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Abstract

Motivation: Conservation is broadly used to identify biologically important (epi)genomic regions. In the case of
tumor growth, preferential conservation of DNA methylation can be used to identify areas of particular functional im-
portance to the tumor. However, reliable assessment of methylation conservation based on multiple tissue samples
per patient requires the decomposition of methylation variation at multiple levels.

Results: We developed a Bayesian hierarchical model that allows for variance decomposition of methylation on
three levels: between-patient normal tissue variation, between-patient tumor-effect variation and within-patient
tumor variation. We then defined a model-based conservation score to identify loci of reduced within-tumor methy-
lation variation relative to between-patient variation. We fit the model to multi-sample methylation array data from
21 colorectal cancer (CRC) patients using a Monte Carlo Markov Chain algorithm (Stan). Sets of genes implicated in
CRC tumorigenesis exhibited preferential conservation, demonstrating the model’s ability to identify functionally
relevant genes based on methylation conservation. A pathway analysis of preferentially conserved genes implicated
several CRC relevant pathways and pathways related to neoantigen presentation and immune evasion. Our findings
suggest that preferential methylation conservation may be used to identify novel gene targets that are not
consistently mutated in CRC. The flexible structure makes the model amenable to the analysis of more complex
multi-sample data structures.

Availability and implementation: The data underlying this article are available in the NCBI GEO Database, under ac-
cession code GSE166212. The R analysis code is available at https://github.com/kevin-murgas/DNAmethylation-
hierarchicalmodel.

Contact: dshibata@usc.edu or marc.ryser@duke.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation provides cells with a mechanism to regulate gene
transcription, whereby methylation at CpG dinucleotides generally
induces gene repression (Dawson and Kouzarides, 2012; Feinberg
and Tycko, 2004). Genome-wide patterns of DNA methylation have
been demonstrated to reliably distinguish cancerous from normal

tissue, indicating a significant role of methylation in tumorigenesis
(Irizarry et al., 2009; Lam et al., 2016; Lewin et al., 2007; Mitchell
et al., 2014). However, the exact mechanisms by which these
epigenetic alterations drive neoplastic transformation remain poorly
characterized (Dawson and Kouzarides, 2012).

The recent development of methylation microarrays that assess
genome-wide profiles of CpG methylation have enabled epigenomic
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studies in the context of a broad range of genetic disease including
cancer (Bibikova et al., 2011; Mansell et al., 2019; Pidsley et al.,
2016). To date, the utility of these assays has primarily been estab-
lished through differential methylation studies that seek to identify
CpG sites with consistent changes in methylation between normal
and diseased tissues (Frigola et al., 2005; Irizarry et al., 2009;
Mitchell et al., 2014). With this primary focus on differential
methylation, little attention has so far been paid to the concept of
epigenomic conservation. Indeed, analogously to DNA sequence
conservation, methylation conservation can identify genomic regions
of particular importance during cancer initiation (Hansen et al.,
2011; Hvitfeldt et al., 2020; Naccarati et al., 2007; Ryser et al.,
2018; Sottoriva et al., 2015; Teschendorff and Widschwendter,
2012; Yates et al., 2017).

The basic concept of epigenomic conservation implies that as
genomes replicate, functionally unimportant sites exhibit larger drift
due to random replication errors compared with important function-
al regions, where changes in methylation status have a detrimental
impact on fitness leading to reduced proliferation and negative or
purifying selection (Sottoriva et al., 2015). Therefore, during tumor
growth, more variation would be expected to accumulate in non-
functional regions relative to functional regions. Experimentally,
comparison of genome-wide methylation patterns between multiple
samples of the same tumor provides an opportunity to identify
regions with lower drift, that is, preferential conservation.

Recent studies have analyzed methylation conservation in nor-
mal and cancerous tissues by quantifying variation supported by a
multiple-sampling approach (Hvitfeldt et al., 2020; Ryser et al.,
2018). Using pairwise distance (PWD) metrics to compare methyla-
tion patterns within and between patients, these studies found pref-
erential conservation in promoters and expressed genes. However,
the use of PWD is limited because it cannot capture the natural hier-
archy of tissues between and within patients, which in turn renders a
robust analysis of multiple tissue types from multiple patients diffi-
cult. For example, direct PWD comparison of tumor samples be-
tween patients does not account for the underlying between-patient
variation of normal tissue methylation, and thus cannot directly
identify loci that are universally conserved (in both tumor and nor-
mal tissue) and those that are preferentially conserved within tumors
(Ryser et al., 2018).

To address this methodological gap, we propose here a Bayesian
hierarchical modeling approach that enables variance decomposition
of methylation across the between-patient and within-patient levels.
Based on the different variation components, the model
enables identification of preferential conservation at individual CpG
sites, individual genes and gene pathways. We illustrate the ap-
proach on a cohort of 21 colorectal cancer patients.

2 Materials and methods

2.1 Tumor samples
Tissue samples were collected from 21 patients diagnosed with colo-
rectal tumors, including 5 adenomas and 16 carcinomas (Table 1).
We had previously analyzed data from 16 of the 21 tumors in an-
other study (Ryser et al., 2018). From each tumor, two bulk samples
(�0.5 cm3) were obtained from opposite sides of the lesions (n¼ 42)
(Fig. 1A). From 6 of the patients, an additional bulk sample was
obtained from adjacent normal colon tissue (n¼ 6). The samples
were obtained at the USC Keck School of Medicine as excess tissues
taken in the course of routine clinical care with Institutional Review
Board approval.

2.2 Methylation assay
DNA methylation in the bulk samples was measured with the
Infinium MethylationEPIC 850K BeadChip Microarray (Illumina)
on 866 091 CpG sites across the genome. In short, the EPIC array
utilizes bisulfite conversion to convert unmethylated cytosines to
uracil, where methylation blocks this process. The resulting bisulfite-
converted product is hybridized to paired fluorescent

red/green probes specific for the DNA sequence around a single CpG
site, with the color corresponding to the unmethylated or methylated
state. Fluorescence intensities are directly measured, and the ratio of

Table 1. Tumor sample metadata

Tumor Type (stage) Size (cm) Matched normal?

A Adenoma 5.6 No

K Adenoma 6 No

P Adenoma 3.5 No

S Adenoma 6 No

X Adenoma 2.5 No

C Cancer (3) 6.4 Yes

D Cancer (1) 2 No

E Cancer (1)a 6.1 Yes

F Cancer (1) 1.8 No

G Cancer (3) 3.5 No

H Cancer (4) 4 Yes

I Cancer (4) 8 No

J Cancer (3) 5 Yes

K* Cancer (1) 3.5 Yes

M Cancer (2) 3 No

N Cancer (1) 2.3 No

O Cancer (3) 9.5 No

T Cancer (3) 5.7 No

U Cancer (2) 3.9 No

W Cancer (1)b 3.4 Yes

Z Cancer (3) 2.7 No

Note: Supporting metadata for each colorectal tumor patient, with tumor

type (adenoma or carcinoma), stage (carcinoma only), size, and if a matched

normal sample was taken.
aPOLE mutated CRC.
bMSI þ CRC.

Fig. 1. DNA methylation model. (A) Schematic of multi-sampling approach used to

inform the hierarchical model. Two tumor samples were collected from opposite

sides of each colorectal tumor, along with a normal colon tissue sample in some

patients. (B) Overview of modeling approach including DNA methylation array

data and TCGA-based priors, which were incorporated into the hierarchical model

by Stan’s Bayesian MCMC sampling algorithm. Model fits were used to evaluate

methylation conservation successively on the CpG-site, gene and pathway levels. (C)

Depiction of hierarchical model on a hypothetical set of samples from normal (yel-

low) and tumor (red, blue) tissues. Fixed effects at the normal (l) and tumor (lþ �)

levels are estimated along with random effects at the hierarchical levels: normal tis-

sue methylation (rP), normal-tumor differential methylation (rPT), within-tumor

methylation drift (rT).
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methylation signal to total signal can be used to calculate a methyla-
tion reading (beta value) for each CpG site in the array.

2.3 Pre-processing and quality control
EPIC array data were pre-processed in R using the minfi
Bioconductor package using minfi’s ‘noob’ pre-processing method
and subsequently converted to beta values (Aryee et al., 2014).
Density plots were examined to ensure bimodal density as a first in-
spection of quality control. Calculating percent of probes covered
and minfi’s getQC command provided additional quality metrics.
Two samples were discarded due to poor data quality (>1% of sites
with missing values), and sequencing was repeated for these samples.
Beta values were subsequently transformed to M-values via the logit
function (Du et al., 2010). To avoid sex-specific methylation bias,
CpG sites mapping to sex-chromosomes (19 632 out of 866 091
sites, or 2.2%) were removed from analysis. In addition, sites with
likely single-nucleotide polymorphisms (SNPs) were identified via
the MethylToSNP package (LaBarre et al., 2019). Using a reliability
score cutoff of 0.5, MethylToSNP identified 377 CpG sites suspi-
cious for SNPs that were subsequently removed from analysis.

2.4 Hierarchical model
Considering each CpG site in the array independently, the M-value
yij of sample j in patient i was modeled as

yij ¼ lþ ai þ 1� dj0

� �
� þ bi þ cij

� �
þ eij; (1)

where j¼ 0 for normal tissue samples, j¼1,2 for tumor samples and
dij is the Kronecker delta (dij ¼ 1 if i¼ j, dij ¼ 0 otherwise); that is,
the third term is non-zero only for tumor samples. In (1), the M-
value of normal tissue samples is determined by a random intercept
of lþ ai where ai�N(0,rP

2). The (unmeasured) tumor mean is
derived from the patient’s normal tissue by adding a random slope
�þbi where bi�N(0,rPT

2). Finally, the tumor bulk samples are
derived from the tumor mean by adding a random effect
cij�N(0,rT

2). Residual variation for all samples is captured by an
error term eij�N(0,rE

2). In summary, the above mixed-effects model
implements a hierarchical variance decomposition of DNA methyla-
tion at the following levels: between-patient normal tissue variation
(rP), between-patient tumor-effect variation (rPT) and within-
patient tumor variation (rT).

2.5 Model fitting
For each CpG site, the hierarchical model (1) was fit to the M-values
of patient samples using an adaptive Bayesian Monte Carlo Markov
Chain (MCMC) algorithm as implemented in Stan (R package rstan)
(Carpenter et al., 2017; Team, 2020). In short, Stan uses the adap-
tive Hamiltonian Monte Carlo No-U-Turn Sampler (NUTS) to ap-
proximate the posterior distributions of the model parameters
(Carpenter et al., 2017). For each CpG site, we ran 4 independent
chains of length 2000 (including 200 warm-up iterations) with
adapt_delta¼ 0.999. No chain thinning was applied. For each model
parameter and the log-posterior-likelihood variable, the following
posterior summary statistics were stored: mean, standard error of
mean, median, effective sample size and Gelman-Rubin convergence
diagnostic R̂. After fitting all CpG sites, sites with R̂ >1.1 in the log-
posterior-likelihood (8740 out of 866 091 sites, or 1.0%) were con-
sidered to have insufficient convergence and were removed from
analysis.

Model fitting was performed on a high-performance compute
cluster, using batch tasks to analyze 10 000 CpG sites per batch
(that is, 87 batch tasks to cover all 866 091 sites) and parallel
processing on 24–32 CPUs per task to perform the MCMC fitting
procedure. Total run time was less than 24 hours.

2.6 Prior distributions
Because of limited sample size, non-informative uniform priors
resulted in identifiability issues and insufficient sampling conver-
gence. Therefore, informative prior parameter distributions were
constructed based on empirical estimates from an independent

dataset from The Cancer Genome Atlas (TCGA) (Supplementary
Table S1, Supplementary Fig. S1A). Specifically, we used a bimodal
Gaussian mixture prior for l, a Cauchy prior for � and gamma pri-
ors for rP

2, rPT
2, rT

2 and rE
2. Prior distributions were fit to the

TCGA data for each parameter and then variance-relaxed by a fac-
tor of 3, while maintaining the same mode. The effect of the choice
of priors on the modeling results was examined through a series of
sensitivity analyses, which demonstrated that the variance-relaxed
priors did not lead to over-constrained posterior distributions
(Supplementary Fig. S1B).

2.7 CpG conservation score
A key quantity of interest for conservation is the within-patient
tumor methylation variance rT

2 relative to the between-patient nor-
mal methylation variance rP

2. Indeed, genome regions that are es-
sential for survival and growth of tumor cells are expected to be
more conserved compared to genome regions that are non-coding or
of little importance to tumor cell survival. To delineate between loci
where conservation is important for both normal and malignant cells
and loci where conservation is uniquely important to malignant
cells, we introduced a log2-transformed conservation score of the
between-patient normal variance normalized by the within-patient
tumor variance

c ¼ log2

r2
P

r2
T

: (2)

For c>0, tumor variation is lower than normal variation indicat-
ing relative gain of conservation of methylation at that site.
Conversely for c< 0, tumor variation is greater than normal vari-
ation indicating relative loss of conservation at that site. To obtain a
single score per site, we used the posterior median of c as a summary
statistic.

2.8 Functional region analysis
To assess differences in methylation conservation by genomic
regions, each CpG site was assigned to a single CpG-island region
(island, shore, shelf, sea) and one or more gene regulatory regions
(TSS1500, TSS200, 50-UTR, 1stExon, Body, ExonBnd, 30-UTR),
based on UCSC annotations in the EPIC array manifest (Illumina).
Conservation scores in each CpG-island region were compared using
a non-parametric one-way Kruskal–Wallis test, with post hoc Tukey
test for comparisons between groups. Because individual sites could
belong to multiple regulatory regions, a linear regression model with
indicators for each regulatory region was used to model the CpG
conservation scores, by which each region was assessed for the statis-
tical significance of its respective slope in the regression model.

2.9 CpG genomic distance analysis
For gene-associated CpG sites, we further assessed how conservation
varied with the CpG-site genomic distance (in base pairs, or bp)
from the gene start site (Hvitfeldt et al., 2020). Genomic distance
was calculated using the CpG genomic position defined in the EPIC
array manifest and gene start position defined by Ensembl (Yates
et al., 2020). We built on a previous version of this CpG-distance
analysis which only used the positive distance from the left-most
CpG in each gene (Hvitfeldt et al., 2020). We instead calculated
CpG distance based on the Ensembl gene start position accounting
for the direction of the gene such that reverse-stranded genes were
calculated as having CpG distance increasing in the negative direc-
tion. This gene-direction correction avoided CpG sites at the far end
of reverse-stranded genes, which would have lower genomic position
due to the gene being oriented in the reverse direction, from being
considered as close to the gene start site. CpG distance was then
binned by 100 bp and CpG conservation scores were averaged with-
in each bin.

2.10 Gene conservation score
To obtain conservation scores at the gene level, the conservation
scores of CpG sites belonging to a given gene were averaged. Of
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note, individual sites may belong to multiple genes. To establish stat-
istical significance of conservation at the gene level, we used an
adjusted bootstrapping technique (Hvitfeldt et al., 2020). More pre-
cisely, to account for the correlated spatial structure of adjacent
CpG sites within genes, the null distribution for bootstrapping was
constructed as follows: for a gene containing n CpG sites in the EPIC
array, we performed 1000 random draws of consecutive CpG sites
(ordered by genomic position) belonging to single genes of size n or
larger. Genes with less than 5 array CpG sites and the top 5% of
genes with the greatest number of array CpG sites were excluded.
Out of 27 373 total genes, 4027 (14.7%) were removed from the
final analysis based on these criteria.

2.11 Pathway conservation analysis
All genes above the 95th percentile of the bootstrapped gene conser-
vation score were designated as significantly conserved. These genes
were fed into a pathway enrichment analysis using the Reactome
pathway analysis online tool (Jassal et al., 2020). In short, Reactome
statistically tests for pathway enrichment using an over-
representation analysis, producing an enrichment probability based
on the hypergeometric distribution which is then corrected for false
discovery rate (FDR) via Benjamini–Hochberg procedure (Benjamini
and Hochberg, 1995). Pathways with FDR< 0.05 were considered
to be significantly conserved.

2.12 Code availability
All data processing, model fitting and analysis code, along with a tu-
torial for how to run the analysis, is available on GitHub: https://
github.com/kevin-murgas/DNAmethylation-hierarchicalmodel.

3 Results

3.1 Overview
We developed a hierarchical Bayesian model to capture DNA methy-
lation variation across different tissue types of multiple patients
(Fig. 1C). More precisely, the model estimates the overall mean nor-
mal tissue methylation state (l), the change between normal and
tumor methylation (�) and random effects at three hierarchical lev-
els: between-patient normal tissue variation (rP), between-patient
tumor-effect variation (rPT) and within-patient tumor variation (rT).
We applied the approach to two bulk samples each from tumors of
21 colorectal cancer patients, along with normal colon tissue sam-
ples from 6 of the patients. Samples were profiled using Infinium
MethylationEPIC microarray to measure the fraction of methylation
at each of 866 091 CpG sites in the genome. Modeling the CpG sites
in the EPIC array as independent processes, the hierarchical model
was fit to the data using a Bayesian MCMC algorithm via the soft-
ware Stan under prior distributions informed by an independent
dataset from The Cancer Genome Atlas (TCGA).

3.2 Model inference
A model fit example for a select CpG site is shown in Figure 2A,
with corresponding posterior distributions shown in Figure 2B. In
total, we fit the model to 837 534 CpG sites (Fig. 2C). The posterior
medians of the fixed effect intercept (l) were bimodally distributed
across CpG sites, indicating populations of primarily demethylated
or methylated sites, respectively. Overall, 313 077 sites (37.4%)
were demethylated as indicated by a negative posterior median of l,
while 524 457 sites (62.6%) were methylated as indicated by a posi-
tive posterior median of l. As reflected by the symmetric prior distri-
bution of the fixed effect slope (�), we did not make a priori
assumptions about the direction of methylation change from normal
to tumor (i.e. hypomethylation or hypermethylation). Examining the
posterior medians of �, a decrease in methylation (hypomethylation
in tumors) was observed in 580 890 (69.4%) of sites as indicated by
a negative posterior median of �, while an increase in methylation
(hypermethylation in tumors) was observed in 256 644 (30.6%) of
sites as indicated by a positive posterior median of �. The posterior
medians of the hierarchical random effect variation (r) parameters

were unimodally distributed across all CpG sites. On average, these
posterior medians were highest at the between-patient tumor-effect
level (rPT, mean 0.509) compared to the between-patient normal tis-
sue level (rP, mean 0.250) and within-patient tumor level (rT, mean
0.249).

3.3 CpG-site conservation
We sought to determine which methylation sites were fundamentally
conserved during tumor growth. To this end, we used the relative
conservation score c to compare within-patient methylation vari-
ation of tumor tissue samples (rT) relative to the between-patient
variation of normal tissue samples (rP). The genome-wide distribu-
tions of conservation scores for gene-associated and non-gene-
associated CpG sites are show in Figure 3A. On average, the gene-
associated CpG sites were more conserved (mean 0.140) compared
to non-gene-associated sites (mean �0.182; two-sample t-test:
P< 0.001).

3.4 Regional conservation effects
To examine the degree of methylation conservation with respect to
genomic regions, we performed three distinct analyses. First, we cal-
culated the average conservation score within distinct genomic
regions based on relationship to CpG islands: island, shore, shelf
and sea (Fig. 3B). Average conservation scores were significantly dif-
ferent between CpG-island regions (one-way Kruskal–Wallis test:
P< 0.001, with post hoc Tukey tests: P< 0.001 for all compari-
sons). The highest conservation was found on islands and lowest in
the sea. Next, we examined parameter averages within each type of
gene regulatory region (Fig. 3C), defined by RefGene: transcription
start site (TSS) 6200 bp (TSS200), TSS 61500 bp (TSS1500), 5-
prime untranslated region (50-UTR), first exon (1stExon), gene body
(Body), exon boundary (ExonBnd), 3-prime untranslated region (30-
UTR). We found significant differences in methylation conservation

0.0

Fig. 2. Bayesian hierarchical model fits. (A) Example fit at CpG site 124022. Thick

black line is normal mean and tumor slope (fixed effects intercept l and slope �), col-

ored lines are model estimates for each patient. (B) Posterior distributions for each

of the six main parameters of the model for CpG site 124022. (C) Histograms of

posterior median estimates for each parameter; continuous lines are the correspond-

ing prior distributions.
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for all regulatory regions (multiple linear regression: all regions
P< 0.001), with the highest conservation in TSS200 and lowest con-
servation in ExonBnd. Finally, we examined CpG conservation as a
function of the genomic distance of the site from its corresponding
gene start position (Fig. 3D), defined by Ensembl gene database
(Yates et al., 2020). This distance analysis revealed a peak of conser-
vation in the window of 500 to 2000 bp with respect to the gene
start site. The maximum conservation was reached in the 0-100 bp
bin with an average conservation score of 0.802, suggesting that this
region may be critical for epigenetic regulation.

3.5 Gene conservation
To illustrate the utility of methylation conservation at the gene level,
we highlight here three genes with presumed biological relevance in
normal colon tissue and colorectal cancer: TUBA1A, TTN and
HLA-A (Fig. 4A). TUBA1A is a structural gene important for both
normal and cancer cell function (Lewis and Cowan, 1990).
Accordingly, we found that the conservation scores of CpG sites in
TUBA1A were distributed around 0, indicating that the gene is
equally relevant to both normal and cancer tissues (mean score:
�0.292; one-sample Wilcoxon rank-sum test: P¼0.2861). TTN is a
cardiomyocyte protein, and therefore of no known relevance to ei-
ther normal or neoplastic colon cells. In agreement with this, there
was no evidence of methylation conservation based on the scores for
the CpG sites in TTN. In fact, we found statistically significant loss
of conservation (mean score: �0.900; P< 0.001). Finally, HLA-A is
an antigen-presentation gene with established functional significance
in CRC (Menon et al., 2002). Accordingly, we found that the CpG

scores of HLA-A fell to the right of 0 (mean score: 3.33; P< 0.001),
consistent with preferential conservation in the tumor.

To enable ranking of genes by degree of methylation conserva-
tion, we defined a gene conservation score as the average conserva-
tion score of all CpG sites in each gene (Fig. 4B). Based on this gene-
level score, we examined two established lists of colorectal cancer-
associated genes as identified by the COSMIC Cancer Census (43
genes) and the Atlas of Genetics and Cytogenetics in Oncology
(AGO; 615 genes), along with a list of essential fitness genes in can-
cer cell lines (including CRC cell line DLD1) determined by CRISPR
knockout as part of the Cancer Dependency Map project (DEPMAP;
1514 genes) (Hart et al., 2015; Huret et al., 2012; Tate et al., 2019).
Compared to the mean conservation score of 0.373 across all genes,
we found increased conservation in each of the gene sets, COSMIC
(mean: 0.886; two-sample t-test: P<0.001), AGO (mean: 0.614;
P< 0.001) and DEPMAP (mean: 1.204; P<0.001) (Fig. 4C).

As a negative control, we examined genes with no known func-
tion in colon which should show no evidence of conservation. We
utilized two curated gene sets from Molecular Signatures Database
(MSigDB) as examples: cardiac progenitor differentiation genes (car-
diac; C2: WikiPathways Cardiac Progenitor Differentiation, 59
genes) and neuron marker genes (neuron; C2: Lein Neuron Markers,
50 genes) (Lein et al., 2007; Liberzon et al., 2011; Martens et al.,
2021). In contrast to the CRC-related gene sets above, we found
decreased conservation in both cardiac (mean: �0.157; two-sample
t-test: P<0.01) and neuron (mean: �0.159; P< 0.005) gene sets.
These findings demonstrate the ability of the conservation score to
delineate functionally relevant from functionally irrelevant gene sets.

Fig. 3. Gene conservation score. (A) CpG conservation score distributions are shown

with color designating gene-associated sites. (B) Violin plots of CpG conservation

score are shown for each CpG-island region: island, shore, shelf and sea. Below each

violin are listed the mean conservation scores. (C) Violin plots of CpG conservation

score are shown for each of four functional regions: transcription start site 200 bases

(TSS200), first exon (1stExon), 5-prime untranslated region (50-UTR), transcription

start site 1500 bases (TSS1500), gene body (Body), 3-prime untranslated region (30-

UTR), exon boundary (ExonBnd). Below each violin are listed the mean conserva-

tion scores. (D) Average CpG conservation score as a function of CpG distance from

gene start site (in bp).

Fig. 4. Gene conservation score. (A) Three example genes with known biological sig-

nificance. Gene CpG conservation scores are shown as blue histograms over the gray

distribution of all CpG sites. Blue dashed lines indicate the gene conservation score

as the mean of all CpG sites in the gene. TUBA1A: alpha tubulin subunit 1A,

expected to be conserved equally in normal and tumor. TTN: titin, expected to not

be conserved in tumors. HLA-A: human leukocyte antigen A, expected to be con-

served in tumors. (B) Gene conservation scores and adjusted bootstrap P-values.

Significant genes were subsequently fed into Reactome pathway analysis. (C)

Distributions of gene conservation scores of various gene sets. A positive shift indi-

cating conservation is observed in essential cancer genes from DEPMAP and two

colorectal cancer gene databases, COSMIC and Atlas of Genetics in Oncology,

shown in blue. A negative shift indicating loss of conservation is observed in two

sets of genes irrelevant to normal and cancerous colon tissue, cardiac progenitor dif-

ferentiation genes (cardiac) and neuron marker genes (neuron), shown in red.

Distribution of all genes is shown in gray.
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3.6 Reactome pathway analysis
An adjusted bootstrap technique allowed us to determine statistical
significance of gene conservation score (Hvitfeldt et al., 2020). Out
of 22 493 genes, 1794 were found to be significantly preferentially
conserved within tumors above the 95th percentile of their respective
null distribution (Fig. 4B). Taking these significantly conserved
genes, we performed a pathway analysis using Reactome, which
yielded 33 significant pathways with FDR<0.05 (Table 2) (Jassal
et al., 2020). Additional data including gene hits in each pathway
are listed in Supplementary Table S2. In agreement with a previous
analysis on a subset of the same cancers, the enriched pathways in-
clude 13 immune-related pathways and the previously reported
SLIT-ROBO signaling pathway (Beggs et al., 2013; Ryser et al.,
2018). Other pathways were generally related to RNA metabolism
and protein translation.

4 Discussion

In this study, we developed a hierarchical mixed-effect model to
quantify the conservation of DNA methylation during tumor
growth. We successfully applied the model to a dataset comprising
multiple colorectal cancer (CRC) patients. Using a Bayesian MCMC
method with TCGA-informed priors, we fit the model at each of
866 091 CpG sites across the genome with successful model conver-
gence in over 99% of sites. Using a novel conservation score that

compares within-tumor variation of methylation to between-patient
normal variation, we identified individual CpG sites, genes and func-
tional gene pathways that were significantly conserved during colo-
rectal tumor growth.

Regional analyses of methylation conservation revealed several
trends of increased relative conservation in gene-coding and func-
tional regions. Gene-associated CpG sites exhibited higher methyla-
tion conservation, suggesting reduced methylation drift in functional
compared to non-functional areas of the genome. Similar to previous
findings in normal colon tissue, methylation conservation was higher
in CpG-island-associated sites and sites near or upstream of the tran-
scription start site (TSS), indicating increased epigenetic regulation
in these critical regulatory regions (Hvitfeldt et al., 2020). Within
genes, conservation was most pronounced in a neighborhood of
2000 bp around the gene start site, consistent with previous findings
of conserved CpG regions near the start site (Hvitfeldt et al., 2020;
Irizarry et al., 2009). The mechanistic role of methylation in these
intra-gene regions, however, is complex and not fully understood,
and could range from gene silencing to alternative transcription
(Irizarry et al., 2009). These results further support our motivation
for exploring relative conservation as an indicator of functional im-
portance during tumor growth.

Gene analyses of methylation conservation matched biological
expectations in select example genes of known biological relevance
for normal colon tissue and its neoplastic transformation. Of par-
ticular interest are genes that are conserved within tumors but not

Table 2. Pathway analysis of significantly conserved genes

Pathway name Category FDR

Antigen presentation: folding, assembly and peptide loading of class I MHC Immune presentation 2.79E-14

ER-phagosome pathway Immune presentation 2.79E-14

Endosomal/vacuolar pathway Immune presentation 2.79E-14

Antigen processing-cross presentation Immune presentation 2.79E-14

Interferon signaling Immune signaling 2.79E-14

Interferon gamma signaling Immune signaling 2.79E-14

Interferon alpha/beta signaling Immune signaling 2.79E-14

Class I MHC mediated antigen processing and presentation Immune presentation 4.65E-09

Non-sense-mediated decay (NMD) RNA metabolism 1.46E-04

NMD enhanced by the exon junction complex (EJC) RNA metabolism 1.46E-04

Immunoregulatory interactions between a lymphoid and a non-lymphoid cell Immune signaling 2.02E-04

Cytokine signaling in immune system Immune signaling 2.37E-04

NMD independent of the EJC RNA metabolism 5.45E-04

Eukaryotic translation elongation Protein translation 6.21E-04

Metabolism of RNA RNA metabolism 9.77E-04

Peptide chain elongation Protein translation 0.001

Response of EIF2AK4 (GCN2) to amino acid deficiency Metabolism; signaling 0.001

GTP hydrolysis and joining of the 60S ribosomal subunit Protein translation 0.001

L13a-mediated translational silencing of Ceruloplasmin expression Protein translation 0.001

Eukaryotic translation initiation Protein translation 0.001

Cap-dependent translation initiation Protein translation 0.001

Regulation of expression of SLITs and ROBOs Transcription; signaling 0.001

Eukaryotic translation termination Protein translation 0.004

Cellular response to starvation Signaling 0.006

Formation of a pool of free 40S subunits Protein translation 0.009

Translocation of ZAP-70 to immunological synapse Immune presentation 0.014

SRP-dependent cotranslational protein targeting to membrane Protein translation 0.015

Phosphorylation of CD3 and TCR zeta chains Immune presentation 0.026

PD-1 signaling Immune signaling 0.026

Selenocysteine synthesis Amino acid metabolism 0.040

Folding of actin by CCT/TriC Protein folding 0.042

Signaling by ROBO receptors Signaling 0.049

Viral mRNA translation Translation; disease 0.049

Note: Pathway analysis was performed by taking the list of genes which were significantly conserved at a level of the 95th percentile in the adjusted bootstrap,

and feeding this list into Reactome’s online pathway enrichment tool. Resulting pathways were selected based on FDR at a significance level alpha¼0.05, here

reporting pathway names, category and FDR values. Detailed results including significant gene names and gene hits in each pathway are included in

Supplementary Table S2.
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between normal colon tissue of different patients, that is genes with
a high conservation score. Indeed, such genes can identify biological
pathways that are uniquely important during tumorigenesis, but less
so in normal colon tissue. When analyzing two established colorectal
cancer gene sets (AGO, COSMIC), and a cancer essential fitness
gene set (DEPMAP), we found a moderate but statistically signifi-
cant preferential conservation in all three sets. Conversely, many
genes that had a high conservation score in our analyses were not
included in the cancer gene sets. Because these sets are based on
DNA mutation patterns, our findings suggest that DNA mutation
analyses alone may overlook genes that play important functional
roles in tumorigenesis. Indeed, some genes may not exhibit a consist-
ent mutational burden (mutations may even be deleterious to their
function) but instead contribute to tumorigenesis through epigenetic
dysregulation.

Pathway analyses of the most preferentially tumor-conserved
genes revealed enrichment of 33 pathways, including 13 immune-
related pathways and other pathways that were previously found to
be enriched in CRC, such as the SLIT-ROBO signaling pathway
(Beggs et al., 2013; Ryser et al., 2018). The strong enrichment of im-
mune pathways, including antigen-presentation pathways, may indi-
cate an important role of epigenetic regulation in facilitating evasion
of immune surveillance against tumor neoantigens during colorectal
tumorigenesis. Conservation of major histocompatibility complex
genes such as HLA-A may indeed be necessary for successful evasion
of immune surveillance during tumor growth, thus providing a po-
tential explanation for preferential conservation in this gene
(DuPage et al., 2012; Menon et al., 2002). Interestingly, most
mismatch-repair-proficient CRCs do not respond to checkpoint
blockade immunotherapy, indicating that their neoantigens are not
usually recognized by the immune system (Le et al., 2015; Overman
et al., 2018).

Previous studies explored conservation in DNA methylation by
non-parametric analyses of PWD between the methylation states of
multiple samples (Hvitfeldt et al., 2020; Ryser et al., 2018). The
PWD approach has several limitations; for instance, it is not suitable
for variance decomposition across different between- and within-
patient levels, and it relies on (often arbitrary) cutoffs for the defin-
ition of relative conservation during tumor growth. The model-
based approach introduced here offers several advantages. First,
thanks to integration of multiple samples from different patients and
tissue types, it enables a natural means for hierarchical variance de-
composition. Second, the introduced relative conservation score ena-
bles straightforward identification of individual CpG sites, genes
and pathways that are preferentially conserved during tumor
growth, without invoking pre-specified cut-offs. Third, the Bayesian
inference approach facilitates robust quantification of posterior un-
certainty in the parameter estimates, including the different variation
components.

A limitation of our study is the relatively small sample size, in
particular for normal colon samples, which led to practical param-
eter identifiability issues in the absence of informative prior distribu-
tions. We addressed this issue by construction of prior distributions
based on an independent dataset from the TCGA database and by
performing sensitivity analyses around the informative priors.
Furthermore, all studies utilizing methylation arrays are subject to
biases from genetic variation (somatic DNA mutations and germline
SNPs) proximal to methylation probes (Daca-Roszak et al., 2015;
LaBarre et al., 2019). To mitigate the risk of confounding due to
such variation, we excluded 377 CpG sites suspicious for SNPs, and
we restricted gene-level analyses to genes with 5 CpG sites or more.
With a median of 21 CpG sites among the remaining included genes,
the impact of residual genetic variation is expected to have a limited
effect on conclusions at both the gene and pathway levels. Finally,
we note that by modeling CpG sites as independent processes, our
approach currently does not account for spatial dependencies be-
tween sites.

Our findings warrant further investigation to determine the clin-
ical significance of the genes found to be strongly conserved during
CRC growth in this cohort of patients. For instance, accompanying
gene expression data (RNA-sequencing, microarray or quantitative-

PCR) would reveal if gene expression levels also reflect the same
conservation seen in methylation. From the modeling perspective,
potential future work could focus on incorporating additional hier-
archical levels. For example, tissue sampling at a glandular or cellu-
lar level could be used to add additional levels of within-tissue
hierarchy. Additional hierarchical levels could also be constructed
by grouping cancers by molecular sub-types or including data from a
broader range of cancers. Therefore, our model should not be con-
sidered definite but rather a starting point for more complex vari-
ation hierarchies. Finally, we note that although we focused on
methylation conservation for the purposes of this study, the model
can also be used to analyze patterns of differential methylation.

In summary, we have developed a statistical framework that ena-
bles identification of regions of the genome where methylation status
is preferentially conserved during tumor growth, and we illustrated
the potential clinical implications of these analyses on a cohort of
colorectal cancer patients. Preferentially conserved genes and path-
ways as identified in our study provide an opportunity for discovery
of targeted therapeutic strategies that hone in on genes where epi-
genetic regulation is subject to evolutionary pressure.
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