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Abstract

Summary: PERMANOVA (permutational multivariate analysis of variance based on distances) has been widely used
for testing the association between the microbiome and a covariate of interest. Statistical significance is established
by permutation, which is computationally intensive for large sample sizes. As large-scale microbiome studies, such
as American Gut Project (AGP), become increasingly popular, a computationally efficient version of PERMANOVA is
much needed. To achieve this end, we derive the asymptotic distribution of the PERMANOVA pseudo-F statistic and
provide analytical P-value calculation based on chi-square approximation. We show that the asymptotic P-value is
close to the PERMANOVA P-value even under a moderate sample size. Moreover, it is more accurate and an order-
of-magnitude faster than the permutation-free method MDMR. We demonstrated the use of our procedure D-
MANOVA on the AGP dataset.

Availability and implementation: D-MANOVA is implemented by the dmanova function in the CRAN package
GUniFrac.

Contact: chen.jun2@mayo.edu or zhangxiany@stat.tamu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the past decade, numerous microbiome studies have been con-
ducted to elucidate the role of the human microbiome in health and
disease, generating an enormous amount of microbiome sequencing
data (Kashyap et al., 2017). Microbiome data have complex struc-
tures including zero-inflation, skewed abundance distribution and
phylogenetic relatedness among features. To address these statistical
challenges, one popular approach summarizes the microbiome data
in the form of pairwise distances and statistical analyses are then
performed based on the distance matrices (Chen et al., 2012). One
widely used distance-based method is PERMANOVA (permutation-
al multivariate analysis of variance based on distances), which aims
to identify covariates that could significantly explain the inter-
subject variability captured by the pairwise distances (McArdle and
Anderson, 2001). As a key component in microbiome data analysis,
PERMANOVA has been routinely used in establishing an overall as-
sociation between the microbiome and a covariate of interest.
PERMANOVA uses permutation to assess the statistical significance
and could be extremely slow at a large sample size. For example,
running a single-threaded instance with 1000 permutations on a
sample size of 5000 takes �1 h on a desktop computer. In practice,
many hypotheses may be tested and more permutations are needed
to assess a lower Type I error level, further exacerbating the

computational burden. Although methods exist for estimating the
tail probability of permutation tests (Knijnenburg et al., 2009), an
analytical method, an analytical method, which accurately approxi-
mates the PERMANOVA P-value without permutation, is highly de-
sirable. Recently, McArtor et al. (2017) proposed the MDMR
method for analytical P-value calculation based on the asymptotic
distribution of the PERMANOVA pseudo-F statistic. However, no
rigorous proof was given. In addition, we found that MDMR could
be conservative under many settings. Here, we rigorously derive the
asymptotic distribution of the pseudo-F statistic, which is different
from the one used in MDMR, and provide an accurate chi-square
approximation. We show that our approach, D-MANOVA, pro-
vides more accurate approximation than MDMR and is also an
order-of-magnitude faster.

2 Materials and methods

Suppose we have n subjects, p1 variables of interest and p2 covariates
we want to adjust. Let X 2 R

n�p1 and Z 2 R
n�p2 be the design matrices

for the variables of interest and the covariates, respectively. Define HX;Z

and HZ as the projection matrices onto the corresponding column
spaces. Further let HXjZ ¼ HX;Z �HZ and HIjX;Z ¼ In �HX;Z with
In 2 R

n�n being the n�n identity matrix, rankðHXjZÞ ¼ m1 and
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rankðHIjX;ZÞ ¼ n�m2. Let fYign
i¼1 be the responses, which belong to

a metric space denoted by ðY;dÞ, and dij ¼ dðYi;YjÞ be the pairwise
distance. Denote A ¼ ð�d2

ij=2Þ 2 Rn�n. We define G as the Gower’s
centered matrix

G ¼ In �
11>

n

� �
A In �

11>

n

� �
¼ DAD;

where 1 2 R
n�1 is the vector of all 1 s and D ¼ In � 11>=n. The

distance-based pseudo-F statistic is defined as

T ¼ trðHXjZGHXjZÞ=m1

trðHIjX;ZGHIjX;ZÞ=ðn�m2Þ
; (1)

where trð�Þ denotes the trace of a matrix. The pseudo-F statistic is
the basis for distance-based multivariate analysis of variance and
quantifies the association between the multivariate Y, whose vari-
ability is encoded in the distance matrix, and the covariate of interest
X while adjusting other covariates Z. Compared to the classic F-stat-
istic for linear models, the distribution of the distance-based pseudo-
F statistic is unknown and permutation, as implemented in
PERMANOVA, is usually employed to obtain the P-value. To ob-
tain an analytical P-value without permutation, McArtor et al.
(2017) proposed an asymptotic null distribution for the pseudo-F
statistic. However, no rigorous theoretical proof for their asymptotic
null distribution was given. Here, we fill this gap and derive a more
accurate asymptotic null distribution. Let H be a Hilbert space
equipped with the inner product < �; � > and the inner product
induced norm jj � jj: Assume that

d2
ij ¼ jj/ðYiÞ � /ðYjÞjj2; (2)

where /ð�Þ : Y ! H is an embedding from Y to H. Define U ¼
ð/ðY1Þ; . . . ;/ðYnÞÞ> 2 H�n with H�n being the n-ary Cartesian
power of H. Then, the distance-based multivariate analysis of vari-
ance can be re-formulated in the linear model

U ¼ XBþ ZAþ E;

where B 2 H�p1 ; A 2 H�p2 and E ¼ ðe1; . . . ; enÞ> 2 H�n. Here,
e1; . . . ; en are independent mean-zero random variables in H, which
are independent of X and Z. Let Kðej; ekÞ ¼< ej; ek > : By Mercer’s
theorem, K is semi-positive definite and thus admits the spectral de-
composition of the form Kðej; ekÞ ¼

Pþ1
l¼1

klwlðejÞwlðekÞ, where
E½wsðeiÞwlðeiÞ� ¼ 1fs ¼ lg and E½wlðeiÞ� ¼ 0. Based on this setup, we
have the following theorem, whose proof is given in Supplementary
Note S1.

Theorem 2.1Assume that Ejje1jj4 < 1 and

jjHXjZjj2;4 ¼ sup
a:jjajj2¼1

jjHXjZajj4 ! 0: (3)

Then under the null,

trðHXjZGHXjZÞ=m1

trðHIjX;ZGHIjX;ZÞ=ðn�m2Þ
!dT0 ¼

Pþ1
l¼1

klv2
m1 ;l

=m1

Pþ1
l¼1

kl

;

where fv2
m1 ;l
gþ1

l¼1
are independent chi-square random variables with m1

degrees of freedom.

Theorem 2.1 shows that as n! þ1, the distance-based pseudo-F

statistic converges to a weighted sum of independent chi-squared

random variables. As the weights are unknown, the limiting distri-

bution is non-pivotal. Here, we develop a chi-square approxima-

tion, which has a computational complexity Oðn2Þ and also pro-

vides accurate enough approximation. The idea is to match the first

two moments of the chi-square distribution with those of T0.

Suppose p ¼ ðEKðe1; e1ÞÞ2=EKðe1; e2Þ2; ~G ¼ ð~gijÞ ¼ HIjX;ZGHIjX;Z

with HIjX;Z ¼ ðhijÞ. Based on the derivation detailed in

Supplementary Note S2, the distribution of T0 can be approximated

by 1
p̂m1

v2
p̂m1

, where

p̂ ¼ l̂2
1

l̂2

; l̂1 ¼
1

n�m2
trð ~GÞ; l̂2 ¼

P
i 6¼k ~g2

ik

ðn�m2Þ2 þ
P

i;j h4
i;j � 2

P
i h2

ii

:

We implemented D-MANOVA by the dmanova function inour

GUniFrac package (Chen et al., 2012). To facilitate its use, the interface

and the output are similar to those of the adonis function in the CRAN

vegan package.

3 Results

We conduct simulations (Supplementary Note S3) to study the per-
formance of D-MANOVA, comparing to PERMANOVA and
MDMR. Figure 1a compares the P-values of D-MANOVA and
PERMANOVA on the log scale [n¼100, Bray–Curtis (BC) distance,
Scenario 3 in Supplementary Note S3] based on 1000 simulation
runs under the null (H0, left) and the alternative (H1, right). We can
see that D-MANOVA and PERMANOVA, P-values are highly cor-
related under both H0 and H1. Since the lowest P-value is 0.001 for
PERMANOVA with 999 permutations, we see a large number of
0.001 under H1 while D-MANOVA has no such restriction. Figure
1b compares the performance of the three competing methods under
sample sizes of 100, 200 and 500 based on the BC distance. Under
H0 (first point of the power curve), all the methods control the Type
I error under the nominal level with MDMR being more conserva-
tive. In terms of statistical power, D-MANOVA almost achieves the
same power as PERMANOVA, while MDMR is less powerful under
n¼100 and 200. The conservativeness has also been noted by the
MDMR authors, and they do not recommend to run MDMR on
sample sizes <200. However, even under n¼ 500, we still observe
some power loss, indicating the approximation of D-MANOVA is
more accurate. It is interesting to study the performance of D-
MANOVA under small sample sizes. We thus repeat the simula-
tions at n¼ 25 and 50. Supplementary Figure S1 shows that the
Type I error of D-MANOVA is well controlled at different a lev-
els and the size is closer to the nominal level as the sample size
increases. Supplementary Figure S2 shows that the power of D-
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Fig. 1. Performance comparison of D-MANOVA, MDMR and PERMANOVA (999

permutations) based on simulations. Bray-Curtis distance was used. (a) Scatter plots

comparing the P-values of D-MANOVA and PERMANOVA on the log scale under

the null (H0) and alternative (H1). (b) Power comparison at sample sizes 100, 200

and 500. Simulation was averaged over 1000 runs. (c) Runtime comparison at vary-

ing sample sizes (n ¼ 50; 100; . . . ;6400; 12800). Runtimes were averaged over three

repetitions. The computation was performed under R v3.3.2 on an iMAC (3.2 GHz

Intel Core i5, 32 GB 1600 MHz DDR3, EI Capitan v10.11.5)
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MANOVA is close to that of PERMANOVA even at n¼ 25.
MDMR, on the other hand, is substantially less powerful under
small sample sizes. We also compare the average computation
time of the three methods at different sample sizes (Fig. 1c). At
n¼ 12 800, PERMANOVA could not complete the analysis in
hours while MDMR takes around 20 min. In contrast, D-
MANOVA uses less than one minute. Therefore, D-MANOVA
significantly improves over MDMR in terms of both accuracy
and computational efficiency.

We finally demonstrate the use of D-MANOVA using the public-
ly available dataset (figshare doi:10.6084/m9.figshare.6137198)
from the American Gut Project (AGP) (McDonald et al., 2018). We
aim to test the association of the demographic and lifestyle variables
with the gut microbiome composition based on the BC distance. We
focus the analysis on the American and European populations with
an age range between 18 and 80. A total of 7730 subjects were
included in the analysis. The country residence was adjusted when
testing the associations. Supplementary Table S1 shows the D-
MANOVA, MDMR and PERMANOVA association P-values for
these demographic/lifestyle variables ordered by effect sizes as meas-
ured by the distance-based R2. Due to the large sample size, all the
variables except the ‘handness’ are found to be significantly associ-
ated with the gut microbiome composition. For those significant var-
iables, PERMANOVA P-values are all <0.001, so more
permutations are needed to produce accurate p-values. For the
‘handness’ variable, D-MANOVA achieves a similar P-value as
PERMANOVA. In contrast, MDMR tends to produce larger P-val-
ues, consistent with the conservativeness noted in the simulations. In
terms of computational speed, D-MANOVA is about 13 times faster
than MDMR and 567 times faster than PERMANOVA.

Simulations demonstrated that D-MANOVA had good type I
error control at the 0.005 level, which should suffice for most
community-level analyses since the number of tests is usually lim-
ited. However, when an extremely small type I error rate is needed
to account for testing thousands or even millions of hypotheses, we
recommend using our procedure to filter out most insignificant
hypotheses and those hypotheses with extremely small P-values can

be further validated by permutation. As the sample size increases,
the detectable effect sizes become much smaller and statistical sig-
nificance from community-level analyses may have limited practical
utility. In such case, lower-level analyses (e.g. species- or genus-level)
may be more meaningful. D-MANOVA could be possibly applied to
those lower-level analyses by defining a relevant distance metric on
the lower-level units.
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