation validates the design, performance and

robustness of BiTSC
We designed multiple simulation studies to justify the algorithm de-
sign of BiTSC by comparing it with the six possible variants listed in
Supplementary Section S1: spectral-kernel, spectral, BiTSC-1,
BiTSC-1-nokernel, BiTSC-1-NC and BiTSC-1-NC-nokernel.

We use the weighted Rand index (Thalamuthu et al., 2006),
defined in Supplementary Section S3, as the evaluation measure of
co-clustering results. The weighted Rand index compares two sets of
node co-clusters: the co-clusters found by an algorithm and the true
co-clusters used to generate data, and outputs a value between 0 and
1, with a value of 1 indicating perfect agreement between the two
sets. The weighted Rand index is a proper measure for evaluating
BiTSC and its variants because it accounts for noise nodes that do
not belong to any co-clusters.

We compared BiTSC with its six possible variants in identifying
node co-clusters from simulated networks with varying levels of
noise nodes (i.e. h in Supplementary Section S2) and varying average
degrees of nodes. It is expected that the identification would become
more difficult as the level of noise nodes increases or as the average
degree decreases. Our results in Figure 2a are consistent with this ex-
pectation. Figure 2a also shows that BiTSC consistently outperforms

Algorithm 1 Pseudocode of BiTSC

• For h ¼ 1 to H:

1. Subsample ~m ¼ bqmc nodes from side 1 and ~n ¼ bqnc
nodes from side 2 to obtain a subsampled bi-adjacency

matrix ~A and two subsampled node covariate matrices
~X1 and ~X2

2. Use kernel enhancement to construct an enhanced bi-

adjacency matrix ~B from ~A; ~X1 and ~X2

3. Find K0 initial node co-clusters from ~B by bipartite

spectral clustering

4. Obtain K0 node co-clusters by assigning the unsampled

nodes into the K0 initial node co-clusters; encode the K0

node co-clusters as a co-membership matrix MðhÞ

• Calculate the consensus matrix M as the average of

Mð1Þ; . . . ;MðHÞ

• Identify tight node co-clusters from M with tightness par-

ameter a
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its six variant algorithms at all noise node levels and average degrees
greater than five. This phenomenon is reasonable because BiTSC
performs subsampling on the network, and the subsampled net-
work, if too sparse, would make the bipartite spectral clustering al-
gorithm fail. In fact, the three algorithms that outperform BiTSC for
sparse networks, i.e. spectral-kernel, BiTSC-1 and BiTSC-1-NC,
only perform bipartite spectral clustering on the entire network, so
they are more robust to network sparsity. In addition, we observe
that the three variants that do not use kernel enhancement consist-
ently have the worst performance. In summary, BiTSC has a clear
advantage over its possible variants in the existence of noise nodes
and when the network is not overly sparse. These results confirm the
effectiveness of the subsampling-and-aggregation approach and the
kernel enhancement step, and they also show that subsampling in
the first step is beneficial if the network is not too sparse, thus justi-
fying the design of BiTSC.

In addition to validating the design of BiTSC, we also performed
simulation studies to compare BiTSC with OrthoClust (Yan et al.,
2014), a gene clustering method that also simultaneously uses gene
expression and orthology information. We chose OrthoClust as the
baseline method to compare BiTSC against because OrthoClust is
the only recent method that does not (i) exclude genes not in one-to-
one orthologs like SCSC (Cai et al., 2010) and MVBC (Sun et al.,

2016) do or (ii) have strong distributional assumptions as SCSC
does. Moreover, OrthoClust has a unipartite network formulation,
so its comparison with BiTSC would inform the effectiveness of our
bipartite network formulation. The OrthoClust software takes three
input files: two within-species gene co-expression networks con-
structed by users and one between-species ortholog network.
Following the recommendation in OrthoClust, we constructed the
within-species gene co-expression networks by connecting each gene
to its closest gene(s), whose number is specified by a tuning param-
eter rank, in terms of Euclidean distance. OrthoClust allows users to
specify a j value (in the between-species ortholog network input
file), which balances the weights of within-species edges and
between-species edges in the cost function. Our results in Figure 2b
show that BiTSC consistently outperforms OrthoClust under vari-
ous simulation settings.

Furthermore, we performed simulation studies to show the
robustness of BiTSC to its input parameters: K0 (the number of
co-clusters to identify in each subsampling run), q (the propor-
tion of nodes to subsample in each run) and s ¼ ðs1; s2Þ (the
tuning parameters in the kernel enhancement step)
(Supplementary Section S4). We find that BiTSC performs well
when K0 is set to be equal to or larger than K, the number of
true co-clusters (Supplementary Fig. S6a). For q, we recommend

(a)

(b)

Fig. 2. Performance of BiTSC versus (a) its six variant algorithms (Supplementary Section S1) and (b) OrthoClust. The weighted Rand index is plotted as a function of noise

node level (first column) or average degree (second column). The datasets are simulated using the approach described in Supplementary Section S2. For both columns, we set

K¼15, n1 ¼ 50; n2 ¼ 70; p1 ¼ p2 ¼ 2; r1 ¼ r2 ¼ 10 and x1 ¼ x2 ¼ 0:1. For the first column, we vary the noise node level h from 0.05 to 2.05 and set p¼ 0.15 and

q¼0.03. For the second column, we set h ¼ 0:5, vary p from 0.005 to 0.175, set q ¼ p=5, and as a result vary the average degree from 1 to 51 (see Supplementary Section S2.1

for details about the average degree). For the input parameters of BiTSC and its variants, we choose H ¼ 50; q ¼ 0:8; s ¼ ð1; 1Þ;K0 ¼ K ¼ 15 and a ¼ 0:7 whenever applicable.

We set K0 ¼ K following the convention that when the ground truth is known in simulation studies, one can select input parameters based on the truth (Karrer and Newman,

2011; Larremore et al., 2014; Razaee et al., 2019; Zhao et al., 2012). For OrthoClust, rank ¼ 3 means that in the construction of within-species gene co-expression networks,

we connect each gene with its three closest genes in terms of Euclidean distance; similarly for rank ¼ 1 and rank ¼ 5. In this figure, genes in identified co-clusters that only con-

tain genes from one species are treated as noise genes, just like unclustered genes, in the calculation of the weighted Rand index. This is why in the second column of (b), we

cannot see the curves for OrthoClust (rank ¼ 5)—no co-clusters with genes from both species were identified. We show that BiTSC also outperforms OrthoClust when we

only consider unclustered genes as noise genes in Supplementary Figure S1
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a default value of 0.8 (Supplementary Fig. S6b). For s, we rec-
ommend a default value of (1, 1) based on Supplementary
Figures S6c and S7, which show that small s values lead to bet-
ter clustering results when the network is sparse, and that BiTSC
becomes more robust to s values when the network becomes
denser. In general, small s values put large weights on node
covariates, whereas large s values make BiTSC use more of the
edge information to find node clusters. Users have the flexibility
to set s values based on their confidence or preference on node
covariates and edges. For instance, if a user would like to find
co-clusters such that between-species edges are dense but within-
species gene expression might be dissimilar, he or she may opt
for larger s values provided that the kernel enhancement

compensates the edge sparsity enough so that BiTSC can success-
fully run. Overall, BiTSC is robust to the specification of these
tuning parameters.

3.2 BiTSC identifies gene co-clusters from Drosophila

melanogaster and Caenorhabditis elegans timecourse

gene expression data and predicts unknown gene

functions
In this section, we demonstrate how BiTSC is capable of identifying
conserved gene co-clusters of D.melanogaster (fly) and C.elegans
(worm). We compared BiTSC with OrthoClust (Yan et al., 2014)
and performed a series of downstream bioinformatics analysis to

Table 2. Fly-worm gene co-clusters identified by BiTSC (Section 3.2)

Co-cluster No. of fly genesa

(without GOb)

No. of worm genes

(without GO)

Examples BP GO terms highly enriched

in both speciesc

P2
d P3

e

1 106 (19) 83 (15) Chemical synaptic transmission; synaptic signaling 1.35e-07 2.77e-53

2 46 (8) 119 (28) Muscle cell development 1.70e-09 1.50e-17

3 75 (3) 83 (6) Peptide and amide biosynthetic process 1.17e-08 6.23e-180

4 73 (4) 50 (13) ATP metabolic process 2.72e-12 1.61e-58

5 57 (4) 62 (8) Protein catabolic process; proteolysis 3.15e-09 3.15e-56

6 83 (4) 36 (8) Mitochondrial translation; mitochondrial gene expression 2.60e-03 2.04e-32

7 89 (13) 25 (8) Protein localization to endoplasmic reticulum 2.69e-10 7.72e-22

8 80 (16) 26 (11) Ribosome biogenesis; RNA metabolic processing 2.05e-16 7.50e-37

9 29 (3) 76 (19) Cilium and cell projection organization 2.03e-09 3.81e-05

10 32 (2) 24 (6) DNA replication and metabolic process 2.98e-06 6.53e-02

11 25 (4) 19 (4) DNA replication 2.46e-06 1.00e-00

12 28 (4) 15 (4) G protein-coupled glutamate receptor signaling pathway 4.17e-14 1.81e-10

13 16 (7) 25 (12) Glycoside catabolic process; transmembrane transport 1.52e-02 5.29e-46

14 15 (1) 24 (4) DNA metabolic process; cell cycle process 1.83e-05 3.11e-02

15 24 (2) 11 (1) Oxidation reduction process 1.41e-03 2.36e-31

16 14 (0) 15 (1) Cilium organization; cell projection assembly 1.20e-07 1.83e-02

aNumber of fly genes in the co-cluster.
bNumber of fly genes without BP GO term annotations in the co-cluster.
cExamples of BP GO terms that are highly enriched in both species in the co-cluster (Supplementary Section S7.1). These example BP GO terms are used as

labels of the co-clusters in Figure 4.
dP-value of the co-cluster based on the GO term overlap test (Supplementary Section S7.2).
eP-value of the co-cluster based on the ortholog enrichment test (Supplementary Section S7.3).

(a) (b) (c)

Fig. 3. Comparison of BiTSC and OrthoClust in terms of their identified fly-worm gene co-clusters (Section 3.2.1). (a) Distributions of within-cluster enrichment of ortholog

pairs. For BiTSC and OrthoClust, a boxplot is shown for the �log10P3 values calculated by the ortholog pair enrichment test (Supplementary Section S7.3) on the identified

gene co-clusters. Larger �log10P3 values indicate stronger enrichment. (b) Distributions of within-cluster gene expression similarity. For BiTSC and OrthoClust, a boxplot is

shown for the average pairwise Pearson correlation (PPC) between genes of the same species within each identified co-cluster. (c) Within-cluster gene expression similarity ver-

sus ortholog enrichment. Each point corresponds to one co-cluster identified by BiTSC or OrthoClust. The �log10P3 and average PPC values are the same as those shown in

(a) and (b)
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both validate BiTSC and verify the biological significance of its iden-
tified co-clusters. We compared BiTSC with OrthoClust and not
SCSC or MVBC for the same reasons as described in Section 3.1.

3.2.1 BiTSC outperforms OrthoClust in identifying gene co-clusters

with enriched ortholog pairs and similar expression levels

We applied BiTSC and OrthoClust to the D.melanogaster and
C.elegans developmental-stage RNA-seq data generated by the
modENCODE consortium (Gerstein et al., 2014; Li et al., 2014)
and the gene orthology annotation from the TreeFam database (Li
et al., 2006). For data processing, please see Supplementary Section
S5. We ran BiTSC with input parameters H¼100, q ¼ 0:8,
s ¼ ð1; 1Þ, K0 ¼ 30 and a ¼ 0:9. For the choices of K0 and a, please
see Supplementary Section S6 and Supplementary Materials. We ran
OrthoClust by following the instruction on its GitHub page (https://
github.com/gersteinlab/OrthoClust accessed on November 12,
2019). Specifically, we constructed the within-species gene co-
expression networks by connecting each gene with its closest five
genes in terms of Pearson correlation and used j¼1 (the default
value). For details regarding the computational time of BiTSC and
OrthoClust, please see Supplementary Section S8. To compare
BiTSC and OrthoClust, we picked a similar number of large gene
co-clusters identified by either method: 16 BiTSC co-clusters with at
least 10 genes in each species (Table 2) versus 14 OrthoClust co-
clusters with at least 2 genes in each species (Supplementary Table
S1). Compared with OrthoClust, the co-clusters identified by BiTSC
are more balanced in sizes between fly and worm. In contrast,
OrthoClust co-clusters typically have many genes in one species but
few genes in the other species; in particular, if we restricted the
OrthoClust co-clusters to have at least 10 genes in each species, only
two co-clusters would be left. We also ran OrthoClust again with
j¼3 (the value used in OrthoClust paper) instead of j¼1, and the
result is very similar (Supplementary Table S2). We evaluated both
methods’ identified co-clusters in two aspects (using j¼1 for
OrthoClust): the enrichment of orthologous genes and the similarity

of gene expression levels in each co-cluster. Figure 3 shows that the
BiTSC co-clusters exhibit both stronger enrichment of orthologs and
higher similarity of gene expression than the OrthoClust co-clusters
do. Note that in general, the co-clusters identified by OrthoClust
(Supplementary Table S1), with cluster sizes ranging between 184
and 1002, are larger than those identified by BiTSC (Table 2).
Although the difference in cluster size does not invalidate our ana-
lysis, for further investigation, we adjusted the input parameters of
BiTSC to obtain co-clusters that are closer to those identified by
OrthoClust in size. With the new input parameter choices for
BiTSC, we are able to further confirm the advantages of BiTSC in
Supplementary Figure S11. Therefore, the gene co-clusters identified
by BiTSC have better biological interpretations than their
OrthoClust counterparts because of their more balanced gene num-
bers in two species, greater enrichment of orthologs and better
grouping of genes with similar expressions.

3.2.2 Functional analysis verifies the biological significance of

BiTSC gene co-clusters

We next analyzed the 16 gene co-clusters identified by BiTSC. First,
we verified that genes in each co-cluster exhibit similar functions
within fly and worm. We performed the GO term enrichment test
(Supplementary Section S7.1) for each co-cluster in each species.
The results are summarized in Supplementary Figure S2 and
Supplementary Materials, which show that every co-cluster has
strongly enriched GO terms with extremely small P-values, i.e. P1

values. Hence, genes in every co-cluster indeed share similar bio-
logical functions within fly and worm. We also calculated the pair-
wise Pearson correlation coefficients between genes of the same
species within each co-cluster (Supplementary Fig. S3). The overall
high correlation values also confirm the within-cluster functional
similarity in each species. Second, we show that within each co-
cluster, genes share similar biological functions between fly and
worm. We performed the GO term overlap test (Supplementary
Section S7.2), which output small P-values, i.e. P2 values, suggesting

Fig. 4. Visualization of the 16 gene co-clusters found by BiTSC from the fly-worm gene network (Section 3.2). The visualization is based on the consensus matrix M using the

R package igraph (Csardi and Nepusz, 2006) (https://igraph.org, the Fruchterman–Reingold layout algorithm). Genes in the 16 co-clusters are marked by distinct colors, with

squares and circles representing fly and worm genes, respectively. For each co-cluster, representative BP GO terms are labeled (Table 2). 1000 randomly chosen unclustered

genes are also displayed and marked in white. In this visualization, both the gene positions and the edges represent values in M. The higher the consensus value between two

genes, the closer they are positioned and the darker the edge is between them. If the consensus value is zero, then there is no edge

Bipartite tight spectral clustering (BiTSC) 1231

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/9/1225/5894545 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://github.com/gersteinlab/OrthoClust
https://github.com/gersteinlab/OrthoClust
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa741#supplementary-data
https://igraph.org


that fly and worm genes in each co-cluster have a significant overlap
in their GO terms. Supplementary Figure S2 also illustrates this
functional similarity between fly and worm genes in the same co-
cluster. In summary, the 16 gene co-clusters exhibit clear biological
functions, some of which are conserved between fly and worm.

The above analysis results are summarized in Table 2.
Specifically, for each co-cluster, Table 2 lists the numbers of fly and
worm genes, the numbers of genes lacking BP GO term annotations,
for example, GO terms enriched in both species by the GO term en-
richment test, and P-values from the GO term overlap test and the
ortholog enrichment test (Supplementary Section S7). Interestingly,
we observe that when BiTSC identifies co-clusters, it simultaneously
leverages gene expression similarity and gene orthology to comple-
ment each other. For example, co-clusters 10 and 11 do not have
strong enrichment of orthologs but exhibit extremely high similarity
of gene expression in both fly and worm; on the other hand, co-
cluster 13 has relatively weak gene expression similarity but particu-
larly strong enrichment of orthologs. This advantage of BiTSC
would enable it to identify conserved gene co-clusters even based on
incomplete orthology information.

We further visualized the 16 gene co-clusters using the concensus
matrix M. Figure 4 plots the fly and worm genes in these co-
clusters, as well as 1000 randomly sampled unclustered genes as a
background. Supplementary Figure S9 shows that the pattern of the
16 co-clusters is robust to the random sampling of unclustered
genes. We observe that many co-clusters are well separated, suggest-
ing that genes in these different co-clusters are rarely clustered to-
gether. We also see that some co-clusters are close to each other,
including co-clusters 1 and 12, co-clusters 9 and 16 and co-clusters
10, 11 and 14. To investigate the reason behind this phenomenon,
we inspected Table 2 and Supplementary Figure S2 to find that over-
lapping co-clusters share similar biological functions. This result
again confirms that the identified gene co-clusters are biologically
meaningful.

Moreover, we computationally validated BiTSC’s capacity to
predict unknown gene functions. Many co-clusters contain genes
that do not have BP GO terms. For each of these genes, we predicted
its BP GO terms as its co-cluster’s top enriched BP GO terms. Then
we compared the predicted BP GO terms with the gene’s other func-
tional annotation, in particular, molecular function (MF) or cellular
component (CC) GO terms. Our comparison results in
Supplementary Figure S10 show that the predicted BP GO terms are
highly compatible with the known MF or CC GO terms, suggesting
the validity of our functional prediction based on the BiTSC co-
clusters.

4 Discussion

BiTSC is a general bipartite network clustering algorithm. It is
unique in identifying tight node co-clusters such that nodes in a co-
cluster share similar covariates and are densely connected. In add-
ition to cross-species gene co-clustering, BiTSC has a wide applica-
tion potential in biomedical research. In general, BiTSC is applicable
to computational tasks that can be formulated as a bipartite net-
work clustering problem, where edges and node covariates jointly
indicate a co-clustering structure. Here, we list three examples. The
first example is the study of transcription factor (TF) co-regulation.
In a TF-gene bipartite network, TFs and genes constitute nodes of
two sides, an edge indicates that a TF regulates a gene, and node
covariates are expression levels of TFs and genes. BiTSC can identify
TF-gene co-clusters so that every co-cluster indicates a group of TFs
co-regulating a set of genes. The second example is cross-species cell
clustering. One may construct a biparite cell network, in which cells
of one species form nodes of one side, by drawing an edge between
cells of different species if the two cells are similar in some way, e.g.
co-expression of orthologous genes. Node covariates may be gene
expression levels and other cell characteristics. Then BiTSC can
identify cell co-clusters as conserved cell types in two species. The
third example is drug repurposing. One may construct a drug-target
bipartite network by connecting drugs to their known targets (usual-
ly proteins) and including biochemical properties of drugs and

targets as node covariates (Mei et al., 2013). BiTSC can then identify
drug–target co-clusters to reveal new potential targets of drugs.

A natural generalization of BiTSC is to identify node co-clusters
in a multipartite network, which has more than two types of nodes.
An important application of multipartite network clustering is the
identification of conserved gene co-clusters across multiple species.
Here, we describe a possible way of generalizing BiTSC in this appli-
cation context. Suppose that we want to identify conserved gene co-
clusters across three species: Homo sapiens (human), Mus musculus
(mouse) and Pan troglodytes (chimpanzee). We can encode the
three-way gene orthology information in a tripartite network and in-
clude gene expression levels as node covariates. To generalize
BiTSC, we may represent the tripartite network as three bi-
adjacency matrices (one for human and mouse, one for human and
chimpanzee, and one for mouse and chimpanzee) and three covari-
ate matrices, one per species. A key step in this generalization is to
stack three (subsampled and kernel-enhanced) bi-adjacency matrices
into a unipartite adjacency matrix and apply spectral clustering.
Other parts of BiTSC, such as the subsampling-and-aggregation ap-
proach, the assignment of unsampled nodes and the hierarchical
clustering in the last step to identify tight co-clusters, will stay the
same. We have implemented this functionality in the BiTSC soft-
ware package. Compared to the existing method OrthoClust (Yan
et al., 2014) that can also perform multispecies gene co-clustering,
BiTSC is more transparent in its combination of gene orthology and
expression information (because guidance is provided for the selec-
tion of each tuning parameter in BiTSC) and is more focused on
identifying gene co-clusters rather than within-species gene clusters.

BiTSC is also generalizable to find tight node co-clusters in a bi-
partite network with node covariates on only one side or completely
missing. In the former case, we will perform a one-sided kernel en-
hancement on the bi-adjacency matrix using available node covari-
ates on one side. We also need to perform bipartite spectral
clustering on the whole network to obtain an Euclidean embedding,
i.e. the matrix V in BiTSC-1 (Supplementary Section S1), for the
nodes without covariates. Then we can apply the same subsampling-
and-aggregation approach as in BiTSC, except that in each subsam-
pling run, we will assign the unsampled nodes without covariates
into initial co-clusters based on Euclidean embedding instead of
node covariates. In the latter case where all nodes have no covari-
ates, we will skip the kernel enhancement step, and BiTSC-1-NC, a
variant of BiTSC described in Supplementary Section S1, will be
applicable.

Another extension of BiTSC is to output soft co-clusters instead
of hard co-clusters. In soft clustering, a node may belong to multiple
clusters in a probabilistic way, allowing users to detect nodes whose
cluster assignment is ambiguous. Here, we describe two ideas of
implementing soft clustering in BiTSC. The first idea is that after we
obtain the consensus matrix (M), we replace the current hierarchical
clustering by spectral clustering to find the final co-clusters; inside
spectral clustering, we use fuzzy c-means clustering (Bezdek, 1981;
Dunn, 1973) instead of the regular K-means to find soft co-clusters.
The second idea is that after we obtain the distance matrix (1�M),
we use multidimensional scaling to find a two-dimensional embed-
ding of the nodes and then perform fuzzy c-means clustering to find
soft co-clusters.

Finally, we comment that the relationship between community
detection and link prediction is an open question in network re-
search. We preliminarily explored the performance of BiTSC and
OrthoClust in terms of link prediction in the fly-worm network
(Section 3.2) and found that BiTSC achieves a reasonable and better
performance than OrthoClust in this task (Supplementary Fig. S12).
We leave further investigation regarding the relative advantages and
disadvantages of using community detection methods versus existing
supervised learning methods for link prediction to future research.

To summarize, BiTSC is a flexible algorithm that is generalizable
for multipartite networks, bipartite networks with partial node
covariates, and soft node co-clustering. This flexibility will make
BiTSC a widely applicable clustering method in network analysis.
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