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Abstract

Motivation: Intrinsically disordered protein regions interact with proteins, nucleic acids and lipids. Regions that bind
lipids are implicated in a wide spectrum of cellular functions and several human diseases. Motivated by the growing
amount of experimental data for these interactions and lack of tools that can predict them from the protein sequence,
we develop DisoLipPred, the first predictor of the disordered lipid-binding residues (DLBRs).

Results: DisoLipPred relies on a deep bidirectional recurrent network that implements three innovative features:
transfer learning, bypass module that sidesteps predictions for putative structured residues, and expanded inputs
that cover physiochemical properties associated with the protein–lipid interactions. Ablation analysis shows that
these features drive predictive quality of DisoLipPred. Tests on an independent test dataset and the yeast proteome
reveal that DisoLipPred generates accurate results and that none of the related existing tools can be used to indirect-
ly identify DLBR. We also show that DisoLipPred’s predictions complement the results generated by predictors of the
transmembrane regions. Altogether, we conclude that DisoLipPred provides high-quality predictions of DLBRs that
complement the currently available methods.

Availability and implementation: DisoLipPred’s webserver is available at http://biomine.cs.vcu.edu/servers/
DisoLipPred/.

Contact: lkurgan@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many proteins include one or more intrinsically disordered regions
(IDRs), which are defined as segments of protein sequence that lack
stable three-dimensional structure under physiological conditions
(Dunker et al., 2001; Habchi et al., 2014; Oldfield et al., 2019a).
Recent studies suggest that proteins with IDRs are common across
all domains of life (Peng et al., 2015; Xue et al., 2012) and carry out
many cellular functions (Dunker et al., 2002; Dyson and Wright,
2005). In particular, IDRs were shown to interact with proteins,
DNA, RNA, lipids and a variety of small molecules (Balcerak et al.,
2019; Fuxreiter et al., 2014; Hatos et al., 2020; Kjaergaard and
Kragelund, 2017; Meng et al., 2015; Patil et al., 2010; Varadi et al.,
2015b; Wang et al., 2016a). However, only several hundred of these
interactions were annotated experimentally (Hatos et al., 2020;
Katuwawala et al., 2019a,b). This annotation gap has motivated the
development of computational methods that use protein sequences
to predict IDRs interacting with specific partner types (Ghadermarzi
et al., 2020; Katuwawala et al., 2019a,b; Meng et al., 2017; Varadi
et al., 2015a). Importance of these methods was underscored in the

recent large community-driven Critical Assessment of protein
Intrinsic Disorder (CAID) (Necci et al., 2021). CAID introduced a
new category of disorder predictions that focus specifically on disor-
dered binding regions, which attracted submissions from 11 meth-
ods. Moreover, recently released centralized webserver for the
disorder prediction, DEPICTER, includes predictions of the interact-
ing IDRs (Barik et al., 2020).

While IDRs interact with a wide range of partners, such as pro-
teins, nucleic acids and lipids, nearly all current predictors focus on
the protein-binding IDRs (Katuwawala et al., 2019a,b; Meng et al.,
2017; Varadi et al., 2015a). A recent survey has identified 21 predic-
tors of the IDRs that interact with proteins (Katuwawala et al.,
2019b). Some of more popular methods in this category include
ANCHOR (Dosztanyi et al., 2009; Mészáros et al., 2018),
MoRFpred (Disfani et al., 2012; Oldfield et al., 2019b), MoRFChiBi
(Malhis et al., 2016; Malhis and Gsponer, 2015) and OPAL
(Sharma et al., 2018, 2019). In contrast, there is only one method,
DisoRDPbind (Peng et al., 2017; Peng and Kurgan, 2015), for the
prediction of the DNA and RNA interacting IDRs and no methods
to address interactions with lipids. The lack of tools could be
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explained by the insufficient amount of the experimental data that
was needed to train and assess the predictive models. However, re-
cent releases of DisProt database have delivered large amounts of
new experimental annotations (Hatos et al., 2020; Piovesan et al.,
2017). More specifically, version 8.0 of Disprot (Hatos et al., 2020)
provides about 50% more experimental annotations of the lipid
binding IDRs when compared with the previous version 7.2
(Piovesan et al., 2017).

Lipids are implicated in many cellular functions including energy
storage, signaling, regulation, insulating and transport (Dall’Armi
et al., 2013; Di Paolo and De Camilli, 2006; Settembre et al., 2013;
Soto-Avellaneda and Morrison, 2020; Welte and Gould, 2017).
Some of these functions involve interactions with proteins and can
be characterized experimentally using immunocytochemistry, cyto-
toxicity assays, circular dichroism spectroscopy, calcein leakage and
differential scanning calorimetry (Assayag et al., 2007; Chan et al.,
2011; Chirita et al., 2003; Knyazeva et al., 2008). Intrinsic disorder
plays an important role in the protein–lipid interactions. Research
shows that misfolding of certain IDR-containing proteins affects
their lipid binding affinity, resulting in a variety of diseases
(Deryusheva et al., 2019). For instance, misfolding of the fully disor-
dered lipid-binding a-synuclein and significantly disordered tau pro-
teins is associated with several neurodegenerative diseases (Jebarupa
et al., 2018; Kaplan et al., 2003; Melo et al., 2016; Ruipérez et al.,
2010; Ugalde et al., 2019; Uversky and Eliezer, 2009). As another
example, SecA from Escherichia coli provides an example of an
interaction between IDRs and a lipid bi-layer (Song and Kim, 1997).
Moreover, some bacteriocins, such as colicin A, unfold to the disor-
dered molten globule state when they interact with the cytoplasmic
lipids of the host cell to perform membrane insertion (van der Goot
et al., 1991).

Motivated by the recent growth in the annotations of the lipid-
interacting IDRs and the functional importance of these interactions,
we present DisoLipPred, first-of-its-kind predictor of the disordered
lipid-binding residues (DLBRs). DLBRs are intrinsically disordered,
interact with lipids and exclude transmembrane regions. This means
that DisoLipPred produces predictions that complement the results
generated with the current predictors of the transmembrane regions
(Käll et al., 2007; Peters et al., 2016; Roy Choudhury and Novi�c,
2015). DisoLipPred utilizes a deep neural network to predict pro-
pensity for lipid binding in disordered regions for each amino acid in
the input protein sequence. The design of this tool relies on several
innovations. First, we utilize transfer learning. We start with a more
generic network that predicts IDRs that interact with different types
of partner molecules, which is motivated by the large amount of the
underlying training data. We freeze this partner type-agnostic net-
work and extend it to develop the final model that specializes the
predictions to the lipid partners. Second, we use literature to identify
physiochemical properties that are associated with protein–lipid
interactions and use them to expand the inputs to the deep network.
Third, we deploy a new training and prediction strategy that
bypasses ordered/structured residues. More specifically, we train the
deep network models using only the native disordered residues to
identify DLBRs. This focuses our model on identifying DLBRs
among other disordered residues, compared to a more traditional
scenario that differentiates DLBRs from both structured and disor-
dered residues. During the prediction process we use a modern dis-
order predictor to identify disordered residues which are processed
by our deep network to predict DLBRs. The predicted ordered resi-
dues bypass the network, since by default they exclude DLBRs. We
perform ablation analysis that empirically demonstrates that these
innovations lead to significant improvements in the predictive per-
formance when compared to a more traditional design that exclude
these solutions. Such traditional design is characteristic to the cur-
rent predictors of the IDRs that interact with proteins and nucleic
acids (Disfani et al., 2012; Dosztanyi et al., 2009; Katuwawala
et al., 2019a,b; Malhis et al., 2016; Malhis and Gsponer, 2015;
Mészáros et al., 2018; Peng and Kurgan, 2015; Sharma et al., 2018,
2019).

2 Materials and methods

2.1 Datasets
We collect experimental data to establish training, validation and
test datasets. We use the training and validation datasets to design
and optimize our predictive model. Moreover, we use two sets of the
training and validation datasets to facilitate the transfer learning:
one to produce the generic network that predicts IDRs that interact
with different types of molecules (named ALL datasets) and second
to specialize this network to predict DLBRs (named LIPID datasets).
We exclude the test set from the training/optimization process and
use it solely to perform comparative assessment against alternative,
indirect approaches to predict DLBRs. We summarize the data col-
lection process in Supplementary Figure S1. These datasets are com-
posed of three types of proteins: proteins with DLBRs, proteins with
other IDRs and fully structured proteins. We collect the proteins
with IDRs and DLBRs from version 8 of DisProt (Hatos et al.,
2019). We exclude disordered regions with an ambiguous function
or structure annotations, which are tagged in DisProt. We identify
and use the proteins with IDRs that have annotated functions to de-
rive the test and LIPID datasets to minimize the likelihood of false
negative annotations; we place the other proteins from DisProt into
the ALL dataset. Moreover, inspired by recent works (Katuwawala
and Kurgan, 2020; Necci et al., 2021), we further process the pro-
teins from DisProt to ensure that we use high-quality annotations of
structured regions. Instead of assuming that regions that lack dis-
order annotations are by default structured, we map the unanno-
tated regions to the sequences of the protein structures from Protein
Data Bank (PDB) (wwPDB Consortium, 2019), for which we mask
the disordered residues. We utilize the protocol from (Katuwawala
and Kurgan, 2020) that relies on the alignment with Basic Local
Alignment Search Tool (BLAST) algorithm (Altschul et al., 1997).
The regions in the DisProt sequences that share >90% similarity
and e-value <0.1 with at least one masked PDB sequences are
assumed structured. We collect the fully structured proteins from
PDB (wwPDB Consortium, 2019). We minimize the likelihood that
these proteins include IDRs by collecting high-resolution (<2 Å)
monomers that do not have disordered regions (i.e. structure is
resolved for all amino acids) and which map into full UniProt
sequences based on SIFTS (Dana et al., 2019). We also collect train-
ing datasets for the alternative predictors that we compare with on
the test dataset (which are listed in Section 3.2). We combine the
four collections of proteins (31 proteins with DLBRs from DisProt,
1704 proteins with other IDRs from DisProt, 31 306 fully structured
proteins from PDB and 38 619 training proteins from the alternative
predictors) and cluster the resulting set of 71 660 proteins using the
CD-HIT algorithm with 25% similarity (Huang et al., 2010). We
place the entire clusters that must exclude training proteins from the
alternative predictors into the test dataset. This way test dataset
shares <25% similarity with our training and validation datasets
and the training datasets from other predictors. We remove the
training proteins from the alternative predictors after placing a given
cluster into a corresponding dataset. Using this approach, we identi-
fied 19 proteins with DLBRs and 100 proteins with other IDRs that
can be placed into the test dataset (i.e. they are sufficiently dissimilar
to the training and validation proteins). We matched the 100 pro-
teins with IDRs with the equal number of randomly chosen fully
structured proteins that are also dissimilar to the training and valid-
ation proteins, which results in the test dataset with 219 proteins.
We place the remaining 1446 proteins with IDRs into the ALL data-
set and match their number with the same number of randomly
picked remaining fully structured proteins, i.e. these disordered and
fully structured proteins were not included in the clusters that we
utilize to derive the test dataset. We divide the ALL dataset into
training and validation subsets by randomly selecting half of the pro-
teins (1446 proteins) into each partition. We derive the LIPID data-
set from the ALL dataset by including the proteins with DLBRs and
replicating the numbers the fully structured proteins and proteins
having IDRs from the test dataset. Consequently, the LIPID dataset
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includes 100 fully structured proteins and 100 proteins with the
other IDRs that we select at random from proteins in the ALL data-
set and 11 proteins with DLBRs. We divide the LIPID dataset into
training and validation subsets by placing 1/3 of the 211 proteins
(69 proteins) into the validation partition and 2/3 (142 proteins)
into the training partition. We provide details of the test, ALL and
LIPID datasets, including their overall sizes and numbers of anno-
tated residues, in Supplementary Table S1. The datasets (sequences
and annotations) are available at http://biomine.cs.vcu.edu/servers/
DisoLipPred/.

We use a secondary test dataset to empirically assess whether
DisoLipPred’s predictions of DLBRs in fact exclude the transmem-
brane regions. We sourced this TM (transmembrane) test dataset
from a recent study that introduced SCAMPI2 predictor of the trans-
membrane regions (Peters et al., 2016). We clustered the transmem-
brane proteins used in that study together with the proteins from the
complete training dataset using CD-HIT at 25% similarity and
selected the transmembrane proteins from clusters that exclude the
training proteins. We combine these transmembrane proteins with
the transmembrane proteins from the test dataset to devise the TM
dataset. This dataset includes 25 proteins, 15 978 amino acids and
4308 transmembrane spanning residues and shares <25% sequence
similarity to the training datasets.

2.2 Evaluation criteria
DisoLipPred provides two outputs: numeric propensity score and
binary values. The propensity quantifies likelihood that a given
amino acids in the input protein sequence is the DLBR. The binary
values identify putative DLBRs and they are derived from the pro-
pensities using a threshold, i.e. residues with propensities > thresh-
old are assumed to bind lipids. We use the area under curve of
receiver operating curve (AUC) to assess propensities. The ROC is a
relation between true-positive rates (TPR ¼ TP/(TP þ FN)) and
false-positive rates (FPR ¼ FP/(FP þ TN)) computed using thresh-
olds equal to the set of all unique propensities, where TP and TN are
the numbers of correctly predicted DLBRs and non-disordered lipid-
binding residues, respectively; FN is the number of DLBRs incorrect-
ly predicted as non-disordered lipid-binding residues; and FP is the
number of the non-disordered lipid-binding residues incorrectly pre-
dicted as DLBRs. We use sensitivity ¼ TPR and F1¼2TP/(2TP þ FP
þ FN), which is a harmonic mean of sensitivity and precision, to as-
sess the binary predictions. Importantly, we standardize these across
predictors by setting the thresholds for the binary predictions to ob-
tain the same low FPR ¼ 10% (i.e. specificity ¼ 90%). This means
that the F1 and sensitivity values are measured at the same FPR ¼
10%, facilitating direct side-by-side comparisons of these metrics be-
tween different predictors.

We also assess statistical significance of the differences in predict-
ive performance between DisoLipPred and other methods considered
in the comparative study. This test assesses whether the improve-
ments offered by DisoLipPred would consistently hold over multiple
different test datasets. Correspondingly, we sample 50% of the test
proteins 100 times to create 100 different test sets. We use the
Student’s paired t-test if the performance metrics follow normal dis-
tribution, and otherwise we use the Wilcoxon signed-rank test. We
test normality with the Anderson-Darling test at the 5%
significance.

2.3 DisoLipPred architecture
The DisoLipPred architecture consists of four main modules (Fig. 1):
bypass module, sequence profile module, deep neural network and
rescaling module. The input protein sequence is first processed by
SPOT-Disorder (Hanson et al., 2017), one of the most accurate dis-
order predictors according to multiple recent assessments including
the CAID experiment (Katuwawala et al., 2020; Katuwawala and
Kurgan, 2020; Necci et al., 2021). The SPOT-Disorder’s predictions
are fed into the bypass module that separates the predicted disor-
dered residues, which are subsequently processed by the deep net-
work to predict DLBRs, from the predicted order residues, which
bypass the deep network prediction. Next, sequences of proteins

with the predicted disordered residues are used to derive sequence
profiles. The profiles incorporate sequence-derived structural and
functional information that is relevant to the prediction of DLBRs.
They are utilized as the input to a deep neural network that predicts
propensity for disordered lipid binding and which is designed using
transfer learning. Finally, the rescaling module normalizes and
merges the outputs from the deep network with the predictions of
the ordered residues from the bypass module, producing the final
predictions.

2.3.1 Bypass module

DLBRs are localized in the disordered regions. The main challenge
for DisoLipPred is to identify these lipid-binding residues among the
other disordered residues. Consequently, during the training process
we train and validate the deep network on the native disordered resi-
dues. We exclude the ordered residues from training since they can
be accurately identified with one of the currently available accurate
disorder predictors. We use the highly accurate SPOT-Disorder pre-
dictor (Hanson et al., 2017) for that purpose. The bypass module
separates disordered residues from ordered residues based on the
SPOT-Disorder’s predictions, such that the putative ordered residues
bypass the prediction process while the putative disordered residues
are selected for prediction with the deep network. The SPOT-
Disorder generated propensities for the putative ordered residues are
rescaled and combined with the deep network generated propensities
in the rescaling module to produce the propensities for DLBRs. We
use ablation analysis (Section 3.1) to demonstrate that the approach
that applies the bypass module provides more accurate results than
the direct prediction of DLBRs from all residues.

2.3.2 Sequence profiles

The sequence profiles provide a rich source of information that is
relevant to the prediction of DLBRs and derived directly from the
sequences. We use two profiles to facilitate the transfer learning.
One for the partner–agnostic portion of the deep network that aims
to predict interacting disordered residues (red areas in Fig. 1) and
the other for the part of the deep network that predicts DLBRs
(green areas in Fig. 1).

The partner–agnostic profile relies on a comprehensive collection
of predictors of structure, intrinsic disorder and disorder functions,
with particular focus on the prediction of the interacting disordered
regions. We use the predictions of the solvent accessibility from
ASAquick (Faraggi et al., 2014), secondary structure from PSIPRED
(Buchan et al., 2013), disorder from SPOT-Disorder (Hanson et al.,
2017), protein, DNA and RNA interacting disordered regions from

Fig. 1. Prediction workflow of DisoLipPred.
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DisoRDPbind (Peng et al., 2017; Peng and Kurgan, 2015), protein-
binding disordered regions from ANCHOR 2 (Mészáros et al., 2018)
and disordered linker regions from DFLpred (Meng and Kurgan,
2016). This profile is summarized in Supplementary Table S2.

The second profile, which serves as the input to predict DLBRs,
focuses on the sequence-derived information that is specific to the lipid-
binding. We use two relevant structural properties, the putative solvent
accessibility and secondary structure generated with ASAquick (Faraggi
et al., 2014) and PSIPRED (Buchan et al., 2013), respectively, putative
disorder from SPOT-Disorder (Hanson et al., 2017), and a curated set
of 46 physiochemical properties of amino acids that are associated with
protein–lipid interactions (Huang et al., 2013). These properties were
selected empirically from a comprehensive collection of over 530
physiochemical indices from the AAindex database (Kawashima et al.,
2008) based on their ability to discriminate between lipid-binding and
non-lipid binding proteins (Huang et al., 2013). They include hydro-
phobicity, hydrophobic moment, charge, isoelectric point, transfer en-
ergy, activation Gibbs energy of unfolding at pH 9.0, solvation free
energy, propensity for helical and sheet conformations, and propensity
for side chain interactions. Complete list of these properties is in
Supplementary Table S3.

2.3.3 Transfer learning of the deep bidirectional recurrent neural

network model

Transfer learning is a training strategy where knowledge learned
from a source domain/dataset is transferred to a related target do-
main/dataset to improve the learning in the target domain (Weiss
et al., 2016). This strategy is deployed when the target dataset has
limited amount of data compared to a more data-rich source dataset,
and is particularly useful for training the data-hungry deep neural
networks (Tan et al., 2018). Transfer learning was recently applied
to predict secondary structures of RNA (Singh et al., 2019), caspase
and metalloprotease cleavage sites (Li et al., 2020), MHC-I peptide
binding (Jin et al., 2021) and transcription factor binding (Liu et al.,
2021), but it was never used to develop predictors of interacting dis-
ordered regions. Prediction of DLBRs offers an ideal scenario for the
transfer learning. While we have a relatively limited amount of
DLBRs (3392 residues), the amount of the data concerning a generic
set of interacting IDRs is very substantial (161 641 residues). Thus,
we first build a partner–agnostic deep network using the complete
training dataset, which we then freeze and extend with additional
layers to develop the target network that predicts DLBRs using the
target training dataset. We adopt deep recurrent networks given
their recent success with the prediction of disorder (Hanson et al.,
2017, 2018, 2020b).

The partner–agnostic network consists of two long short-term
memory layers that are sandwiched between fully connected dense
layers with ReLu activation function in the internal layers and the
sigmoid activation function at the output layer (Supplementary Fig.
S2A). We use the RMSprop optimizer, binary cross entropy as the
loss function, dropout rate of 0.5 (to minimize overfitting), and dy-
namic adjustment of the learning rate which we set to gradually de-
crease as the training progresses. This network uses the partner–
agnostic profile as the input. We optimized the number of layers and
the number of neurons per layer using an iterative approach where
we start from a small size and increase it by a small increment until
AUC measured for the prediction of interacting IDRs on the valid-
ation set decreases in two consecutive iterations.

The optimized partner–agnostic network is transferred to de-
velop the target network. We remove the output layer from the part-
ner–agnostic model and freeze it. We connect the last layer of this
network to several additional layers that narrow down the partner–
agnostic prediction to the partner-specific prediction of DLBRs. This
network extends the partner–agnostic profile with the additional
inputs relevant to the prediction of DLBRs that we discuss in Section
2.3.2. This extension includes multiple bidirectional long short-term
memory layers placed between fully connected dense layers
(Supplementary Fig. S2B). Similar to the training of the partner–ag-
nostic network, we optimize the size of the additional layers using
the increment approach that maximizes AUC for the prediction of
DLBRs on the validation set.

2.3.4 Rescaling module

We combine the disordered lipid-binding propensities generated by
our deep recurrent neural network for the disordered residues pre-
dicted with SPOT-Disorder and the SPOT-Disorder’s propensity
scores for the predicted ordered residues. First, we normalize the
outputs from the deep neural network to the unit range. We also re-
scale the SPOT-Disorder’s propensities for predicted ordered resi-
dues, which bypass the neural network, so they cover the 0–0.5
range. This aims to minimize risk of missing out the lipid-binding
residues among the incorrect predictions of order from SPOT-
Disorder. This way, these false negatives can be predicted with mod-
erately high scores.

3 Results

3.1 Ablation analysis
The three main innovations underlying DisoLipPred include the use
of the transfer learning, lipid-binding features and the bypass mod-
ule. We perform ablation analysis to quantify the impact of these
innovations on the predictive performance of DisoLipPred. To do
that, we compare the results produced by the DisoLipPred model
with the three setups where one of these features is removed and the
setup where all three features are removed (Table 1). For instance, in
the setup 1 we exclude transfer learning by removing the partner–ag-
nostic network and relying solely of the lipid binding neural net-
work. The bypass module works by training and testing the deep
network on the disordered residues and sidestepping the deep net-
work predictions for the putative ordered residues. The training pro-
cess utilizes the native disordered residues while during tests/
predictions we use the predictions from SPOT-Disorder. In setup 3,
we evaluate the impact of using the predicted disordered residues for
both training and testing/predictions. The setup 4 excludes all three
innovations where for the bypass feature we train/test the deep net-
work using both disordered and ordered residues. This bare-bone
predictor is comparable to current deep learners that are used to pre-
dict disorder (Hanson et al., 2017, 2020b; Wang et al., 2016b) and
the protein binding IDRs (Fang et al., 2019; Hanson et al., 2020a).
We trained each of the five setups separately by maximizing the
AUC on the validation set.

We compare predictive performance of the five setups on the test
dataset in Table 2. Supplementary Table S4 compares these methods
on the validation dataset. Both tables assess the predictions on the
complete datasets as well as on the subset of the disordered residues.
The latter evaluation quantifies the ability of these models to solve a
more difficult problem of identifying DLBRs among other disor-
dered regions i.e. DLBR are more similar to other disordered resi-
dues than to the ordered residues.

DisoLipPred offers accurate predictions with AUC ¼ 0.78 and
high sensitivity and specificity values. We calibrate the binary pre-
dictions based on thresholds that fix sensitivity to 0.70 and 0.50 and
that fix specificity to 0.90 and 0.70. This facilitates direct compari-
son of sensitivity, specificity and F1 values between different setups.
Compared to the complete DisoLipPred model, we note a noticeable
and statistically significant drop in the predictive performance for all
metrics and ablation variants (P-value < 0.05). Among the setups
where one of the innovations is removed, the largest drop is for the
setup 3 where we manipulate the bypass feature. This suggests that
our deep networks can be better trained to recognize DLBR among
native disordered residues than among the predicted disordered resi-
dues. The errors from the disorder predictions and the networks
training seem to accumulate in the latter case. The results further
substantially decline when all three innovations are removed (setup
4). This means that the contributions of the novel design features are
complementary.

As expected, tests on the native disordered residues (right side of
Table 2) lead to lower predictive performance across all methods.
However, DisoLipPred still provides reasonably accurate predictions
(AUC ¼ 0.64 and substantially higher sensitivity and specificity
valulues). The ablation variants consistently underperform com-
pared to the complete model (P-value < 0.05), with the bare-bone
model (setup 4) performing at the random levels: AUC < 0.5 and
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sensitivity, specificity and F1 near zero. This demonstrates that the
basic deep network is incapable of predicting DLBRs since it can
only solve the trivial problem of differentiating DLBRs from ordered
residues (AUC ¼ 0.68 on the complete dataset versus 0.40 on the
disordered residues). In other words, the three innovations that we
introduce are essential to provide accurate predictions.

3.2 Comparative assessment on the test dataset
We compare DisoLipPred to current alternatives that can be indir-
ectly used to predict DLBR. We consider three categories of the in-
direct predictors. First, we include methods that predict
transmembrane regions in protein sequences. We select predictors
with publicly available implementations/servers that include one re-
cently released method, SCAMPI 2 (Peters et al., 2016) and one
older and highly cited method, Phobius (Käll et al., 2007). While
DLBRs predicted by DisoLipPred exclude transmembrane regions,
we investigate whether the transmembrane region predictors could
be used to also predict DLBRs. Second, we cover disorder predictors
since DLBR are one of the functional subtypes of the disordered resi-
dues. We choose 10 disorder predictors that were considered in re-
cent comparative surveys (Katuwawala et al., 2020; Katuwawala
and Kurgan, 2020): DisEMBL-465 (trained using X-ray structures)
and DisEMBL-HL (trained to predict disorder-like loop conforma-
tions) (Linding et al., 2003); three versions of ESpritz (Walsh et al.,
2012): ESpritz-Xray (trained on X-ray structures), ESpritz-NMR
(trained on NMR structures) and ESpritz-DisProt (trained on the
DisProt database data); two flavors of IUPred (Dosztányi et al.,
2005; Mészáros et al., 2018): IUPred-short (trained to predict short
IDRs) and IUPred-long (trained to predict long IDRs); GlobPlot
(Linding et al., 2003) and SPOT-Disorder (Hanson et al., 2017).
Third, we include representative predictors of disorder function,
such as DisoRDPbind (Peng et al., 2017; Peng and Kurgan, 2015)
that predicts the disordered RNA binding, DNA binding and protein
binding residues, ANCHOR 2 (Mészáros et al., 2018) that predicts
disordered protein binding residues and DFLpred (Meng and
Kurgan, 2016) which predicts disordered linkers. Finally, we com-
pute a baseline results based on sequence alignment to the training

proteins. We perform this alignment with BLAST (Altschul et al.,
1997), where DLBR annotations are transferred from the aligned
positions in the most similar training proteins that secures e-value <
1.0. We setup the e-value parameter to maximize performance on
the test dataset.

Table 3 compares DisoLipPred’s predictive performance against
the indirect predictors and the baseline. We derive the binary predic-
tions from the propensity scores using thresholds that we adjust to
set FPR ¼ 0.1 (specificity ¼ 0.9). This allows us to directly compare
the other binary metrics (sensitivity and F1) between methods.
DisoLipPred provides accurate predictions of DLBRs on the test
dataset, with AUC ¼ 0.78 and sensitivity ¼ 0.38 at FPR ¼ 0.10. The
latter means that DisoLipPred offers 3.8-fold increase in the rate of
correct to incorrect predictions. Tests of statistical significance of
differences reveal that the DisoLipPred’s predictions are significantly
better than the results of all 17 indirect methods and the baseline (P-
value < 0.05). The poor performance of the baseline alignment
stems from the low sequence similarity, < 25%, between the train-
ing and test proteins. The most accurate of the indirect predictors in-
clude Espritz-DisProt (AUC ¼ 0.77, sensitivity ¼ 0.35), SPOT-
Disorder (AUC ¼ 0.69, sensitivity ¼ 0.16) and VSL2B (AUC ¼ 0.67,
sensitivity ¼ 0.21). The ROC curves the test dataset for the best-
performing methods, including DisoLipPred, SPOT-Disorder,
VSL2B, Espritz-DisProt, are available in Supplementary Figure S3.
They reveal a large margin of improvement for DisoLipPred, par-
ticularly for low values of FPRs, i.e. conservative predictions where
rate of false positives is low. We highlight the results from the two
predictors of transmembrane regions that secure near zero (0.02)
sensitivity at 0.1 specificity, which means that they do not predict
DLBRs. We further investigate these methods using a dataset of
transmembrane proteins in Section 3.4.

The prediction of DLBRs requires to separate these residues from
structured residues and from other disordered residues. The first
task of differentiating disorder from order can be solved accurately
by current methods, as demonstrated by recent assessments of dis-
order predictors (Katuwawala and Kurgan, 2020; Necci et al.,
2021). This is why several disorder predictors secure relatively high
AUCs of on the test dataset. The second task is hard, which is

Table 1. Experimental setups for the ablation study

Setup Use of transfer learning Use of lipid features Bypass module during training

DisoLipPred Yes Yes Native disorder versus native order

1 No Yes Native disorder versus native order

2 Yes No Native disorder versus native order

3 Yes Yes Predicted disorder versus predicted

order

4 No No No

Table 2. Predictive performance of DisoLipPred and its variants from the ablation analysis (Table 1) on the test dataset

Setup Complete dataset Disordered residues in the test dataset

AUC Spec¼0.90 Spec¼ 0.70 Sens¼ 0.70 Sens¼ 0.50 AUC Spec¼0.90 Spec¼ 0.70 Sens¼ 0.70 Sens¼ 0.50

Sen F1 Sen F1 Spec F1 Spec F1 Sen F1 Sen F1 Spec F1 Spec F1

DisoLipPred 0.781 0.382 0.145 0.745 0.111 0.731 0.115 0.831 0.124 0.635 0.286 0.201 0.500 0.161 0.465 0.138 0.699 0.161

1 0.747 0.290 0.112 0.287 0.044 0.278 0.047 0.492 0.047 0.572 0.162 0.118 0.469 0.151 0.438 0.133 0.666 0.148

2 0.745 0.327 0.125 0.154 0.024 0.234 0.044 0.370 0.038 0.603 0.146 0.175 0.421 0.142 0.430 0.130 0.564 0.132

3 0.726 0.260 0.101 0.296 0.046 0.344 0.051 0.513 0.049 0.593 0.117 0.129 0.326 0.108 0.369 0.121 0.552 0.116

4 0.678 0.123 0.049 0.418 0.064 0.506 0.067 0.650 0.066 0.396 0.046 0.035 0.201 0.068 0.181 0.096 0.352 0.086

Note: We perform the assessment on the complete test dataset, and also on the subset of disordered residues from the test dataset. We quantify the binary met-

rics (sensitivity, specificity and F1) at fixed sensitivities (sens) of 0.70 and 0.50 and fixed specificities (spec) of 0.90 and 0.70. This enables direct comparison of the

binary metrics between different variants. We assess the statistical significance of the differences between the results produced by DisoLipPred and each of the var-

iants using procedure explained in Section 2.2. Values in bold and italics font indicate that DisoLipPred provides significantly better result when compared with its

variant (P-value <0.05).
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apparent from the results computed on the native disordered resi-
dues in the test dataset (the right side of Table 3). They reveal that
disorder predictors cannot reliably discriminate DLBRs from the
other disordered residues, which is expected since they were not
designed for this prediction. More specifically, AUCs of the top dis-
order predictors, Espritz-DisProt, SPOT-Disorder, VSL2B, are 0.50,
0.36 and 0.43, respectively. Some of these AUCs are substantially
below 0.5, suggesting that the scores for the DLBRs are lower than
for the other disordered residues. This could be explained by the fact
that DLBRs fold upon binding, therefore having higher propensity
to be structured from some other disordered residues. However, the
ability to use these predictions to find DLBRs would hinge on first
correctly predicting disordered residues. Only DisoLipPred solves
the hard prediction by producing relatively accurate results for the
disordered residues (AUC ¼ 0.64, F1¼ 0.20 and sensitivity ¼ 0.29
at specificity ¼ 0.90), with the other predictors scoring at random
levels (AUCs � 0.55) and these differences being statistically signifi-
cant (P-value < 0.05).

3.3 Predictions on the Saccharomyces cerevisiae

proteome
We apply DisoLipPred to predict DLBRs for the complete
Saccharomyces cerevisiae proteome that we source from UniProt
(UniProt, 2021). The Baker’s yeast proteome includes 6049 protein
sequences and 2 936 363 residues. This is one of the most accurately
sequenced proteomes; BUSCO (Benchmarking Universal Single-
Copy Orthologs) scores its completeness at 99.6% (Sim~ao et al.,
2015). We calibrate the binary predictions to 0.48% prediction rate
(% putative DLBRs in the genome), which corresponds to the rate of
the native DLBRs in the DisProt database. We exclude the putative
DLBRs if they form segments of <6 consecutive residues since the
shortest experimentally annotated disordered lipid binding regions
in DisProt are 6 residues long. We share these predictions on the
DisoLipPred’s website at http://biomine.cs.vcu.edu/servers/
DisoLipPred/. We predict that about 4.9% of the yeast proteins have
putative DLBRs (Fig. 2A). Majority of these proteins have less than
5% of residues predicted as DLBRs, however, about 0.7% of the
yeast proteins have a substantial amount of over 5% DLBRs
(Fig. 2B).

We validate these predictions using the gene ontology (GO)
annotations from UniProt. These annotations are independent of the
ground truth data used in the test dataset. First, we select a subset of
the yeast proteins that include the ‘lipid’ keyword in their molecular
function GO term and the ‘membrane’ keyword within their cellular
component GO term. The resulting set of 309 proteins is likely to be
enriched in the proteins that have DLBRs; we call it GO lipid associ-
ated protein set. Second, we compute the rate of proteins predicted
to have DLBRs in the GO lipid associated protein set using
DisoLipPred and compare it to the rate of these predictions gener-
ated with the second-best ESpritz-DisProt method (Table 2). We
calibrate the ESpritz-DisProt’s predictions the same way as the pre-
dictions from DisoLipPred. Third, we calculate the expected rate of
proteins with the putative DLBRs in the yeast proteome. We com-
pute the rate for a randomly selected set of 309 yeast proteins and re-
peat this experiment 100 times to establish distribution of the
expected rates. The results are summarized in Figure 2. The mean of

the distribution for DisoLipPred’s predictions is 4.9% (Fig. 3A) and
corresponds to the overall rate of proteins with DLBRs in yeast
(Fig. 2A).

DisoLipPred predicts 10.3% of proteins in the GO lipid associ-
ated protein set as having DLBRs. This rate doubles the expected
rate of 4.9% and the difference is statistically significant based on
the distribution of the expected values in Figure 3A (P-value <
0.01). On the other hand, the calibrated predictions from ESpritz-
DisProt identify only 0.97% of the GO lipid associated protein set
as having DLBRs. This rate is below the expected rate of the
ESpritz-DisProt’s predictions (red line in Fig. 3B), for which median
is 1.5%. This suggests that the GO lipid associated proteins are over-
all depleted in disorder. In spite of the disorder depletion, the rate of
the DisoLipPred’s predictions of DLBRs is 10.3/0.97¼ 10.6 times
higher than the rate of the ESpritz-DisProt’s predictions, providing
further support for our claim that DisoLipPred’s predictions are
accurate.

3.4 Assessment of predictions on the transmembrane

proteins
Given that DLBR are defined as disordered lipid-binding regions
that exclude transmembrane segments, we empirically evaluate
whether the DisoLipPred’s predictions in fact exclude the transmem-
brane residues. We test DisoLipPred and the two representative pre-
dictors of the transmembrane regions, SCAMPI 2 (Peters et al.,
2016) and Phobius (Käll et al., 2007), on the TM dataset (Table 4).
Here, we use the predictions from these three tools to identify native
transmembrane regions, i.e. transmembrane residues are set as the
positives while the other residues, including a small amount of
DLBRs, are set as negatives. Since SCAMPI 2 and Phobius produce
only binary predictions and thus their prediction rate cannot be cali-
brated, we adjust the rate of the DisoLipPred’s predictions to match
the specificity of each of the two transmembrane predictors. Table 4
shows that as expected SCAMPI 2 and Phobius provide accurate
predictions of the transmembrane regions based on their high sensi-
tivity scores, i.e. 0.79 sensitivity at the low 0.09 FPR and 0.57 sensi-
tivity at the low 0.06 FPR, respectively. Their predicted positive rate
(PPR) defined as the rate of true positives among the predicted posi-
tives is also relatively high and equals 0.28 and 0.20, respectively. In
stark contrast, DisoLipPred’s sensitivity values calibrated to the rate
of predictions from SCAMPI 2 and Phobius are 0.04 and 0.03, dem-
onstrating that it predicts very few transmembrane resides as
DLBRs. These values are substantially smaller than the correspond-
ing sensitivity values on the test dataset (Supplementary Fig. S3).
DisoLipPred’s PPR is higher than its corresponding sensitivity be-
cause several proteins in this dataset include DLBRs, which by defin-
ition do not overlap with transmembrane regions. Altogether, these
results show that DisoLipPred accurately differentiates between the
transmembrane regions and DLBRs. Moreover, given the corres-
pondingly low sensitivity of SCAMPI 2 and Phobius for the predic-
tion of DLBRs (Table 3), we conclude that DisoLipPred predicts
lipid interacting residues that complement the results produced by
the predictors of the transmembrane regions.

Fig. 2. Summary of the DisoLipPred’s predictions on the Saccharomyces cerevisiae

proteome. (A) The fraction of the yeast proteins predicted to have DLBRs. (B) The

histogram of the putative content of DLBRs for the 4.9% of the yeast proteins with

DLBRs

Fig. 3. Analysis of the DisoLipPred predictions (A) and the Espritz-DisProt predic-

tions (B) for the yeast proteins. The black arrows identify the rate of the putative

proteins with DLBRs in the GO lipid associated protein set (i.e. set of 309 yeast pro-

teins that share ‘lipid’ keyword in the molecular function GO term and the ‘mem-

brane’ keyword in the cellular component GO term). Red lines show the

distributions of the expected rates of the putative proteins with DLBRs, which we es-

tablish based on measuring the rate for 100 randomly selected sets of 309 yeast pro-

teins (Color version of this figure is available at Bioinformatics online.)
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3.5 Case study
We illustrate the DisoLipPred’s predictions for one of the test pro-
teins, the Sec-independent protein translocase protein TatA (UniProt
accession number: P69428). Our objective here is to visualize and
explain the predictions, rather than to evaluate their performance.
TatA is a membrane associated protein, which is a subunit of the
larger twin-arginine translocation (Tat) system (Chan et al., 2011).
The Tat system acts as a facilitator to transport large folded proteins
through cellular membranes by creating a protein conducting chan-
nel (Ize et al., 2002; Sargent et al., 1998). TatA contains a long IDR
(positions 21–89) which was characterized with NMR (Zhang et al.,
2014). Furthermore, proton based NMR revealed that part of this
IDR (positions 21–44) binds to lipids (Chan et al., 2011). Figure 4
shows DisoLipPred’s predictions for TatA along with the abovemen-
tioned native annotations of the disordered and disorder lipid bind-
ing regions. DisoLipPred generates relatively high propensities at the
N terminus half of the protein, resulting in the prediction of a long
segment of DLBRs that overlaps with the experimentally determined
lipid-binding region. Interestingly, we predict that the residues at the
N terminus are also lipid binding. DisProt does not offer a conclu-
sive evidence whether this segment is disordered or structured. Our
alignment-based mapping into PDB (see Section 2.1) did not identify
a known structure for this segment. Further investigation of litera-
ture reveals support for our prediction, where this segment is shown
to likely interact with lipids of the cell membrane from the cytoplas-
mic side (Porcelli et al., 2002). Altogether, this prediction agrees
with the experimental annotations and provides support for the hy-
pothesis that the disordered lipid binding region is larger than
DisProt suggests, covering the N-terminus half of the TatA
sequence.

3.6 Webserver
DisoLipPred is freely available as a webserver at http://biomine.cs.
vcu.edu/servers/DisoLipPred/. DisoLipPred webserver takes up to
two amino acid sequences in the FASTA format as the input. The en-
tire prediction process is automated, done on the server side and
takes about 2–4 min for an average size protein. Users can optionally
provide an email address where we send a notification email with
the unique URL of results once the prediction is completed. The
webserver provides the output propensities and binary predictions
for each amino acid in the input protein sequence(s). The threshold
that we use to generate the binary predictions corresponds to the
10% FPR on the training dataset. The outputs are available in two
complementary formats: as a parsable text file and an interactive fig-
ure. The figure provides a graphical summary of the predictions with
the zoom in/out functions, ability to hide user-selected panels and
take a screenshot and mouse hover that shows additional
information.

4 Summary

IDRs interact with many partner molecules including proteins,
RNA, DNA and lipids. Sequence-based prediction of these IDRs is

currently possible for the interactions with proteins and nucleic acids
(Katuwawala et al., 2019a,b; Meng et al., 2017; Varadi et al.,
2015a). Motivated by the growing amount of experimental data and
the need to expand coverage of the current predictors, we conceptu-
alize, design, validate and deploy DisoLipPred, the first predictor of
DLBRs. Our solution implements three innovative features that in-
clude the application of transfer learning, bypass module and
selected physiochemical properties associated with protein–lipid
interactions.

We deliver a multifaceted validation of the predictions produced
by DisoLipPred. The ablation tests show that the quality of the
DisoLipPred predictions is powered primarily by the three innova-
tions. Analysis on the test dataset reveals that DisoLipPred generates
accurate predictions and that current tools that could be indirectly
used to identify DLBR cannot differentiate the lipid-interacting resi-
dues from the other disordered residues. Validation on the complete
yeast proteome provides further support for the claim that
DisoLipPred produces accurate results. Moreover, we demonstrate
empirically that the DisoLipPred’s predictions complement the
results produced by the predictors of the transmembrane regions.
Altogether, our analysis suggests that DisoLipPred provides high-
quality predictions of disordered lipid-binding regions that comple-
ment the currently available tools. DisoLipPred is available via a
convenient webserver at http://biomine.cs.vcu.edu/servers/
DisoLipPred/.
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Dosztányi,Z. et al. (2005) IUPred: web server for the prediction of intrinsically

unstructured regions of proteins based on estimated energy content.

Bioinformatics, 21, 3433–3434.

Dosztanyi,Z. et al. (2009) ANCHOR: web server for predicting protein bind-

ing regions in disordered proteins. Bioinformatics, 25, 2745–2746.

Dunker,A.K. et al. (2002) Intrinsic disorder and protein function.

Biochemistry, 41, 6573–6582.

Dunker,A.K. et al. (2001) Intrinsically disordered protein. J. Mol. Graph.

Modell., 19, 26–59.

Dyson,H.J. and Wright,P.E. (2005) Intrinsically unstructured proteins and

their functions. Nat. Rev. Mol. Cell Biol., 6, 197–208.

Fang,C. et al. (2019) Identifying short disorder-to-order binding regions in dis-

ordered proteins with a deep convolutional neural network method. J.

Bioinform. Comput. Biol., 17, 1950004.

Faraggi,E. et al. (2014) Accurate single-sequence prediction of solvent access-

ible surface area using local and global features. Proteins, 82, 3170–3176.

Fuxreiter,M. et al. (2014) Disordered proteinaceous machines. Chem. Rev.,

114, 6806–6843.

Ghadermarzi,S. et al. (2020) Disordered function conjunction: on the in-silico

function annotation of intrinsically disordered regions. Pac. Symp.

Biocomput., 25, 171–182.

Habchi,J. et al. (2014) Introducing protein intrinsic disorder. Chem. Rev., 114,

6561–6588.

Hanson,J. et al. (2017) Improving protein disorder prediction by deep bidirec-

tional long short-term memory recurrent neural networks. Bioinformatics,

33, 685–692.

Hanson,J. et al. (2018) Accurate single-sequence prediction of protein intrinsic

disorder by an ensemble of deep recurrent and convolutional architectures.

J. Chem. Inf. Model., 58, 2369–2376.

Hanson,J. et al. (2020a) Identifying molecular recognition features in intrinsic-

ally disordered regions of proteins by transfer learning. Bioinformatics, 36,

1107–1113.

Hanson,J. et al. (2020b) SPOT-disorder2: improved protein intrinsic disorder

prediction by ensembled deep learning. Genomics Proteomics Bioinf., 17,

645–656.

Hatos,A. et al. (2020) DisProt: intrinsic protein disorder annotation in 2020.

Nucleic Acids Res., 48, D269–D276.

Hatos,A. et al. (2019) DisProt: intrinsic protein disorder annotation in 2020.

Nucleic Acids Res., 48, D269–D276.

Huang,H.L. et al. (2013) Predicting and analyzing lipid-binding proteins using

an efficient physicochemical property mining method. Appl. Mech. Mater.,

421, 313–318.

Huang,Y. et al. (2010) CD-HIT Suite: a web server for clustering and compar-

ing biological sequences. Bioinformatics, 26, 680–682.

Ize,B. et al. (2002) In vivo dissection of the tat translocation pathway in

Escherichia coli, edited by G. von Heijne. J. Mol. Biol., 317, 327–335.

Jebarupa,B. et al. (2018) Conformational heterogeneity of tau: implication on

intrinsic disorder, acid stability and fibrillation in Alzheimer’s disease.

Biophys. Chem., 241, 27–37.

Jin,J. et al. (2021) Deep learning pan-specific model for interpretable MHC-I

peptide binding prediction with improved attention mechanism. Proteins,

89, 866–883.

Käll,L. et al. (2007) Advantages of combined transmembrane topology and

signal peptide prediction—the Phobius web server. Nucleic Acids Res., 35,

W429–W432.

Kaplan,B. et al. (2003) Alpha-synuclein: its biological function and role in neu-

rodegenerative diseases. J. Mol. Neurosci., 20, 83–92.

Katuwawala,A. et al. (2019a) Computational prediction of functions of intrin-

sically disordered regions. Prog. Mol. Biol. Transl. Sci., 166, 341–369.

Katuwawala,A. et al. (2019b) Computational prediction of MoRFs, short

disorder-to-order transitioning protein binding regions. Comput. Struct.

Biotechnol. J., 17, 454–462.

Katuwawala,A. and Kurgan,L. (2020) Comparative assessment of intrinsic dis-

order predictions with a focus on protein and nucleic acid-binding proteins.

Biomolecules, 10, 1636.

Katuwawala,A. et al. (2020) Accuracy of protein-level disorder predictions.

Brief. Bioinf., 21, 1509–1522.

Kawashima,S. et al. (2008) AAindex: amino acid index database, progress re-

port 2008. Nucleic Acids Res., 36, D202–205.

Kjaergaard,M. and Kragelund,B.B. (2017) Functions of intrinsic disorder in

transmembrane proteins. Cell. Mol. Life Sci., 74, 3205–3224.

Knyazeva,E.L. et al. (2008) Who is Mr. Hamlet? interaction of human a-lactal-

bumin with monomeric oleic acid. Biochemistry, 47, 13127–13137.

Li,F. et al. (2020) DeepCleave: a deep learning predictor for caspase and ma-

trix metalloprotease substrates and cleavage sites. Bioinformatics, 36,

1057–1065.

Linding,R. et al. (2003) Protein disorder prediction: implications for structural

proteomics. Structure, 11, 1453–1459.

Liu,L. et al. (2021) TSPTFBS: a docker image for trans-species prediction of

transcription factor binding sites in plants. Bioinformatics, 37, 260–262.

Malhis,N. and Gsponer,J. (2015) Computational identification of MoRFs in

protein sequences. Bioinformatics, 31, 1738–1744.

Malhis,N. et al. (2016) MoRFchibi SYSTEM: software tools for the identifica-

tion of MoRFs in protein sequences. Nucleic Acids Res., 44, W488–W493.

Melo,A.M. et al. (2016) A functional role for intrinsic disorder in the

tau-tubulin complex. Proc. Natl. Acad. Sci. USA, 113, 14336–14341.

Meng,F. and Kurgan,L. (2016) DFLpred: high-throughput prediction of disor-

dered flexible linker regions in protein sequences. Bioinformatics, 32,

i341–i350.

Meng,F. et al. (2015) Compartmentalization and functionality of nuclear dis-

order: intrinsic disorder and protein–protein interactions in intra-nuclear

compartments. Int. J. Mol. Sci., 17, 24.

Meng,F. et al. (2017) Comprehensive review of methods for prediction of in-

trinsic disorder and its molecular functions. Cell. Mol. Life Sci., 74,

3069–3090.
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Ruipérez,V. et al. (2010) Alpha-synuclein, lipids and Parkinson’s disease.

Progress Lipid Res., 49, 420–428.

Sargent,F. et al. (1998) Overlapping functions of components of a bacterial

Sec-independent protein export pathway. EMBO J., 17, 3640–3650.

Settembre,C. et al. (2013) TFEB controls cellular lipid metabolism through a

starvation-induced autoregulatory loop. Nat. Cell Biol., 15, 647–658.

Sharma,R. et al. (2018) OPAL: prediction of MoRF regions in intrinsically dis-

ordered protein sequences. Bioinformatics, 34, 1850–1858.

Sharma,R. et al. (2019) OPALþ: length-specific MoRF prediction in intrinsic-

ally disordered protein sequences. Proteomics, 19, e1800058.

Sim~ao,F.A. et al. (2015) BUSCO: assessing genome assembly and annotation

completeness with single-copy orthologs. Bioinformatics, 31, 3210–3212.

Singh,J. et al. (2019) RNA secondary structure prediction using an ensemble of

two-dimensional deep neural networks and transfer learning. Nat.

Commun., 10, 5407.

DisoLipPred 123

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/1/115/6364892 by guest on 19 April 2024



Song,M. and Kim,H. (1997) Stability and solvent accessibility of SecA protein

of Escherichia coli. J. Biochem., 122, 1010–1018.

Soto-Avellaneda,A. and Morrison,B.E. (2020) Signaling and other functions of

lipids in autophagy: a review. Lipids Health Dis., 19, 214.

Tan,C. et al. (2018) A Survey on Deep Transfer Learning. Springer

International Publishing, Cham. pp. 270–279.

Ugalde,C.L. et al. (2019) The role of lipids in a-synuclein misfolding and

neurotoxicity. J. Biol. Chem., 294, 9016–9028.

UniProt,C. (2021) UniProt: the universal protein knowledgebase in 2021.

Nucleic Acids Res., 49, D480–D489.

Uversky,V.N. and Eliezer,D. (2009) Biophysics of Parkinson’s disease: struc-

ture and aggregation of alpha-synuclein. Curr. Protein Pept. Sci., 10,

483–499.

van der Goot,F.G. et al. (1991) A ‘molten-globule’ membrane-insertion inter-

mediate of the pore-forming domain of colicin A. Nature, 354, 408–410.

Varadi,M. et al. (2015a) Computational approaches for inferring the functions

of intrinsically disordered proteins. Front. Mol. Biosci., 2, 45.

Varadi,M. et al. (2015b) Functional advantages of conserved intrinsic disorder

in RNA-binding proteins. PLoS One, 10, e0139731.

Walsh,I. et al. (2012) ESpritz: accurate and fast prediction of protein disorder.

Bioinformatics, 28, 503–509.

Wang,C. et al. (2016a) Disordered nucleiome: abundance of intrinsic disorder

in the DNA- and RNA-binding proteins in 1121 species from Eukaryota,

Bacteria and Archaea. Proteomics, 16, 1486–1498.

Wang,S. et al. (2016b) AUCpreD: proteome-level protein disorder prediction

by AUC-maximized deep convolutional neural fields. Bioinformatics, 32,

i672–679.

Weiss,K. et al. (2016) A survey of transfer learning. J. Big Data, 3, 9.

Welte,M.A. and Gould,A.P. (2017) Lipid droplet functions beyond energy

storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1862, 1260–1272.

wwPDB Consortium. (2019) Protein Data Bank: the single global archive for

3D macromolecular structure data. Nucleic Acids Res., 47, D520–D528.

Xue,B. et al. (2012) Orderly order in protein intrinsic disorder distribution:

disorder in 3500 proteomes from viruses and the three domains of life. J.

Biomol. Struct. Dyn., 30, 137–149.

Zhang,Y. et al. (2014) Structural basis for TatA oligomerization: an NMR

study of Escherichia coli TatA dimeric structure. PLoS One, 9, e103157.

124 A.Katuwawala et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/1/115/6364892 by guest on 19 April 2024


	S6
	S7
	S8
	S9
	tblfn1
	tblfn2
	tblfn3

