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Abstract

Motivation: The delicate balance of the microbiome is implicated in our health and is shaped by external factors,
such as diet and xenobiotics. Therefore, understanding the role of the microbiome in linking external factors and our
health conditions is crucial to translate microbiome research into therapeutic and preventative applications.

Results: We introduced a sparse compositional mediation model for binary outcomes to estimate and test the
mediation effects of the microbiome utilizing the compositional algebra defined in the simplex space and a linear
zero-sum constraint on probit regression coefficients. For this model with the standard causal assumptions, we
showed that both the causal direct and indirect effects are identifiable. We further developed a method for sensitivity
analysis for the assumption of the no unmeasured confounding effects between the mediator and the outcome. We
conducted extensive simulation studies to assess the performance of the proposed method and applied it to real
microbiome data to study mediation effects of the microbiome on linking fat intake to overweight/obesity.

Availability and implementation: An R package can be downloaded from https://github.com/mbsohn/cmmb.

Contact: michael_sohn@urmc.rochester.edu

Supplementary information: Supplementary files are available at Bioinformatics online.

1 Introduction

The human microbiome is recognized as a key determinant of nor-
mal physiology and immune homeostasis (Li, 2015; Honda and
Littman, 2016; Thaiss et al., 2016). Essential functions provided by
the microbiome include the regulation of the immune system and
metabolic function, the synthesis of essential vitamins, and the re-
moval of toxic compounds (Heintz-Buschart and Wilmes, 2018). It
has also been shown that the microbiome changes readily in re-
sponse to extrinsic factors, such as diet and xenobiotics (Wu et al.,
2011; Lewis et al., 2015; Kurilshikov et al., 2017). This dual role of
the microbiome is very appealing in biomedical science, as it can be
used as a non-invasive therapeutic application. Modulating targeted
microbes using xenobiotics, for instance, would be more effective
than imposing a complete dietary change for obesity treatment and
could be as effective as bariatric surgery with no severe side effects.
To translate the microbiome research into therapeutic and preventa-
tive applications, however, we need to understand mechanisms
underlying the effect of external factors or interventions on the dis-
ease transmitted through the perturbation in the microbiome.

Mediation analysis, which studies the effect of treatment on out-
come transmitted through a variable called a mediator, has been
widely applied in numerous disciplines, such as sociology and epi-
demiology. It traditionally has been formulated and implemented

under the structural equation modeling (SEM) framework (Baron
and Kenny, 1986; MacKinnon et al., 2002); however, with recent
advances in causal inference, which clarifies the assumptions needed
for causal interpretation, mediation analysis under the potential out-
comes (PO) framework has been gaining popularity (Pearl, 2001;
Rubin, 2005; Imai et al., 2010; VanderWeele and Vansteelandt,
2010). Recent studies have extended the traditional single-mediator
model to the multiple-mediators model (Imai and Yamamoto, 2013;
VanderWeele and Vansteelandt, 2014), even in high-dimensional
settings (Chén et al., 2015; Huang and Pan, 2016; Zhao and Luo,
2016). These mediation models, however, are not directly applicable
for microbiome data due to the compositional nature of the micro-
biome data.

Compositional data comprise the proportions or percentages of a
whole, imposing a unit-sum constraint, i.e. the sum of components is
1 or 100%. This unit-sum constraint makes a composition with
k-components lie in the ðk� 1Þ-dimensional simplex space S

k�1 and
makes it impossible to alter one component without altering at
least one of the other components. Neglecting this compositional
structure thus can cause undesirable consequences. Sohn and Li
(2019) proposed a sparse compositional mediation model (CMM)
for continuous outcomes under the PO framework utilizing the alge-
bra defined in the simplex space (Aitchison, 1986; Billheimer et al.,
2001) and a linear constraint on regression coefficients, which is a
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necessary condition to satisfy the basic properties of compositional
data, such as scale and permutation invariance (Aitchison and
Bacon-Shone, 1984; Lin et al., 2014). Subsequently, a few compos-
itional mediation methods for continuous outcomes have been pro-
posed (Wang et al., 2020; Zhang et al., 2021). In many human
microbiome studies, however, the outcome is binary, such as the
presence or absence of disease.

In this article, we extend CMM to accommodate binary out-
comes. The effect of a treatment on all the components of a compos-
itional mediator is jointly estimated using the algebra in the simplex
space. For the quantification of the effects of a treatment and a com-
positional mediator on binary outcomes, an L1-penalized probit
model with a linear constraint is used. Its parameters are estimated
by an algorithm that combines the iteratively reweighted least-
squares (IRLS) (Green, 1984; Lee et al., 2006) and the coordinate
descent method of multipliers (CDMM) (Lin et al., 2014). To obtain
asymptotically unbiased estimates for the parameters of the L1-
penalized probit model, we developed a debias procedure that
extends the methods of Shi et al. (2016) and Lu et al. (2019). We
defined an estimator for the mediation effect under the PO frame-
work and evaluated its performance in extensive simulation settings.
We also developed a method for sensitivity analysis for the assump-
tion of the no unmeasured confounding effects between the mediator
and the outcome. We applied CMM to a real dataset, COMBO (Wu
et al., 2011), to link diet fat intake to overweight/obesity and found
a significant effect of fat intake on overweight/obesity mediated
through the gut microbiome.

2 Materials and methods

2.1 Algebraic operators in simplex space
We first provide the definitions of the algebraic operators in the
simplex space that appear in this article. For two compositions of
k-components g; f 2 S

k�1, the perturbation operator is defined as

g�f ¼ g1f1=
Xk

j¼1

gjfj; . . . ; gkfk=
Xk

j¼1

gjfj

0
@

1
A
>

;

the inverse of the perturbation operator as

g� f ¼ g1f
�1
1 =

Xk

j¼1

gjf
�1
j ; . . . ; gkf

�1
k =

Xk

j¼1

gjf
�1
j

0
@

1
A
>

;

the power transformation for a composition g by a scalar t as

gt ¼ gt
1=
Xk

j¼1

gt
j ; . . . ; gt

k=
Xk

j¼1

gt
j

0
@

1
A
>

;

and a norm for composition as

kgk ¼ ðgTgÞ1=2 ¼ ðalrðgÞTN�1alrðgÞÞ1=2;

where alrð�Þ is the additive log-ratio transformation and N�1 is the
inverse matrix of a ðk� 1Þ � ðk� 1Þ matrix N ¼ Ik�1 þ 1k�11T

k�1

(Aitchison, 1986; Billheimer et al., 2001).

2.2 Compositional mediation model for binary

outcomes
Suppose that we have n random samples from a population, where
we observe an outcome Yi, a compositional mediator Mi, a treat-
ment Ti, and covariates X i for i ¼ 1; . . . ; n, and that we consider an
expected causal effect of Ti on Yi mediated through Mi, depicted in
Figure 1. Then, a model for this mediation effect should take the
compositional nature of Mi into an account, as Mi 2 S

k�1. To de-
velop such a model, we utilize algebraic operations defined in the
simplex space and a zero-sum constraint on regression coefficients
for the components of a composition.

With the perturbation and power transformation operators, the
proposed compositional mediation model for a binary outcome
(CMM) is given by

Mi ¼ m0�aTi �
nx

r¼1
hXri

r

� �
�U1i (1)

Yi ¼ 1fc0 þ cTi þ b>ðlog MiÞ þ g>X i þU2i > 0g;
subjectto1>k b ¼ 0;

(2)

where m0 is a baseline composition (i.e. when Ti ¼ EðTiÞ); c0 a base-
line measure for Yi; a a vector of composition parameters for a treat-
ment; c regression coefficients for the treatment; b regression
coefficients for the composition; h1; . . . ; hnx

and g nuisance parame-
ters corresponding to X i; U1i and U2i disturbance terms for Mi and
Yi, respectively; and �nx

r¼1gr ¼ g1� � � ��gnx
. We assume U1i follows

a logistic normal distribution with mean 0 and covariance R and U2i

follows a standard normal distribution. Model (1) formulates the ef-
fect of a treatment on a compositional mediator perturbed from the
baseline composition, which is measured by the parameter a, after
adjusting for pretreatment covariates, and Model (2) links treatment
and a compositional mediator to a binary outcome after adjusting
for pretreatment covariates while it accounts for the compositional
nature of Mi by imposing a zero-sum constraint, b>1k ¼ 0. Note
that the vector of regression coefficients b is scale-invariant with re-
spective to Mi because of the zero-sum constraint, i.e.
ðlog CMiÞ>b ¼ ðlog MiÞ>b for any constant C.

2.3 Model assumptions and identification
As in most of the work on causal mediation analysis, estimators of
the natural direct and indirect (or mediation) effects for the proposed
method are defined under the causal assumptions: the stable unit
treatment value assumption (SUTVA) (Imbens and Rubin, 2015),
the positivity assumption, and the no-unmeasured confounding as-
sumption, i.e. a set of pretreatment covariates is sufficient to control
for confounding effects. See Supplementary Material D.3 for details
of these assumptions. Suppose that Models (1) and (2) are correctly
specified. Then, under these assumptions, the direct effect fðtÞ and
the total indirect effect dðtÞ are identifiable and given by

fðsÞ � E½Yiðt; log MiðsÞÞ � Yiðt0; log MiðsÞÞjX i ¼ x�

¼ EU
ct þ ffðs;X iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b>�kRb�k þ 1

q
0
@

1
A� U

ct0 þ ffðs;X iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b>�kRb�k þ 1

q
0
@

1
A
9=
; ;

dðsÞ � E½Yiðs; log MiðtÞÞ � Yiðs; log Miðt0ÞÞjX i ¼ x�

¼ E

(
aU

ðlog aÞ>bt þ fdðs;X iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b>�kRb�k þ 1

q
0
@

1
A� U

ðlog aÞ>bt0 þ fdðs;X iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b>�kRb�k þ 1

q
0
@

1
A
9=
; ;

where t is an observed treatment, t0 a reference value for the treat-
ment, ffðs;xÞ ¼ c0 þ b>ðlog m0 þ s log aþ

Pnx

r¼1 xr log hrÞ þ g>x,
and fdðs; xÞ ¼ c0 þ csþ b>ðlog m0 þ

Pnx

r¼1 xr log hrÞ þ g>x. Note
that these estimators, fðsÞ and dðsÞ, are invariant to the order

Fig. 1. A compositional mediation model: aj, bj, and c are path coefficients,

j ¼ 1; . . . ; k; U1i and U2i are disturbance terms for k compositional mediators Mi

and an outcome Yi, respectively; Ti is a treatment variable; X i is a set of pretreatment

covariates
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of components (taxa) because of the constraint on a (i.e. lies in the

simplex space) and the zero-sum constraint of b (i.e. 1>k b ¼ 0).

2.4 Estimation of composition parameters
To estimate the parameters in Model (1), we minimize the difference
between observed and estimated compositions in S

k�1. With the

operators in S
k�1, we solve the following optimization problem:

ĥ ¼ argmin
m0 ;a;hr2Sk�1

Xn

i¼1

kMi � ðm0�aTi �
nx

r¼1
hXri

r Þk
2; (3)

where ĥ
> ¼ ðm̂0; â; ĥ1; . . . ; ĥnx

Þ. The objective function in (3) is

convex in terms of alrðm0Þ; alrðaÞ, and alrðhrÞ for r ¼ 1; . . . ;nx, and
the estimators are consistent and unbiased estimators. See

Supplementary Material A for details.

2.5 Estimation of regression parameters
To estimate the parameters of the composition in Model (2), we will
use a log-contrast model. Let gi ¼ 2yi � 1; zi ¼ ð1; ti; log ðmiÞ>;
x>i Þ

>; b ¼ ðc0; c; b
>; g>Þ>, and qðgiz

>
i bÞ ¼ �log Uðgiz

>
i bÞ. Then, the

L1 penalized log-likelihood function for Model (2) is given by

b̂ ¼ argmin
b

1

n

Xn

i¼1

qðgiz
>
i bÞ

( )
; subjecttojjbjj1 � t; 1>k b ¼ 0;

where t 	 0 is some constant. The solution of this optimization

problem is equivalent to the solution of the following optimization

problem:

b̂ ¼ argmin
b

1

2n
jjN1=2ðu� ZbÞjj22 þ kkbk1g; 1>k b ¼ 0;

�
(4)

where N is an n�n diagonal matrix with its ith diagonal term
Nii ¼ niðgiz

>
i b
Þ½z>i b
 þ niðgiz

>
i b
Þ�; b
 a vector lying between b0 and

b; niðbÞ ¼ gi/ðgiz
>
i bÞ=Uðgiz

>
i bÞ; nðb0Þ ¼ ðn1ðb0Þ; . . . ; n1ðb0ÞÞ>;

Z ¼ ðz1; . . . ; znÞ>; u ¼ Zb0 þ N�nðb0Þ; and k 	 0 is a penalty term.

Letting ~Z ¼ ZðIp � ii>=kÞ, where i> ¼ ð0;0;1>k ;0; . . . ; 0Þ, Equation
(4) can be written as

b̂ ¼ argmin
b

1

2n
jjN1=2ðu� ~ZbÞjj22 þ kkbk1g; i>b ¼ 0:

�
(5)

We need this transformation of Z for the debiasing procedure in

the following section. Note that the solutions of Equations (4) and

(5) are the same since i>b ¼ 0. The objective function in Equation
(5) has the form of weighted least squares; however, N and u depend

on unknown quantities, b
 and b0, respectively. Therefore, we

propose a method that combines iteratively reweighted least squares

and coordinate descent method of multipliers (IRLS-CDMM), which
iteratively updates Nð‘Þ and uð‘Þ. The algorithm for IRLS-CDMM

consists of constructing the augmented Lagrangian,

Ll ¼
1

2n
jjN1=2ðu� ~ZbÞjj22 þ kkbk1 þ 1i>bþ l

2
ði>bÞ2;

where 1 is the Lagrange multiplier and l > 0 a penalty parameter;

and iterative updates of

bð‘þ1Þ  argmin
b

Llðb;Nð‘Þ;uð‘Þ; cð‘ÞÞ;

Nð‘þ1Þ  argminb

Pn
i¼1

qðgi~z
>
i b
Þ;

uð‘þ1Þ  ~Zbð‘þ1Þ þ N�ð‘þ1Þnðbð‘þ1ÞÞ;

ð1=lÞð‘þ1Þ  ð1=lÞð‘Þ þ i>b:
The details of this algorithm are provided in Supplementary

Material B.

2.6 Debiasing procedure and its asymptotic

convergence
The solution b̂ of Equation (5) is biased because of L1 penalization.

To correct this bias, we adapt the debiased procedure of Shi et al.
(2016) and Lu et al. (2019). The proposed de-biased estimator of b̂

given N̂ and û is given by

b̂db ¼ b̂þ 1

n
~H ~Z

>
N̂ðû � ~Zb̂Þ; (6)

where ~H ¼ ðIp � ii>=kÞĤ and Ĥ ¼ ðĥ1; . . . ; ĥpÞ> is a solution of the

following convex problem,

ĥj ¼ minh>j R̂hj s:t:jjR̂hj � ðIp � ii>=kÞejjj1 � c;

where j ¼ 1; . . . ;p; R̂ ¼ ~Z
>
N̂ ~Z=n; ej 2 R

p the vector with one at the

jth position and zero everywhere else, and c some constant. Under

some regularity conditions, the debiased estimator b̂db converges to
b as n;p!1. The algorithm for the debiasing procedure and the

asymptotic properties of the debiased estimators are given in

Supplementary Materials C and D.

2.7 Hypothesis test of mediation effect
The distribution of the total mediation effect dðsÞ is unknown, so we

propose a bootstrap approach to test the significance of an expected

causal mediation effect,

H0 : dðsÞ ¼ 0 vs: H1 : dðsÞ 6¼ 0: (7)

To construct a sampling distribution of dðsÞ, we repeat the fol-

lowing steps B times: (i) randomly select n samples from the original
n samples with replacement, and (ii) estimate dbðsÞ. We use the 95%

percentile confidence interval to test the significance of dðsÞ in this

study. Alternatively, we can estimate an approximate P-value for

dðsÞ utilizing the fact that any bootstrap replicate dðsÞb � dðsÞ should
have a distribution close to that of dðsÞ when the null hypothesis is

true, where dðsÞb denotes an estimated indirect effect derived from a

bootstrap sample (Efron and Tibshirani, 1994).

2.8 Sensitivity analysis
In mediation analysis, the assumption of no unmeasured confound-

ing effects is not verifiable. Particularly, no unmeasured confounding

effects between a mediator and an outcome cannot be assured even

in a randomized experiment, thus rendering estimated mediation
effects prone to be biased. To address this potential problem, we

propose a method for sensitivity analysis that extends the method

proposed by Imai et al. (2010). Let q � CorrðalrðU1iÞj;U2iÞ be a cor-
relation between the disturbance terms for the compositional medi-

ator and the outcome, respectively for all j ¼ 1; . . . k� 1 and

Yi ¼ 1f~c0 þ ~cTi þ ~g>X i þU0i > 0g be a probit regression model for

the total effect of T on Y. Suppose that the model assumptions are
satisfied and the models are correctly specified. Then, for a given

correlation q, we can identify the expected total mediation effect

using

dq sð Þ¼E U ~f d sð ÞþðlogaÞ>bqðt�sÞ
Wðq;bq;RÞ

 !
�U ~f d sð ÞþðlogaÞ>bqðt0�sÞ

Wðq;bq;RÞ

 !( )
;

(8)

where ~f dðsÞ¼~c0þ~csþ~g>xi;bq is an adjusted estimate given q, and

Wðq;bq;RÞ¼½ðbqÞ>�kRðbqÞ�kþ2qðbqÞ>�kdiagðRÞ1=2þ1�1=2. We can es-

timate bq utilizing the correlation between U0i and alrðU1iÞj. Note
the range of q is not from �1 to 1 when the number of components

is more than one since the components are not independent of each

other, and its range becomes narrower as the number of components

increases. See Supplementary Material E for details.
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3 Results

3.1 Simulation study I: synthetic data
Mediation analysis for multiple or high-dimensional mediators often
assumes independence between mediators. One approach to satisfy-
ing this assumption is to use principal components (PCs) of media-
tors, i.e. PCs of logðMÞ as mediators. We use this approach under
structural equation modeling (hereinafter referred to as PCS) and
under the potential outcomes framework (PCP) to evaluate the per-
formance of CMM. The main difference between these two
approaches is how to estimate the direct and indirect effects: for
PCS, the inner product of path coefficients (i.e. log ðaÞ>b) was used
for the indirect effect; and for PCP, an expression derived from the
mediation formula was used (Pearl, 2001; Imai et al., 2010), which
is like the expression for dðsÞ.

In data generation, we randomly generated a treatment Ti from a
Bernoulli distribution with success probability 0.5; a compositional
disturbance U1i from a multivariate logistic normal (LN)
distribution (Aitchison, 1986) with mean 0 and covariance N ; a
regression disturbance U2i from a standard normal distribution,
where i ¼ 1; . . . ; 50. We fixed a ¼ ð20; 10;5; 2; 1>k�4Þ

>=
ð20;10;5;2; 1>k�4Þ1k; b ¼ ð0:5;�0:5;0:5;�0:5;0>k�4Þ

>, and c¼1 for
k¼5, 25, 50. For a baseline composition, m0 ¼ 1k=k was used. A
composition Mi and an outcome Yi were then generated according
to Models (1) and (2), respectively. Throughout the simulation stud-
ies and a real data application, we tested the direct and indirect
effects at the 95% confidence level.

We first compared the coverage rate for the indirect effect, which
measures a proportion of the time that estimated intervals contain
the true value of an indirect effect. To this end, we first generated
ðlog aÞ>b� r in each repetition, where r is randomly generated from
the standard uniform distribution. In this setting, the true or known
value of the total indirect effect is between 0 and 0.14. We then con-
structed a bootstrap confidence interval (CI) with 2000 bootstrap
samples and measured the coverage rate for each method with each
k. Figure 2 shows the results of 100 repetitions for each k. CMM
yields the coverage rate around the nominal coverage rate (i.e. 0.95)
for all the values of k considered. PCS gives the coverage rate around
0.95 when k¼ 5 but has an upward trend along with increased k.
The coverage rate of PCP is a little lower than the nominal coverage
rate for all k considered.

The second measure we used in performance comparison is the
true positive rate versus the relative effect size, ðlog aÞ>b� r. Instead
of randomly generating r, we increased r from 0 to 1 by 0.01 and cal-
culated the true positive rate at a given r, which reflects a relative ef-
fect size of ðlog aÞ>b. For each value of r, we used 100 repetitions.
As shown in Figure 3, CMM outperforms PCP and PCS, even in a
low dimensional setting (i.e. k¼5).

We also compared the power and the size of these methods with
n¼100 and k¼200. In this setting, we fixed r¼ 1 and estimated the
total mediation effects and their bootstrap CIs. Based on 1000 and
500 simulations for the size and the power, all the methods control
type I errors (CMM¼ 0.00, PCP¼0.01, and PCS¼0.01), but simi-
lar to the results with smaller k, CMM had a much higher power
compared to the other methods (CMM¼ 0.73, PCP¼0.03, and
PCS¼ 0.03).

3.2 Simulation study II: real microbiome data
To make a simulation setting more realistic, we used the compos-
ition of taxa in a real dataset, referred to as the ‘COMBO’ data (Wu
et al., 2011), which was analyzed in Section 5.1. We first randomly
permuted Ti and Yi to measure the empirical size at a ¼ 0:05. For
the power, we randomly generated Ti from N(0, 1) and estimated a
with the Dirichlet regression (Maier, 2014). We then located the two
largest and two smallest values of a and set bj ¼ 0:5 if j 2
faðkÞ; aðk�1Þg; bj ¼ �0:5 if j 2 fað1Þ; að2Þg, and bj ¼ 0 otherwise,
where the subscript ðjÞ indicates the jth order. The direct effect c was
set to 1, and Yi was generated by the probit regression model (2).
The estimated ðlog aÞ>b in this setting was 0.29 6 0.14. As PCP had
a slightly better performance than PCS, we included only PCP in
comparison.

As shown in Table 1, both PCP and CMM roughly control type I
errors and have comparable powers for the direct effect. However,
PCP has very low power to detect the total indirect effect, which is
similar to the results in Section 3.1.

3.3 Real data analysis: COMBO data
We applied CMM to the COMBO data, which consists of 16S
rRNA gene sequences from fecal samples of 96 healthy individuals.
It also contains demographic and clinical information including fat
intake and BMI. Operational taxonomic units (OTUs) were sum-
marized at the genus level, and the genera that appear in smaller
than 10% of the samples were excluded, leaving 45 genera in 96
samples for analysis. Because of the compositional nature, the OTU
counts assigned to the genera were transformed into proportions
after adding a small number (0.5) to avoid the log-transformation of
zero proportions, which is a common practice in compositional data
analysis (Aitchison, 1986).

We dichotomized BMI at 25, which is generally used to define
being normal (BMI < 25) or overweight/obese (BMI 	 25), and
tested if the total effect of fat intake on overweight/obesity was stat-
istically significant. The total calorie intake was included in the
model as a pretreatment covariate. The estimated total effect with a
probit model (i.e. Yi ¼ 1f~c0 þ ~cTi þ ~gXi þU0i > 0g) was 0.122
with a 95% bootstrap CI of (0.017, 0.247). In other words, fat in-
take has a positive effect on overweight/obesity. CMM was then
applied to study a mechanism of the effect of fat intake on over-
weight/obesity, in which the 45 genera were included as the compo-
nents of a compositional mediator. The estimated direct effect was
0.018 with a CI of (�0.003, 0.073) and the estimated indirect effect
was 0.030 with a CI of (0.000, 0.113), indicating positive mediation
effects of fat intake on overweight/obesity.

To estimate component-wise mediation effects, we need to know
the distribution of log ðU1iÞj for j ¼ 1; . . . ; k; however, it is not at-
tainable even though we know a distribution of alrðU1iÞj for

Fig. 2. Coverage probabilities for the indirect effect estimated by CMM, PCP, and

PCS for different numbers of taxa k

Fig. 3. True positive rate versus relative effect size for CMM, PCP, and PCS and for

different numbers of taxa k

Table 1. Power and size in testing DE and IDE: n¼ 96 and k¼45

Power Size

a ¼ 0:05 DE IDE DE IDE

CMM 0.900 0.942 0.066 0.004

PCP 0.810 0.222 0.051 0.001

The 1000 and 500 simulations were used for size and power, respectively.
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j ¼ 1; . . . ; k� 1. Thus, we assessed the product of path coefficients
instead to identify potential component-wise mediation effects, as it
is directly related to component-wise mediation effect. The genus
Oscillibacter was identified as a potential mediator: its estimated
product of path coefficients was 0.062 with a 95% bootstrap CI of
(0.002, 0.185). In previous studies, Oscillibacter-like organisms
have been identified as a potentially important gut microbe that
mediates high fat-induced gut dysfunction and permeability, and it
has been shown that a decrease of Oscillibacter led to an increase in
gut permeability, which was shown to be associated with obesity
(Lam et al., 2012; Teixeira et al., 2012). The estimated products of
path coefficients for other components and their 95% bootstrap CIs
are shown in Figure 4.

Since only Oscillibacter was identified as a potentially significant
mediator, we included another genus to quantify the sensitivity of
the assumption of the no unmeasured confounding effects. Note that
CMM takes a compositional mediator so the number of components
(mediators) must be greater than one. Figure 5 presents the result of
the sensitivity analysis. The estimated mediation effect through
Oscillibacter and Allisonella at q¼ 0 was 0.026 with a 95% boot-
strap CI of (0.006, 0.043). For �0:11 � q � 1, the sign and signifi-
cance of the estimated mediation effect remained unchanged. The
95% bootstrap CI covered the value of zero only when
�0:49 � q � �0:12.

4 Discussion

In this study, we propose a sparse compositional mediation model
for binary outcomes. To account for the characteristics of compos-
itional data, we adopt the staying-in-the-simplex approach to jointly
estimate the effect of a treatment on all the components of a compos-
itional mediator; and we use an L1-penalized log-contrast regression
model to estimate the effects of treatment and the components of a
compositional mediator on binary outcomes. We demonstrated that
CMM performs better than the methods based on principal compo-
nent approaches in simulation studies. CMM also provides which
components (taxa) could be potential drivers of mediation effects,
which cannot be obtained directly by the principal component-based
approach. Applying CMM to the COMBO data, we found a signifi-
cant positive mediation effect of the gut microbiome in linking fat in-
take and overweight/obesity.

CMM, like other causal mediation models, requires assumptions
to identify the direct and indirect effects. These assumptions are
generally not verifiable with observational data. However, the

assumption that treatment assignment is ignorable given observed
pretreatment covariates is usually attained in a subgroup having
similar characteristics. The no-confounding effects assumption be-
tween mediators and an outcome is often taken for granted after the
observed pretreatment covariates are adjusted, and its sensitivity to
unmeasured confounding effects is often measured. We allow pre-
treatment covariates in modeling CMM and provide a method for
sensitivity analysis.

For the rare outcome case, the natural direct and indirect effects
can be defined in log odds ratios, assuming U2i follows a logistic dis-
tribution in Model (2); and their estimates can be approximated by c
and ðlog aÞ>b, respectively. However, the logit model is computa-
tionally more intensive than the probit model for general cases in
estimating the mediation effect. CMM was developed mainly for the
general outcome case, which is more common in microbiome stud-
ies. So, CMM may not be an optimal method for the rare outcome.
CMM uses a non-parametric bootstrap approach to testing the
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Fig. 4. Estimated products of path coefficients closely related to the component-wise mediation effects of fat intake on obesity. The bootstrap CIs for Eggerthella,

Butyricimonas, Coprococcus, Acidaminococcus, Allisonella, Dialister, and Veillonella are ð�0:069;0:035Þ; ð�0:059; 0:061Þ; ð�0:066; 0:046Þ; ð�0:023; 0:157Þ;
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Fig. 5. Sensitivity analysis. The dashed line indicates the estimated mediation effect

for q¼ 0. The solid line represents the estimated mediation effect at each value of q,

and the gray areas represent the 95% bootstrap CI for the mediation effects
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direct and indirect effects that involve the debiasing procedure, so it
requires substantial computation time. For instance, it took 9 h and
29 min to run CMM with 100 samples and 200 components on a
MacBook Pro with 2.0 GHz quad-core Intel Core i5. It would take
longer if sensitivity analysis were also performed. We recommend
sensitivity analysis be performed with a subset, as we did in the ana-
lysis of the COMBO data in Section 3.3.

The proposed method can be extended to multi-categorical treat-
ments by utilizing indicator coding. However, extending CMM to
multi-categorical outcomes or count outcomes is not trivial. These
extensions are interesting future research topics. Another interesting
and urgent extension of CMM is for longitudinal data, which has be-
come increasingly common in clinical microbiome studies.

Acknowledgements

The authors would like to thank the reviewers for reviewing and suggesting

valuable improvements to this work.

Funding

This work has been partially supported by the startup fund from the

University of Rochester Medical Center.

Conflict of Interest: none declared.

References

Aitchison,J. and Bacon-Shone,J. (1984) Log contrast models for experiments

with mixtures. Biometrika, 71, 323–330.

Aitchison,J. (1986) The Statistical Analysis of Compositional Data. New

York, NY: Chapman & Hall.

Baron,R.M. and Kenny,D.A. (1986) The moderator-mediator variable distinc-

tion in social psychological research: conceptual, strategic, and statistical

considerations. J. Pers. Soc. Psychol., 51, 1173–1182.

Billheimer,D. et al. (2001) Statistical interpretation of species composition. J.

Am. Stat. Assoc., 96, 1205–1214.

Chén,O.Y. et al. (2015) High-dimensional multivariate mediation with appli-

cation to neuroimaging data. arXiv:1511.09354.

Efron,B. and Tibshirani,R. (1994) An Introduction to the Bootstrap. Boca

Raton, FL: Chapman & Hall / CRC.

Green,P.J. (1984) Iteratively reweighted least squares for maximum likelihood

estimation, and some robust and resistant alternatives. J. R. Stat. Soc. Ser. B,

46, 149–192.

Heintz-Buschart,A. and Wilmes,P. (2018) Human gut microbiome: function

matters. Trends Microbiol., 26, 563–574.

Honda,K. and Littman,D.R. (2016) The microbiota in adaptive immune

homeostasis and disease. Nature, 535, 75–84.

Huang,Y.T. and Pan,W.C. (2016) Hypothesis test of mediation effect in causal

mediation model with high-dimensional continuous mediators. Biometrics,

72, 402–413.

Imai,K. et al. (2010) Identification, inference and sensitivity analysis for causal

mediation effects. Stat. Sci., 25, 51–71.

Imai,K. et al. (2010) A general approach to causal mediation analysis. Psychol.

Methods, 15, 309–334.

Imai,K. and Yamamoto,T. (2013) Identification and sensitivity analysis for

multiple causal mechanisms: revisiting evidence from framing experiments.

Polit. Anal., 21, 141–171.

Imbens,G. and Rubin,D. (2015) Causal Inference for Statistics, Social, and

Biomedical Sciences: An Introduction. Cambridge: Cambridge University

Press.

Kurilshikov,A. et al. (2017) Host genetics and gut microbiome: challenges and

perspectives. Trends Immunol., 38, 633–647.

Lam,Y.Y. et al. (2012) Increased gut permeability and microbiota change asso-

ciate with mesenteric fat inflammation and metabolic dysfunction in

diet-induced obese mice. PLoS ONE, 7, e34233.

Lee,S. et al. (2006) Efficient L1 regularized logistic regression. AAAI-06.

Lewis,J.D. et al. (2015) Inflammation, antibiotics, and diet as environmental

stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host

Microbe, 18, 489–500.

Li,H. (2015) Microbiome, metagenomics, and high-dimensional composition-

al data analysis. Annu. Rev. Stat. Appl., 2, 73–94.

Lin,W. et al. (2014) Variable selection in regression with compositional covari-

ates. Biometrika, 101, 785–797.

Lu,J. et al. (2019) Generalized linear models with linear constraints for micro-

biome compositional data. Biometrics, 75, 235–244.

MacKinnon,D.P. et al. (2002) A comparison of methods to test mediation and

other intervening variable effects. Psychol. Methods, 7, 83–104.

Maier,M.J. (2014) DirichletReg: Dirichlet regression for compositional data in

R. Research Report Series/Department of Statistics and Mathematics, 125.

WU Vienna University of Economics and Business, Vienna.

Pearl,J. (2001) Direct and indirect effects. In Proceedings of the Seventeenth

Conference on Uncertainty and Artificial Intelligence, pp. 411–420. San

Francisco, CA: Morgan Kaufmann.

Rubin,D.B. (2005) Causal inference using potential outcomes. J. Am. Stat.

Assoc., 100, 322–331.

Shi,P. et al. (2016) Regression analysis for microbiome compositional data.

Ann. Appl. Stat., 10, 1019–1040.

Sohn,M.B. and Li,H. (2019) Compositional mediation analysis for micro-

biome studies. Ann. Appl. Stat., 13, 661–681.

Teixeira,T.F. et al. (2012) Potential mechanisms for the emerging link between

obesity and increased intestinal permeability. Nutr. Res., 32, 637–647.

Thaiss,C.A. et al. (2016) The microbiome and innate immunity. Nature, 535,

65–74.

VanderWeele,T.J. and Vansteelandt,S. (2010) Odds ratios for mediation ana-

lysis for a dichotomous outcome. Am. J. Epidemiol., 172, 1339–1348.

VanderWeele,T.J. and Vansteelandt,S. (2014) Mediation analysis with mul-

tiple mediators. Epidemiol. Method, 2, 95–115.

Wang,C. et al. (2020) Estimating and testing the microbial causal mediation ef-

fect with high-dimensional and compositional microbiome data.

Bioinformatics, 36, 347–355.

Wu,G. et al. (2011) Linking long-term dietary patterns with gut microbial

enterotypes. Science, 334, 105–108.

Zhang,H. et al. (2021) Mediation effect selection in high-dimensional and

compositional microbiome data. Stat. Med., 40, 885–896.

Zhao,Y. and Luo,X. (2016) Pathway Lasso: Estimate and select

sparse mediation pathways with high dimensional mediators. arXiv:

1603.07749.

Compositional mediation model for binary outcomes 21

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/1/16/6355577 by guest on 19 April 2024


	tblfn1

