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Abstract

Motivation: Multi-omics data in molecular biology has accumulated rapidly over the years. Such data contains valu-
able information for research in medicine and drug discovery. Unfortunately, data-driven research in medicine and
drug discovery is challenging for a majority of small research labs due to the large volume of data and the complex-
ity of analysis pipeline.

Results: We present BioVLAB-Cancer-Pharmacogenomics, a bioinformatics system that facilitates analysis of multi-
omics data from breast cancer to analyze and investigate intratumor heterogeneity and pharmacogenomics on
Amazon Web Services. Our system takes multi-omics data as input to perform tumor heterogeneity analysis in terms
of TCGA data and deconvolve-and-match the tumor gene expression to cell line data in CCLE using DNA methylation
profiles. We believe that our system can help small research labs perform analysis of tumor multi-omics without
worrying about computational infrastructure and maintenance of databases and tools.

Availability and implementation: http://biohealth.snu.ac.kr/software/biovlab_cancer_pharmacogenomics.

Contact: sunkim.bioinfo@snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the sequencing technologies advance rapidly, many database
resources have been constructed, collecting and organizing
molecular-level data from tumors and cancer cell lines. The Cancer
Genome Atlas (TCGA) (Cancer Genome Atlas Research Network,
2013) is a representative data resource for the multi-omics study of
cancer biology. Cancer Cell Line Encyclopedia (CCLE) (Ghandi
et al., 2019) is a major database resource for cancer drug response.
Analyzing the databases will bring us a wonderful opportunity to
study cancer pharmacogenomics at the molecular level. However,
there are several hurdles. First, analysis of multi-omics data requires
use of computational tools and utilization of large-size databases
such as TCGA and CCLE. Second, there is a significant gap between
tumor and cell lines. Multi-omics data in TCGA are measured by
bulk-cell sequencing of tumor that consists of different cell types

such as immune cells and normal cells. On the other hand, investiga-
tion of cancer drug response in CCLE is primarily performed using
cancer cell lines. Thus, integration of TCGA and CCLE is technically
challenging. Another challenge is the availability of ‘computing
resources’ where required computational tools and cancer databases
are deployed.

2 Multi-omics data on the cloud

To address these challenges, we developed a bioinformatics system,
BioVLAB-Cancer-Pharmacogenomics, on Amazon Web Services
(AWS) (Supplementary Note S1). The main reasons why we deploy
this system on AWS are as follows. First, Amazon provides TCGA
and CCLE as pre-installed data resources on their cloud system.
Second, AWS is the most widely used IaaS (Infrastructure as Service)
that has been used by many people around the world. Third, analysis
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of multi-omics data requires a number of computational tools that
should be orchestrated as a pipeline or workflow. Users have diffi-
culty identifying computational tools thus installing and pipelining
multiple tools to perform biologically meaningful analysis (Oh et al.,
2021). We have several successful deployments of bioinformatics
systems on Amazon as BioVLAB (Supplementary Note S2) (Chae
et al., 2015; 2016; Lee et al., 2012). The main motivation of
BioVLAB is to provide SaaS (Software as Service) on the IaaS cloud
so that the user can use the bioinformatics system most conveniently
without worrying about hardware and software resource manage-
ment in a private computing space.

Figure 1 depicts the overview of our system. Once the user submits
tumor multi-omics data and AWS credentials to the system via a web
interface of front layer, all configuration and computation are done
automatically in an ‘invisible’ area of AWS. The middle layer config-
ures private computing space for the user. The multi-omics data,
including single nucleotide variations (SNVs), somatic copy number
alterations (SCNAs), DNA methylation and gene expression, are
uploaded as input to pre-configured pipeline of the back layer
(Supplementary Fig. S1). Based on the result of the algorithms, two
reports are generated as output: intratumor heterogeneity (ITH) and
pharmacogenomics (PG). ITH report shows the most closely related
TCGA sample in terms of multi-omics heterogeneity (Carter et al.,
2012; Park et al., 2016; Roth et al., 2014), as well as the relevant
demographic, administration protocol, prognostic and treatment infor-
mation (Supplementary Note S3). PG report shows the predicted sensi-
tivity of the given tumor to various anticancer drugs by matching the
bulk tumor to cell lines. We exactly followed the epigenomic deconvo-
lution procedures described in the original EDec manuscript (Onuchic
et al., 2016), which utilized 391 informative CpG loci that distin-
guishes four reference cell types (cancer epithelial, normal epithelial,
stromal and immune) to deconvolve TCGA-BRCA expression profiles
into the combination of eight cellular subpopulations. Then, we recon-
structed pure cancer profile for the bulk tumor using only the cancer
epithelial ones. (Supplementary Note S4, Supplementary Fig. S2).

Despite the complicated process, the user does not have to under-
stand how the pipeline works because the whole analysis pipeline is
encapsulated with straightforward user-level interfaces
(Supplementary Fig. S3). The tasks for the user to analyze the data in
our pipeline is kept to the minimum.

3 Case study using TCGA and CCLE

We demonstrate the usefulness of our approach by showing the experi-
mental results that support the validity of each step of the system with
TCGA-BRCA samples and CCLE-BRCA cell lines. Specifically, we in-
vestigate the utility of epigenomic deconvolution in the context of

measuring the similarities between tumor samples and cancer cell lines.
We also show that an array of cell lines in close relation to a given
tumor sample helps suggesting an optimal drug treatment for the pa-
tient, as well as the utility of multi-omics ITH as a clinical biomarker.

To test whether the cancer-specific gene expression profile
extracted from a bulk tumor represents the cancerous characteristics
of a tumor better, we first examined how the similarities between
the gene expression profiles of tumors and CCLE cancer cell lines
change after the epigenomic deconvolution. The distribution of the
pairwise cosine distances between standardized TCGA and CCLE
gene expression profiles showed increased dispersion after the epige-
nomic deconvolution (Supplementary Fig. S4A). It implies that the
deconvolution of bulk profiles disambiguates the mixed expression
profiles and produces more precise signals of sample-specific cancer
cells, which are closer to a specific subset of cell lines, as illustrated
in (Supplementary Fig. S4B). Meanwhile, bulk tissue samples suffer
from the transcriptomic noise originating from contaminating cells,
resulting in more homogeneous distribution of pairwise distances
with cancer cell lines. To support this argument further, the biologic-
al similarity between cancer expression profiles and top K nearest
neighbors were examined in terms of PAM50 breast cancer sub-
types. The top K nearest neighbors of deconvolved cancer expression
profiles had more subtype-matching cell lines (Supplementary Fig.
S4C). Similarly, cancer-specific expression profiles clarified the dis-
tinction of PAM50 breast cancer subtypes in the principal compo-
nent space, both qualitatively (Supplementary Fig. S4D) and
quantitatively (Supplementary Fig. S4E). This results collectively
suggest that the epigenomic deconvolution purifies the cancer-
specific expression profiles and it helps pinpointing specific cell lines
that have similar molecular characteristics to the given cancer sam-
ple. To scrutinize it in more detail, we compared the distribution of
pairwise cosine distances of PAM50 subtype-matching and subtype-
mismatching TCGA-BRCA samples for each CCLE cell line and
found that the differences between subtype-matching and subtype-
mismatching distances were markedly increased after the deconvolu-
tion (Supplementary Fig. S4F).

We asked whether the similarity between purified tumor samples
and CCLE cell lines can eventually be used to suggest improved re-
sponse rates of patients for drug treatments. To this end, the clinical
information for TCGA-BRCA harboring drug treatments and
responses were analyzed retrospectively, using the publicly available
drug responses (in log2 fold-change of cell viability) for CCLE cell
lines from the primary screen of PRISM repurposing. Assuming the
average drug responses of top 10 similar cell lines as an expected
drug responses of a tumor sample, we can derive a set of suggested
drugs that would elicit the best response for each specific patient.
Specifically, a set of drugs giving rise to the average log fold-change of

Fig. 1. Overview of three layers in BioVLAB-Cancer-Pharmacogenomics. The front layer is the only layer that interacts with users. A user can submit cancer multi-omics data

and AWS credentials of their own through the user interface in the front layer. The middle layer receives the input data from the front layer, verifies the validity of the data, and

dynamically creates AWS EC2 instance from AMI image with pre-configured computing environment, and transfers data to the environment. The middle layer also dynamically

creates S3 bucket and uploads the report once the analysis is done. The back layer consists of configured AWS EC2 instance and S3 bucket. Here is where the actual data ana-

lysis is performed. When the computation is done, the EC2 instance is automatically terminated to prevent overcharge. Boxes highlighted in red are only visible to the endpoint

user. SNV, Single nucleotide variation; SCNA, Somatic copy number alteration; ITH, Intratumor heterogeneity; PG, Pharmacogenomics
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less than -2 were determined as suggested drugs. The rates of incom-
plete remissions showed moderate but meaningful differences between
two groups of TCGA-BRCA patients, divided by whether or not they
had been treated by suggested drugs (Supplementary Fig. S5). It sup-
ports that the experimentally characterized drug responses of similar
cell lines can be effectively utilized to optimize the drug treatment for
individual patient. As data accumulates from more cell lines in CCLE,
this strategy can be more effective.

To illustrate the benefit of the simultaneous characterization of
multi-omics ITH of a tumor, we compared the overall survival be-
tween the two TCGA-BRCA patient groups divided by the severity
of various ITH measures. We used tITH measured by nJSD and gen-
omic ITH (gITH) measured by PyClone as single-omics ITHs. The
levels of multi-omics ITH (moITH) were determined by taking the
geometric mean of the ranks of the two ITH measures. By examining
the overall survival of 241 TCGA-BRCA patients who had complete
clinical informations, we found that moITH had better predictive
potential for the outcome than single-omics ITH measures
(Supplementary Fig. S6). The result suggests that ITH levels from
different omics layers are in part independent from each other, by
which we can envision omics-specific mechanisms of ITH develop-
ment. Thus, the integrative use of multi-omics ITH would comple-
ment the missing portion of ITH that could not be captured by
single-omics analysis, resulting in a more thorough snapshot of ITH
in a tumor sample.

4 Conclusion

BioVLAB-Cancer-Pharmacogenomics operates through a web-based
interface to the cloud computing system for analyzing bulk cancer
tissue multi-omics data. By providing the web interface, the usability
of our system is significantly increased because the user can conveni-
ently do the configuration of the cloud system via the web interface.
This way, the user needs to use only the web browser for initiating
the analysis of multi-omics data and email for receiving the analysis
result. Our system is one of the first bioinformatics systems to utilize
TCGA and CCLE on the AWS Open Data.

The utility of our system is demonstrated in three ways. First, to
show that the deconvolved cancer profile of bulk tumor reflects well
the pure cancerous aspect of it, we examined the cosine distances be-
tween the gene expression of TCGA samples and that of CCLE cell
lines, before and after the deconvolution, and showed that the de-
convolution helps identifying biologically relevant cell lines. Next,
to show the effectiveness of anticancer drug suggestion in terms of
PRISM cell viability tests on CCLE, we retrospectively examined the
drug treatment done in TCGA-BRCA patients. As a result, the
patients treated with drugs suggested by our system showed better
complete remission (CR) rate. Lastly, we illustrated the benefit of
ITH characterization in a multi-omics integrative way. A good use
of multi-omics ITH as a predictive biomarker for patient survival is
illustrated by the comparison with single-omics-based ITHs.

Our work provides a platform to explore multi-omics ITH and
to match tumor and cell lines in TCGA and CCLE. Participation of

many small research labs will be very useful to explore these import-
ant cancer biology questions.
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