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Abstract

Motivation: Complex data structures composed of different groups of observations and blocks of variables are in-
creasingly collected in many domains, including metabolomics. Analysing these high-dimensional data constitutes
a challenge, and the objective of this article is to present an original multivariate method capable of explicitly taking
into account links between data tables when they involve the same observations and/or variables. For that purpose,
an extension of standard principal component analysis called NetPCA was developed.

Results: The proposed algorithm was illustrated as an efficient solution for addressing complex multigroup and mul-
tiblock datasets. A case study involving the analysis of metabolomic data with different annotation levels and origi-
nating from a chronic kidney disease (CKD) study was used to highlight the different aspects and the additional out-
puts of the method compared to standard PCA. On the one hand, the model parameters allowed an efficient
evaluation of each group’s influence to be performed. On the other hand, the relative relevance of each block of vari-
ables to the model provided decisive information for an objective interpretation of the different metabolic annotation
levels.

Availability and implementation: NetPCA is available as a Python package with NumPy dependencies.

Contact: julien.boccard@unige.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The collection of data organized in several subsets of both obser-
vations and variables has become a common practice in many
scientific domains, including the life sciences and, more specifical-
ly, metabolomics (Boccard and Rudaz, 2014). Complex high-
dimensional data structures result from these experimental setups,
and new methods are needed to explore the mass of data pro-
duced and extract the most relevant biochemical information to
characterize a phenomenon of interest. The simplest structure of
multivariate data is the two-dimensional matrix, in which values
from measurements conducted on a set of variables performed
over a set of observations can be gathered. As soon as data be-
come more complex, for instance, when different groups of
observations or multiple data sources are combined, more sophis-
ticated representations are needed. Different terms are used in
the literature to describe data composed of several subsets of

observations and/or variables. The terminology used in this work
is as follows:

• Multiblock characterizes data composed of several blocks of

variables,
• Multigroup designates a dataset involving known groups of

observations and
• Repeated measures describe data including multiple measure-

ments of the same variables to characterize the same objects.

The most studied scenarios are multigroup (Flury, 1984;
Krzanowski, 1984; Niesing, 1997) and multiblock (Carroll, 1968;
De Roover et al., 2012, 2013; Hanafi et al., 2011; Kettenring, 1971;
Tenenhaus and Vinzi, 2005) data, where measurements from several
experimental groups or different data blocks need to be understood
both within the perspective of each individual data matrix and from
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a global point of view. The latter approach is particularly relevant
for the integration of data obtained from different experimental
sources (Hanafi et al., 2006). This includes (i) different biological
layers in systems biology, e.g. transcripts, proteins and metabolites,
(ii) different analytical techniques offering complementary informa-
tion on samples, e.g. liquid chromatography-mass spectrometry
(LC-MS) and nuclear magnetic resonance (NMR) and (iii) different
levels of confidence within a given technique, e.g. annotation levels
in metabolomics. Moreover, experimental setups often involve mul-
tiple groups of similar observations, e.g. samples from control,
treated, exposed or diseased individuals. In this case, it can be very
useful to consider explicitly this structure in the modelling process
to explore the specific characteristics of each group. A natural exten-
sion of these situations is therefore to collect data from several
groups of observations (multigroup) and several blocks of variables
(multiblock), as described inFigure 1. In that context, the multi-
group and multiblock approach constitutes a relevant modelling
strategy, as each block or each group is considered as a unit of infor-
mation with the same a priori influence on the global model.
Additionally, it provides access to submodels, as well as an assess-
ment of the contribution of the blocks and groups to the global
structure.

For example, the experimental setup could involve the collection
of both urine and plasma samples (leading to two blocks of varia-
bles) from two groups of patients, i.e. Control, and Treated. Two
repeats of the measurements before and after the treatment could
offer valuable information on patient-specific effects, thus giving
rise to two observations per treated patient. Moreover, additional
information could be gained from the inclusion of another group of
External controls, for which only the plasma sample is available.
The structure of the whole dataset corresponds therefore to a 7-
block arrangement as depicted in Figure 2, with the block-to-group
mappings summarized in Table 1. The challenge is then to handle
this type of complex data structure in a generic way. Most forms of
multigroup and multiblock analysis methods can actually be consid-
ered as a combination of several single-group models evaluated ei-
ther from different observations with an added constraint of sharing
the same loadings over the variables, or from multiple variable
blocks measured over the same set of observations. The fact that, al-
gebraically, multigroup and multiblock analysis are the same prob-
lem is well known (Van Deun et al., 2009). The actual difference lies
only at the level of data processing, i.e. how the different blocks
should be centred and scaled. The components are then obtained by
some low-rank approximate decomposition of the matrices, in an
appropriate sense (typically the least squares of the residuals). As a
consequence, these components define new directions in the data
space grasping salient characteristics of multiple groups of observa-
tions and/or blocks of variables. From that point of view, the struc-
tural relations between the data matrices are equality constraints
between the so-called loadings of the low-rank decompositions.
Recent works have led to the development of new methods that con-
stitute generalizations of multivariate methods to multigroup or
multiblock cases (Eslami et al., 2013; Tenenhaus and Tenenhaus,
2014). The aim of the present work is to extend that rationale to ar-
bitrary relations of shared loadings between data tables, whether

between groups of observations or between blocks of variables. The
proposed approach aims to model the data matrices by a set of lin-
ear models whose principal directions of covariations are shared.
Depending on the multiblock or multigroup setting, this leads to a
model that can be seen as a within-group analysis when the means
of the variables in a given block are zeros, or unsupervised between-
group analysis, when the means of variables across all connected
groups are considered. Among the several different data configura-
tions (groups or blocks), we can distinguish the most typical cases:
(i) one block and one group boils down to standard PCA, (ii) mul-
tiple blocks describing a single group of observations is equivalent
to CPCA (or SUM-PCA), (iii) multiple groups characterized by a sin-
gle block leads to SCA-P (Van Deun et al., 2009). As the goal of the
model is to provide a structured decomposition of the data network
by extracting common information among groups of observations
and blocks of variables, it does not attempt to explicitly disentangle
common and individual sources of variability using loadings defin-
ing specific subspaces. To this aim, the reader can refer to several re-
cently published methods potentially involving orthogonality
constraints to separate joint covariations from distinct variations
(Lock et al., 2013; Måge et al., 2012; Menichelli et al., 2014; Næs
et al., 2013; Schouteden et al., 2013). Because NetPCA is not based
on this common/distinctive information decomposition principle,
the same number of components is used to summarize all the data
matrices of the network. This feature can be seen as a limitation, as
groups of observations and/or blocks of variables can have very dif-
ferent ranks, that can lead to discrepancies in the number of compo-
nents needed to capture the dimensions underlying the different data
matrices. However, it should be noted that NetPCA is able to grasp
specific patterns of given groups of observations or blocks of
variables.

As connection links between data matrices define the constraints
of the model, other general structures of block-based data could be
handled using a similar approach, such as in the case of missing
blocks or tensor substructures, as shown in Figure 2. This illustrates
the high versatility of the proposed approach, which makes it pos-
sible to take advantage of all available data by relying on the

Fig. 1. Basic multiblock structures. From left to right: different observation groups

with the same variables; different variable blocks with the same observations; and

both multiple observations and multiple variables

Fig. 2. Complex data structure. Each square corresponds to a data matrix of given

observations and variables. Left: dataset with two variables blocks and three obser-

vations groups, a missing block (O.group3 � V.block2) and an additional repeated

measure of O.group2 for both V.block1 and V.block2. Right: corresponding net-

work structure highlighting the links of shared loadings between variables (dotted

lines) and observations (solid lines). Note that the sharing is transitive and that this

structure cannot be correctly flattened into a concatenated matrix

Table 1. Description of study exemplifying Figure 2

Data matrix b Observables O(b) Variables V(b) Repeat

Control, urine Control (O.group1) Plasma (V.block1) 1

Control, plasma Control (O.group1) Urine (V.block2) 1

Treated (before), urine Treated (O.group2) Plasma (V.block1) 1

Treated (before), plasma Treated (O.group2) Urine (V.block2) 2

Treated (after), urine Treated (O.group2) Plasma (V.block1) 1

Treated (after), plasma Treated (O.group2) Urine (V.block2) 2

External, plasma External (O.group3) Plasma (V.block1) 1
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connections between matrices. Such a modelling strategy can there-
fore be applied to many situations without modification.

Missing data can arise from either the mishandling of data or,
more likely, data sources that are not available for all the observa-
tion groups. This scenario is particularly common in clinical con-
texts and retrospective studies. Comparisons between diseased
patients and healthy volunteers can be difficult because of the lack
of biological information from laboratory tests that have not been
performed on the entire cohort. For example, certain individuals
may not be subject to particularly invasive techniques for external
reasons that cannot be controlled. On the other hand, retrospective
studies, by their very nature, do not make it possible to plan the ex-
perimental design that led to measurements carried out several years
before. Typical solutions are either to discard all unavailable data
for the whole experiment, which carries a large risk of missing im-
portant within-group structures, or to use data imputation strat-
egies. However, this latter approach complicates the interpretation
of the model scores and loadings between partially or fully available
variables. Treating the whole dataset as a multiblock structure, with
per-block models and connections enforced by the sharing of the
loadings, overcomes these problems by allowing an interpretation of
the loadings in the context of their relevant data matrices. With re-
gard to tensor structures, longitudinal studies present another scen-
ario where several blocks are measured for the same individuals and
variables. Repeated measures on the same individual before and
after some treatment or during a temporal follow-up naturally cre-
ate tensorial structures. In the first case, the prevalent approach is to
treat differences between individuals before and after, while consid-
ering repeated measures as statistically independent (flattening the
structure), which is not strictly correct. Accounting appropriately
for the links between slices of a tensor, i.e. repeats in that case, can
be achieved using adapted constraints derived from the structure, as
depicted in Figure 2. Due to the possibility of collecting multiple
observations for the same individuals, the term observations (e.g.
each particular set of measures for one individual) and observables
(e.g. the individuals themselves for whom observations can be
made) will be distinguished throughout this article. The low-rank
decomposition of tensorial data has also been extensively studied
(Bro, 1997; Carroll and Chang, 1970; De Lathauwer et al., 2000).
However, the established methods, such as PARAFAC, focus on full
three-way data that constitute complete cube of entries. This consid-
eration makes sense when the structure involves a series of measure-
ments in the third mode completely common to the variable and
observation modes. While this framework is appropriate for the
analysis of hyperspectral data, clinical studies and many other ex-
perimental setups will most often be similar to the case described in
Figure 2. Given sets of observations/variables can indeed be associ-
ated with repeated measures, but these do not necessarily imply a lo-
gical relationship between the slices along the longitudinal axis, e.g.
observations may have been made at t¼0 for groups A and B, and
then follow-ups were carried out at different time points for each.
For this reason, one of the main goals of this work was to develop a
method able to handle completely generic relations between data
matrices.

First, the notation used to describe the data network will be
introduced. Then the aim and principles of the method will be
explained in Section 2.1. Model outputs will be detailed with respect
to interpretation, before a description of the software implementa-
tion. Finally, a case study involving multiple groups and blocks will
be used to illustrate the ability of the proposed method to handle a
complex data structure.

2 Materials and methods

A convenient way to describe structured data in the most general
form is to define each data table b as a single matrix, Xb

ij, where b
denotes the matrix, while indices i and j correspond to the rows and
columns of the data matrices, associated respectively with observa-
tions and variables. The loadings, in turn, will not correspond to a
specific matrix but to the observable/variable subsets. These are
determined by the relations between the matrices, creating two

networks of links, i.e. one for observables and one for variables. The
component connected to a given matrix b under each network will
be its observable group O(b) or variable block V(b), respectively. A
detailed description of the notation is available in Section S1.1 of
Supplementary Material.

2.1 Theory
The proposed approach aims to model the ensemble of matrices Xb

ij

by a set of linear models whose principal directions are shared be-
tween data tables with matching observable or variable subsets.
Each observable has its own mapping U

OðbÞ
i in the subspace defined

by the loadings, while W
VðbÞ
j corresponds to the mapping of the vari-

ables. The approximation of each table Xb
ij using N components is

summarized by the following equation:

Xb
ij �

XNcomp

a¼1

arb�aU
OðbÞ
i �aW

VðbÞ
j : (1)

where the similarity is to be understood up to residual terms to be
minimized with respect to some goal function.

The values of arb hold what is essentially the (square root) vari-
ance associated to the matrix b on the ath component. aU

OðbÞ
i and

aW
VðbÞ
j hold the loadings for the matrix’s observables O(b) and vari-

ables V(b), respectively. The key point is that the sharing of the load-
ings between data tables with the same groups and/or blocks is
enforced by the fact that they are the same mathematical objects.

In this context, it is important to distinguish between the usual
concept of scores for the observations (the projections of the data
tables onto the variable loadings) and the set of loadings aUo

i for the
observables. The main difference is that the observable loadings rep-
resent a principal direction in the observable space and are therefore
shared by all blocks having the same observable group, while scores
are computed per block. For instance, two data tables corresponding
to the same variables measured for the same patients will both be-
long to the same observable groups and variable blocks (and there-
fore have the same set of loadings), but the scores resulting from the
projection of each dat matrix onto the variable loadings will be dif-
ferent, because they are related to distinct subsets of observations.

The proposed goal function to estimate the model parameters
involves finding a minimum of the total squared error between the
data tables and the model, potentially weighing each matrix by a fit
weight xb,

X
b

x2
b

X
i

X
j

�
rbU

OðbÞ
i W

VðbÞ
j �Xb

ij

�2

; (2)

with the constraint that the loadings U and W must have unit
Euclidean norm over each group of observables or variables. The
minimization target is the same PCA would require matrix-by-
matrix, with the additional constraint that the loadings are shared
between them. A detailed description of these aspects is available in
Section S1.2 of Supplementary Material. Finding the global min-
imum of this function with these restrictions is not algebraically triv-
ial, as the same variables appear in multiple terms. However,
considering the restriction to a function of only either the U or W
loadings, this goal is a quadratic positive-definite form, and the
minimization problem becomes a largest eigenvalue problem.
Starting with an equal guess of the importance of each observation,

Uo
i ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
NðoÞ

p
; (3)

where N(o) is the number of observables in group o, an alternating
least squares strategy is used to compute approximations to W and
U by fixing one term to solve the other using a two-step iterative
procedure. This procedure can be shown to converge, with more
details provided in Section S1.3 of Supplementary Material. This
alternating least squares minimum may not necessarily be a global
minimum, but it still provides components explaining a large frac-
tion of the variability in the data. Instead, the algorithm provides a
deterministic solution for each dataset, without random initializa-
tion or computational steps.
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The fit weights xb are introduced to adequately combine data
coming from sets with very different cardinality. An example can be
a set of a few variables originating from targeted analyses carried
out on a limited subset of metabolites of biological interest, and an-
other block of untargeted analyses with several orders of magnitude
more data. In concatenated PCA, as the same a priori chance to con-
tribute to the model is allocated to a variable from one block or the
other, the targeted data loadings will most likely pick up only spuri-
ous correlations with the untargeted data or have close to zero load-
ings. Multiblock approaches in general already solve this problem to
a large degree by allowing the small data to contribute with its own
projection space, where it must find a principal direction of correl-
ation with the rest of the data. However, without interblock normal-
ization, the untargeted data of the example will determine its own
principal direction with nearly no influence from the targeted. The
choice of normalization depends on the scaling and type of data. For
unit-variance scaled data, we recommend weighing the fit with

xb ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NðOðbÞÞ �NðVðbÞÞ
p ; (4)

which gives each block the same amount of influence on the global
fit. Details about this normalization, and alternatives such as Pareto
scaling also frequently used in metabolomics, can be found in
Section S1.6 of Supplementary Material.

As mentioned before, scores are projections of the data onto the
loading subspace. In PCA, the orthogonality of the loadings between
different components means that scores have a particularly simple
form, as they are the principal directions in the observation space.
However, two problems arise in the case of a network of intercon-
nected data matrices. First, loadings will generally be close to but
not completely orthogonal. Second, the principal directions given by
the loadings are shared by all blocks having the same observables.
Yet groups sharing observables but with different observations
should have different scores. The simplest solution is to actually go
back to the initial meaning of the scores aSb

i , and project the data
onto the loadings:

aSb
i :¼

X
j

Xb
ij�aW

VðbÞ
j : (5)

This allows multiblock scores to be considered as representing
the projection of a set of observables over multiple variable blocks,
aS
fb1 ;...;bng
i , as the average of the scores. More details about the esti-

mation of the model parameters are presented in Section S1.4 of
Supplementary Material. The described steps produce a set of
parameters for a single component of the model. Further compo-
nents can be computed by the usual approach of deflation. The latter
is described in Section S1.5 of Supplementary Material. Figure 3
provides a summary of the algorithm, while a detailed description of
the network model is provided as Supplementary Material, includ-
ing the notation for all the objects used in the construction, the pres-
entation of the building blocks of the model, the minimization
problem and the iterative algorithm generating its solution, and its
convergence.

2.2 Model interpretation
The interpretation of most multivariate linear models involves an
evaluation of both the relevance of each variable (represented by
their loadings) and the overall variability of each observation within
the model (represented by their scores). It usually begins with find-
ing some trend in the score plot by inspecting the distribution of the
observations in the lower-dimensional component subspace, and
observing meaningful groupings (e.g. separation of experimental
groups). As introduced in Section 2.1, NetPCA scores should be
computed by projecting the data over the direction in the variable
space specified by the loadings. Variables that are relevant for this
component are then highlighted from the loadings, assuming them
to be pertinent to explain the effect. The main advantage of linear
models is to provide a straightforward way to interpret the influence
of each variable through the loadings. Our approach is based on the
same principle, and each set of loadings aWv

j provides the usual in-
terpretation of the relevance on the global model of the variable j
belonging to the variable block v. Moreover, additional information
can be extracted from the model, because groups of observations
and/or blocks of variables are treated as natural units of information
that may hold different direction and magnitude of variability. It is
to be noted that sign ambiguity can lead to flipped axes, that consti-
tute an issue when combining loadings from different groups. The
sign is thus chosen so that a positive score would be associated with
an observation where its variables on average are higher than the
mean. The interested reader can refer to Section S2.3 of
Supplementary Material for more details on this procedure.
Moreover, it may be the case that multiple groups are separated at
each side of a certain component but that the main variables affect-
ing them are not the same. Explicitly taking into account the group
structure of the observables makes it possible to assess the relevance
of a given variable for a specific group. As a consequence, ordering
variables by their influence on the groups of interest instead of their
overall loadings constitutes an effective way to interpret the model.
As several groups of observations need to be represented by the
same observable loading, not all of them will be fitted by this load-
ing to the same degree. This is the critical part of the between-group
interpretation of the variable importance since it precisely captures
the appropriateness of the given loading for a specific group. We de-
fine this variable influence on a group as the relative explained vari-
ability lost when setting its corresponding loading to zero in the
given group and component. This notion of variable influence has a
straightforward interpretation and naturally takes into account the
possible effects of the lack of orthogonality of the loadings. By con-
struction, it is also an additive quantity, and the total explained vari-
ance of the model is the sum of the importance of each of the
variables. Due to the additivity, it is also possible to rank variables
by their total influence over some specific subsets of groups.
Comparing the influence of variables belonging to different variable
blocks is also meaningful, as opposed to directly comparing their
loadings. Details about the interpretation of block scores, as well as
variable and block influences can be found in Sections S2.1 and S2.2
of Supplementary Material, respectively.

2.3 Software implementation
The algorithm has been implemented as a Python 3.0 package with
dependencies on NumPy (Oliphant, 2006) for numerical computa-
tions and Plotly (Plotly Technologies Inc., 2019) for model visualiza-
tion. The library includes modules to load data from CSV/XLSX
files and configure the network relationships between the data
matrices, to compute the model and to generate an interactive
HTML report including the block structure, selectable score plots,
variable loadings and influences, variable boxplots and the contribu-
tions of each variable to the model. Additionally, a Jupyter note-
book example of use is provided. A short demonstration of the
package with an illustrative screenshot of the summary offered by
this report is available as Supplementary Material, and can be found
at gitlab.unige.ch/Julien.Boccard/netpca.

Fig. 3. Algorithm summary, including initialization, alternating least squares pro-

cedure, score projection, sign fixing and deflation
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3 Results

A real case study involving metabolomic data collected from a co-
hort of patients suffering from chronic kidney disease (CKD) was
chosen to illustrate the qualities of the proposed algorithm
(Gagnebin et al., 2018). The aim of this study was the untargeted in-
vestigation of metabolic alterations according to the progression of
the disease, and the effect of hemodialysis. Blood samples were
obtained from a set of 56 control patients, 69 in the intermediate
CKD stage (levels 3b–4 according to the glomerular filtration rate
criterion) and 35 in the advanced CKD stage (level 5, i.e. close to
renal failure). These 35 advanced CKD patients were also studied
after blood dialysis, to understand its impact and evaluate its ability
to bring the metabolome closer to the healthy situation. The corre-
sponding observable groups in our model were the Control (CTRL),
Intermediate CKD (ICKD) and Advanced CKD before (ACKD-0)
and after dialysis (ACKD-1).

The samples were analysed with four LC-MS techniques
(reversed phase LC with ESIþ/-, amide-based hydrophilic inter-
action LC with ESIþ and zwitterionic-based hydrophilic interaction
LC with ESI-), providing a total of 33’459 analytical features after
data preprocessing, filtering and normalization based on QC sam-
ples (Broadhurst et al., 2018; Pezzatti et al., 2020). Of these, 344
could be related to level 1 annotations based on mass and retention
time matching the standards measured in-house. Notably, 4’286
additional features were found to have mass matching entries in the
KEGG database (Aoki and Kanehisa, 2005). The block structure is
summarized in Figure 4. A special focus is placed on the methodo-
logical aspects of the proposed model, particularly with regards to
the connections between matrices, rather than a biological interpret-
ation of the data, which was already considered in (Gagnebin et al.,
2019).

3.1 Network models based on annotation levels
Several modelling strategies can be considered to handle this type of
data structure and gain biological insights to describe a given phe-
nomenon. The first model (Model A) is designed to focus only on
well-characterized biochemical information based on level 1 meta-
bolic annotations, i.e. formally identified metabolites. The second
approach (Models B) consists in integrating the complementary in-
formation offered by the automatic annotation of a large number of
potential metabolites. This second block of variables is obtained by
comparing the analytical features with metabolic database entries
(here KEGG). It should be noted that the structure of the blocks of
variables is preserved in Model B1, while horizontal concatenation
of all the available data is carried out in Model B2. The latter ap-
proach is often used because of its ease of implementation with
existing multivariate approaches (e.g. PCA or SCA).

First, let consider a model using only the 344 level 1 annotations,
corresponding to Model A in Figure 4. The score plot is shown in
Figure 5 top. The first component clearly discriminates between the
CTRL group and the affected patients, and follows the progression
of the disease. Most of the variability is taken by advanced (ACKD-
0) patients, which is not surprising, since renal dysfunction is associ-
ated with decreased glomerular filtration, leading to an increase of
the concentration of many metabolites. Interestingly, dialysed
(ACKD-1) patients return to the position of the intermediate (ICKD)
group after dialysis along the first component, but another effect
occurs along the second component, separating ACKD-1 from the
other groups.

As mentioned in the introduction, one of the main reasons to run
untargeted metabolomics analyses is to find potentially interesting
features that are not included in the relatively limited database of
standards available in a laboratory. A looser process of annotation
(based only on mass matching against the KEGG database in this
case) leads to considerably more annotated features than the more
reliable level 1 annotation, and many of these new candidates may
be either analytical noise, or otherwise biologically irrelevant. This
becomes manifest when they are included in the model in the way
described in Figure 4 as Model B2, i.e. by simply concatenating these
additional variables with properly identified metabolites, as would
be done in most metabolomic studies. Unsurprisingly, this has the ef-
fect of generating the score plot of Figure 5 bottom. Because there
are many more variables originating from simple mass matches than

Fig. 4. CKD application data structure, illustrating the complexity of modern multi-

group and multiblock datasets. Different possible models for analysis are shown on

the right. Colour code: green CTRL, orange ICKD, red ACKD-0, blue ACKD-1

Fig. 5. CKD Model A, B1 and B2 scores. Colour code: green CTRL, orange ICKD,

red ACKD-0, blue ACKD-1
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from level 1 annotations, and because a large fraction of them are
probably not relevant, the effect that separated ACKD-0 and
ACKD-1 patients is lost in the noise. This issue is explicitly taken
care of when performing an analysis following the full structure of
Model B1 from Figure 4. The resulting score plot, depicted in
Figure 5 middle, shows again the relevant separation between those
two states of ACKD patients. At the same time, the underlying
model offers a potent way to search among the putative metabolites
from the KEGG block to find additional relevant signals that are
related to the observed effects.

3.2 Variable influences
Accounting explicitly for the separation into blocks in the variable
direction helps to maintain the interpretability of the model. Yet
there is also interest in grouping along the observation direction.
The relevance of variables in a per-group sense can be investigated
using the variable influences. This parameter allows evaluating the
contribution of each variable to describe the variability of a given
group of observations in an objective manner. Although biological
details are not the focus, these influence distributions offer informa-
tion about metabolite patterns. For example, it is clear that most of
the variability related to the first component is generated by ACKD-
0 patients. However, for diagnosis purposes, one could be interested
in the compounds affecting particularly the separation of the healthy
(CTRL) and mild disease (ICKD) patients on the first component.
The main variables explaining their variability are not necessarily
the same as those for ACKD-0. This can be easily investigated by
sorting the variable influences by their combined effect on these two
specific groups.

Figure 6 top shows the influence distribution of level 1 annota-
tions, sorted according to this criterion. Consistent with prior know-
ledge of CKD, more variables are increased than decreased in the
direction linked to ACKD-0, since renal dysfunction affects glom-
erular filtration. On the other hand, the negative direction of metab-
olites that are more abundant in the CTRL and ICKD groups, is
associated with a few clearly prominent variables (Gagnebin et al.,
2019).

Interestingly, sorting variables according to their relevance for
CTRL and ICKD is noticeably not the same as sorting by global in-
fluence (the whole bar height) or by the absolute value of their load-
ing. This result highlights the fact that the observation-wise data

structure provides a more detailed understanding of the importance
of each variable.

Figure 6 bottom shows the influences on the second component
for the variables obtained from KEGG mass matches, sorted by the
relevant block, i.e. ACKD-1 patients. Such an ordering could be
used for instance to select the most influential variables to conduct
further experiments (such as MS/MS spectrum matching).
Additionally, the bar plots display a characteristic feature of the
variable influences, namely that some of them are negative. This
should not be confused with a positive or negative loading aWv

j , but
rather reveals that the contribution of certain variables may actually
increase the total residual error in a given data table. Indeed, a vari-
able loading whose presence in the model slightly increases the error
in one matrix is an acceptable trade-off for an important decrease in
every other data matrices. It should also be noted that usual PCA in-
herently has these kinds of trade-offs, as it minimizes the total re-
sidual error between the data and its reconstruction. The difference
lies in the fact that using a block structure offers a straightforward
way to assess which blocks are affected, potentially in a negative
way as far as the reconstruction is concerned, and by which varia-
bles. For instance, if the highest loading corresponds to a variable
that has an important negative variable influence on one of the data
tables, a warning is given indicating that additional attention needs
to be paid to its interpretation.

Finally, Figure 7 shows the influences summed over all variables
on each block for both components. Such heatmaps provide a quick
way to see the relative contributions of each variable subset to the
decomposition.

3.3 Interactive visualization
Complex multiblock structures can be inspected and understood
from a wide variety of viewpoints and there is a plethora of combi-
nations of relevant blocks, variables, components and metrics to
consider. Traditional static visualization approaches are limited by
their need to choose between all possible permutations of the param-
eters, or leaving out what is considered as less relevant information.
To avoid this, the proposed implementation includes the automatic

Fig. 6. CKD Model B1. Component 1: distribution of the first 50 variable influences,

separated by loading sign, sorted by CTRL (green) and ICKD (orange). Component

2: first 150 variable influences, separated by loading sign, sorted by ACKD-1 (blue)

Fig. 7. CKD Model B1 block influences. Left: first component. Right: second

component

Fig. 8. Screenshot of the interactive HTML report generated by the Python library
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generation of an interactive HTML5 report, without any more
requirements than a standard browser to open it and leaving all the
interactivity to the user: selected blocks, components, filters,
synchronized information and tooltips. A screenshot of this report,
as generated for the CKD dataset, can be seen in Figure 8.

3.4 Concluding remarks
The proposed NetPCA method offers a versatile strategy to investigate
complex multigroup and multiblock structures with linear models,
motivated in particular by missing block or tensorial/longitudinal ex-
perimental designs. The proposed algorithm provides an adaptable data
decomposition guaranteed to converge to a deterministic minimum of
the summed residual square error, and introduces several useful metrics
to assess the influence of variables and blocks on both the overall model
and the particular data tables. As a case study, the model was applied to
a real-world metabolomic dataset collected from patients enrolled in a
CKD clinical study. Accounting for the multigroup and multiblock
structure was shown to be crucial to appropriately investigate the data.
On the one hand, model parameters provided relevant feedback on
each group’s influence on the global model. On the other hand, the in-
vestigation of an additional block of variables with a lower degree of
annotation confidence, a larger dataset size and higher noise, was made
possible by assessing the influence of each variable on the different ex-
perimental groups.
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