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Abstract

Motivation: The peptide-centric identification methodologies of data-independent acquisition (DIA) data mainly rely
on scores for the mass spectrometric signals of targeted peptides. Among these scores, the coelution scores of peak
groups constructed by the chromatograms of peptide fragment ions have a significant influence on the identification.
Most of the existing coelution scores are achieved by artificially designing some functions in terms of the shape simi-
larity, retention time shift of peak groups. However, these scores cannot characterize the coelution robustly when the
peak group is in the circumstance of interference.

Results: On the basis that the neural network is more powerful to learn the implicit features of data robustly from a
large number of samples, and thus minimizing the influence of data noise, in this work, we propose Alpha-XIC, a
neural network-based model to score the coelution. By learning the characteristics of the coelution of peak groups
derived from the being analyzed DIA data, Alpha-XIC is capable of yielding robust coelution scores even for peak
groups with interference. With this score appending to initial scores generated by the accompanying identification
engine DIA-NN, the ensuing statistical validation can report the identification result and recover the misidentified
peptides. In our evaluation of the HeLa dataset with gradient lengths ranging from 0.5 to 2 h, Alpha-XIC delivered
9.4–16.2% improvements in the number of identified precursors at 1% false discovery rate. Furthermore, Alpha-XIC
was tested on LFQbench, a mixed-species dataset with known ratios, and increased the number of peptides and pro-
teins fell within valid ratios by up to 16.4% and 17.8%, respectively, compared to the initial identification by DIA-NN.

Availability and implementation: Source code is available at https://github.com/YuAirLab/Alpha-XIC.

Contact: yu_lab@sdfmu.edu.cn

1 Introduction

Data-independent acquisition (DIA) mass spectrometry (MS) has
been widely used in proteomics due to its unbiased and systematic
measurement of precursors and fragment ions compared to data de-
pendent acquisition, which improves peptide detection and quantifi-
cation in the analyses of complex biological samples (Ludwig et al.,
2018). The prevalent strategy of peptide identification for DIA data
is currently the peptide-centric matching approach (Duncan et al.,
2010; Zhang et al., 2020). For each targeted peptide, this approach
extracts chromatograms (also referred to as traces which are con-
tinuous in retention time and intensity) of a certain number of most
intensive fragment ions and assembles them into a peak group fol-
lowed by scoring, and finally performs statistical validation based
on the scores using target-decoy methods (Röst et al., 2014). In gen-
eral, it is necessary to score the peak group in terms of the mass

accuracy, the intensity similarity between the experimental relative
intensities and the relative intensities stored in the spectral library,
the deviation between the expected and measured retention time,
and the coelution of the traces (Reiter et al., 2011). Since the coelu-
tion score is a quantification of the consistency of traces in the two
dimensions of retention time and intensity and involves more raw
mass spectrometry data than other scores, how to score the coelution
of peak group traces has a great impact on DIA identification.

Different DIA identification engines have different strategies to
score the coelution. Skyline (MacLean et al., 2010) used dot product
to represent the coelution of peak groups, which is over-simplistic,
especially when the peak group is disturbed. To score coelution com-
prehensively and robustly, OpenSWATH (Röst et al., 2014) calcu-
lated five scores to evaluate the coelution including the dot product,
the cross-correlation and the global retention time shift both
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weighted or non-weighted by the relative intensities of fragment
ions. Alternatively, DIA-NN (Demichev et al., 2020) determined a
‘best’ fragment trace that was considered the one least likely to be
affected by interference and scored the coelution using Pearson cor-
relation between each trace with the ‘best’ fragment trace. Instead of
combining these Pearson correlation scores into a single coelution
score, DIA-NN fed them into an ensemble of neural networks to-
gether with other scores (i.e. retention time scores, intensity scores)
to separate the target and decoy peptides. In order to make sure that
the coelution score was not dominated by a single highly scored
trace, Avant-garde tool (Jacome et al., 2020) designed peak shape
similarity (PSS) score which removed the highest dot product trace
with the average profile and calculated a second mean of the remain-
ing dot products. Although the above coelution scores have
attempted to reduce the effects of interference as much as possible,
the complex and varied forms of interference, such as signal loss,
jagging or convolution, still make them susceptible and far from
robust.

Deep learning, or deep neural network (LeCun et al., 2015), as
a method to learn data inherent characteristics powerfully from a
large amount of samples, and thus minimizing the influence of
data noise, is suitable for the robust coelution scoring problem. In
this paper, we present Alpha-XIC, a neural network-based model
to score the coelution of peak groups. This model is trained as a
classifier on peak groups determined by an accompanying DIA en-
gine and then used to score coelution for all candidate peak
groups. After appending the output of the model as an additional
score to initial scores, the statistical validation algorithm of the en-
gine can report the identification result. Our preliminary experi-
ments indicate that Alpha-XIC can score the coelution of peak
groups robustly and thus significantly improving the identification
of DIA data.

2 Materials and methods

2.1 Workflow
There are a few factors that affect the appearance of peak groups,
such as liquid chromatography (LC) gradient lengths, cycle strategies
of DIA experiments and noise baselines of mass spectrometers
(Ludwig et al., 2018). In order to make Alpha-XIC more specific to
the peak groups that need to be scored, it is not designed to be a
model that is trained once and used for each DIA file. Instead,
Alpha-XIC is trained on the peak groups derived from the being ana-
lyzed DIA data. From this point of view, Alpha-XIC depends on a
DIA engine to perform an initial identification to offer training sam-
ples. In other words, Alpha-XIC can be considered as a plug-in of
the DIA engine. As DIA-NN has been proved to be superior to other
DIA engines (Demichev et al., 2020), it is adopted as the matching
engine for Alpha-XIC in this study. The workflow of Alpha-XIC
was plotted in Figure 1 and described in phases as follows.

1. Initial identification by DIA-NN. With the help of the spectral li-
brary and the automatic determination of search parameters (such as

mass correction and mass accuracy), DIA-NN extracted the fragment
ion traces, identified and scored the most likely peak group for each
target or decoy peptide. Then, a linear classifier was used to separate
the target peptides from decoy peptides preliminarily. At the end of
this phase, candidate peak groups, corresponding to target and decoy
peptides, were obtained as well as their assigned diverse scores.

2. Training and utilization of Alpha-XIC. Like DIA-NN does not
restrict the set of peak groups used to train the statistical validation
model, Alpha-XIC was also trained as a binary classifier on all these
candidate peak groups. The peak groups extracted from target pepti-
des were regarded as positive samples, while those of decoy peptides
were taken as negative samples. After the training was completed, all
the candidate peak groups were scored by Alpha-XIC. The resulting
positive classification probabilities were used as the additional scores
and appended to scores generated by DIA-NN in phase 1.

3. Statistical validation by DIA-NN. DIA-NN used an ensemble
of deep feed-forward, fully connected neural networks to distinguish
between target and decoy peptides by learning from these scores. At
the end, DIA-NN reported the q-values of target peptides as well as
their quantities.

2.2 Model
Under different LC-MS conditions and DIA configurations, the widths
of peak groups and the number of data points over the elution profile
are different (Ludwig et al., 2018). In order to process these different
peak groups, it is necessary to perform preprocessing to uniform the
format of peak groups. The top panel of Figure 2 plotted the details of
preprocessing. For each peak group, Alpha-XIC extracted the traces
within the boundaries which were determined by DIA-NN. As peak
groups were used in both training and scoring phases, we shuffled the
order of traces randomly before fed into the network in the training
phase to avoid the possible overfitting. Next, each trace was normal-
ized in intensity and interpolated to a fixed dimension 32. Then, the
peak group was smoothed using a Savitzky-Golay algorithm (11 wide
and third order) commonly used for spectrometric data suggested by
Sturm et al. (2008) to filter noise.

The bottom panel of Figure 2 displayed the model components
of Alpha-XIC. In order to adapt Alpha-XIC to peak groups with

Fig. 1. The workflow of Alpha-XIC. From left to right, the workflow of Alpha-XIC

includes the initial identification by DIA-NN, the train and score phase of Alpha-

XIC and the phase of the statistical analysis. In this figure, the peptide corresponding

to the third peak group which is subject to interference is recovered after adding the

coelution score by Alpha-XIC

Fig. 2. The preprocessing of input peak groups and the model construction of Alpha-

XIC
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different numbers of traces, RNN (recurrent neural network) was
used to analyze the peak group by the means of trace series.
Specifically, two layers of bi-directional gated recurrent memory
units (Bi-GRU, a type of RNN, Chung et al., 2014) with hidden size
64 and dropout (Srivastava et al., 2014) 0.5 were selected to process
the input of traces. To concatenate the output of each unit of Bi-
GRU, a self-attention layer (Lin et al., 2017) was used. In this way,
the peak group was converted to a vector of dimension 128. Then,
this vector was converted to dimension 2 by a batch normalization
layer (Ioffe et al., 2015), a fully connected layer and a softmax layer
in order. At last, the value represented the positive class probability
was output as the score of coelution of the peak group. Note that we
experimented with different interpolation dimension and output size
of Bi-GRU, however, this did not deliver improvements in
performance.

PyTorch (v.1.1.0, https://pytorch.org) was used to implement
and train Alpha-XIC. We used the Adam optimizer with an initial
learning rate of 0.001 and 512 samples per batch. The loss function
in training phase was cross entropy loss.

2.3 Datasets
The purpose of Alpha-XIC is to score coelution of peak groups ro-
bustly and improve DIA identification. In this study, the following
public datasets that have been specifically created for testing DIA
software were used to evaluate and benchmark Alpha-XIC.

HeLa dataset. This DIA dataset is a HeLa whole-proteome tryptic
digestion and acquired on a nanoflow liquid chromatography coupled
to a QExactive HF mass spectrometer with different gradient lengths
(Bruderer et al., 2017). Here, four RAW files with gradient 0.5, 1,
1.5, 2 h (referred as HeLa-0.5 h, HeLa-1 h, HeLa-1.5 h, HeLa-2 h)
were selected to cover common experimental setups of gradients. All
these four files were collected with collision energy 27.5 and with
DIA configuration comprising one MS1 survey scan (using a reso-
lution of 120 000, AGC target of 3e6, maximum fill time of 60 ms
and m/z range of 350–1650) followed by a few consecutive isolated
MS2 windows of variable width (using a resolution of 30 000, AGC
target of 3e6, injection time of auto and minimum m/z of 200). The
number of variable isolation windows for HeLa-0.5, HeLa-1h, HeLa-
1.5h and HeLa-2h were set to 21, 26, 37, 30, respectively.

LFQbench dataset. This dataset contained six SWATH (Gillet
et al., 2012) files and was acquired on a TripleTOF 6600 with 64
variable isolation windows (Navarro et al., 2016). Six files were div-
ided into sample A and sample B, each of sample had three repli-
cates. Sample A consisted of mixed tryptic digestion of human, yeast
and Escherichia coli proteins in 65%, 15% and 20%, respectively.
Sample B consisted of proteins same as sample A but mixed in 65%
(human), 30% (yeast) and 5% (E.coli). As a result, the expected pep-
tide and protein ratios (A/B) are: 1:1 for human, 1:2 for yeast and
4:1 for E.coli. Both .raw files of HeLa dataset and .wiff files of
LFQbench dataset were converted to mzML format by msconver-
t.exe from the ProteoWizard package (version 3.0.19133) with 32-
bit precision and zlib compression.

For HeLa dataset, the pan-human mass spectrometry library
(PHL, Rosenberger et al., 2014) was selected as the spectral library.
For LFQbench dataset, as the original library provided by
LFQbench project was not complete (Navarro et al., 2016), we
replaced the human peptides in the original library with PHL library.
The generation method of decoy peptides for the library was
mutated approach (Bruderer et al., 2017; Demichev et al., 2020).
DIA-NN (v.1.7.16) was adopted and performed with the default
parameters for each experimental run. The mass tolerance for chro-
matograms extraction used in Alpha-XIC was inherited from DIA-
NN which determined search parameters automatically.

3 Results

3.1 Overfitting evaluation on HeLa dataset
Although Alpha-XIC has adopted dropout, shuffling the input trace
series in training phase to prevent potential overfitting, it is necessary
to evaluate the overfitting as it directly affects the generalization

performance of the classifier. A direct way to judge whether overfit-
ting has occurred is to examine whether the loss and prediction accur-
acy of the model on the training set and the test set are consistent.
Following this way, we carried out DIA-NN coupled with Alpha-XIC
to each file of HeLa dataset. To calculate the metric accurately, the
positive training samples were restricted to 1% false discovery rate
(FDR), and the decoy peak groups with an equal number by randomly
sampling were taken as the negative samples. The training samples
were divided into a training set and a test set randomly by a ratio of
4:1, and the training epoch was set to 10. We recorded the loss value
(cross entropy loss) and classification accuracy for both the training
set and test set. The results were plotted in Figure 3.

It could be noticed that the classification accuracy of Alpha-XIC
was as high as �90% after only one round of training for test set.
We speculated that, on the one hand, tens of thousands of training
samples in each training were sufficient for Alpha-XIC, on the other
hand, it may be relatively effortless for the model to learn coelution
characteristics from peak groups. As the epoch increased to 10, the
loss slightly decreased and the accuracy slightly increased. More im-
portantly, there is no significant difference between the training set
and test set in terms of the loss and accuracy, which means the over-
fitting was either non-existent or negligible even the training epoch
reached 10. Therefore, we concluded that Alpha-XIC has not been
subjected to overfitting at least in HeLa dataset. Moreover, we con-
servatively fixed the epoch to one for Alpha-XIC, minimizing the
effects of potential overfitting.

3.2 Case comparisons for different interference
Since DIA-NN does not calculate a single coelution score for peak
groups, here, we compared the robustness of the coelution score by
Alpha-XIC with the scores by OpenSWATH using examples of peak
groups with interference. As mentioned in above, multiple scores in
two dimensions of the retention time shift and shape similarity are
calculated to characterize the coelution of peak groups by
OpenSWATH. In detail, the coelution scores by OpenSWATH in-
clude (Reiter et al., 2011; Röst et al., 2014):

• dotprod: It is computed by averaging the dot product values of

pair-wise traces of peak groups.
• xcorr: To achieve more global characteristics of coelution than a

simple comparison of apex time shift, OpenSWATH constructs

an upper triangular matrix containing the delay which maximizes

the cross-correlation of pair-wise traces. Xcorr score is the mean

plus the standard deviation of the delays in the matrix.
• xcorr_weight: Similar to xcorr, but using the intensity weights to

aggregate the delays rather than the mean.
• shape: Similar to xcorr, OpenSWATH constructs an upper tri-

angular matrix containing the maximum cross-correlation value

of pair-wise traces. Shape score is the mean of the cross-

correlation values in this matrix.
• shape_weight: Similar to shape, but using the intensity weights to

assemble the cross-correlation values.

Besides, we implemented the PSS score proposed by Avant-garde
as an additional comparison:

PSS score ¼
Pn

i¼1
ui �v

jjui jj�jjvjj
n

�
Pn

i 6¼k
ui �v

jjui jj�jjvjj
n� 1

(1)

For a given peptide with a set of fragment ions, n represents the
number of fragment ions, ui is the intensity vector of ith trace from
the ith fragment ion, v is the mean intensity vector of the n traces, k
denotes the index of trace for which the dot product between v and
uk is the highest.

The scores of dotpord, xcorr, xcorr_weight, shape, shape_weight
and PSS are 1,0,0,1,1 and 1, respectively, on peak groups with ideal
coelution. When coelution is not perfect due to interference, such as
signal loss, jagging or convolution, starting point shift, apex point
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shift and end point shift, the above six scores will deviate more or
less from the ideal values. Unlike these scores, Alpha-XIC quantifies
coelution by learning from the peak group itself, rather than by
manually designing functions, which makes it possible to minimize
the impact of interference for coelution scoring.

In order to compare the robustness of Alpha-XIC score with the
above scores under different interference, four peak groups in HeLa-
1h were picked out to represent different coelution interference.
Figure 4 plotted the peak groups as well as precursor ion chromato-
grams and their corresponding coelution scores by OpenSWATH,
PSS score and Alpha-XIC. As can be observed that, a trace (y9þ, red
color) in precursor ‘ITELFAVALPQLLAK_2’ was disturbed which
led to the incoordination of its start and apex points against to the
global start and apex points of the peak group. As a result, the dot-
prod was low to 0.34. For the precursor ‘ALLNHLDVGVGR_3’, a
trace (y5þ, green color) had interference and a trace (y10þþ, blue
color) was missing such that all the coelution scores by
OpenSWATH (dotprod: 0.35, xcorr: 6.95, xcorr_weight: 5.97,
shape: 0.65, shape_weight: 0.33) and PSS score (PSS: 0.52) had re-
markable deviations compared to idea values. Similarly, two traces
(y12þ, blue color; y11þ, brown color) were disturbed in precursor
‘PVAPSGTALSTTSSK_2’ and thus, particularly, the dotprod score
was as low as 0.29. The peak group signal of
‘GIVGVENVAELKK_3’ was the most complex and resulted in dra-
matic deviations for all the coelution scores by OpenSWATH (dot-
prod: 0.36, xcorr: 8.29, xcorr_weight: 6.68, shape: 0.40,
shape_weight: 0.15) and PSS score (PSS: 0.66). Nevertheless, Alpha-
XIC scored consistently these four peak groups with high values
(1.00, 0.99, 1.00, 0.95, respectively) which made the corresponding

peptides recovered at a cutoff of 1% FDR. In the circumstance that
the coelution of the peak group was really far from the ideal as
exemplified by the last case, Alpha-XIC still reported a high score
0.95, wE speculated that this may be this peak group conformed to
the latent characteristics of coelution learned by the network in the
training phase or just was similar to one certain positive sample.

From these case comparisons, it was implied that Alpha-XIC was
capable of generating coelution scores robustly.

3.3 Performance evaluation on HeLa dataset
As shown in Figure 1 of Demichev et al. (2020) and Figure 4 of
Jacome et al. (2020), DIA-NN is superior to other search engines
(including Skyline) in terms of peptide identification and Avant-
garde is used to polish and curate the results of Skyline, our perform-
ance evaluation did not test other software but only DIA-NN. To
evaluate the performance of DIA identification by Alpha-XIC, DIA-
NN, DIA-NN coupled with PSS or Alpha-XIC were performed to
HeLa dataset whose gradient lengths range from 0.5 to 2 h in steps
of 0.5 h. The number of identified precursors was plotted against the
FDR in Figure 5a. As can be seen, PSS score had little effect on iden-
tification compared to the raw identification by DIA-NN, while
Alpha-XIC delivered significant identification improvements. At 1%
FDR, 9.4%, 16.2%, 13.8% and 15.3% improvements were
achieved by Alpha-XIC for HeLa-0.5 h, HeLa-1 h, HeLa-1.5 h and
HeLa-2 h, respectively, compared to DIA-NN.

To validate the identifications, we checked that whether the
quantitative ratios between the analysis of HeLa-0.5 h, HeLa-1 h
and HeLa-1.5 h to that of HeLa-2 h met the ratio of 1:1 since each

Fig. 3. Overfitting evaluation on HeLa dataset

Fig. 4. Comparisons of different coelution scores under different interference. The detailed calculation of the coelution scores ‘dotprod’, ‘xcorr’, ‘xcorr_weight’, ‘shape’ and

‘shape_weight’ by OpenSWATH is described in Results part. ‘PSS’ means the PSS score proposed by Avant-garde and ‘Alpha-XIC’ means the coelution score by Alpha-XIC
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run in HeLa dataset contains equivalent proteolysis. Figure 5b and c
showed the number of identified peptides at 1% FDR (excluding
those that cannot be quantified by HeLa-2 h), the log2-quantities
distribution of identified peptides, and the goodness of fit (using lin-
ear regression with unity slope) of DIA-NN and Alpha-XIC, respect-
ively. Compared to DIA-NN, it can be seen that Alpha-XIC
improved the identification (38 375 versus 41 546 in HeLa-0.5 h,
54 702 versus 62 650 in HeLa-1 h and 65 882 versus 73 602 in
HeLa-1.5 h) while maintaining the quantitative accuracy (R2 value:
0.581 versus 0.585 in HeLa-0.5 h, 0.728 versus 0.727 in HeLa-1 h
and 0.736 versus 0.746 in HeLa-1.5 h). This proved that the gains
by Alpha-XIC was reliable on HeLa dataset.

Last but not least, Alpha-XIC, in our device of CPU Intel i7-
7700K 4 cores, Win10, 64 bit, 64 GB memory and GPU Nvidia GTX
1060, spent 3.5 min in the case of HeLa-1 h where DIA-NN generated
97 867 candidate target peptides and 199 752 decoy peptides.

3.4 Performance evaluation on LFQbench dataset
To further assess whether the increase in identification resulting
from Alpha-XIC was genuine peptides, we performed the test of
Alpha-XIC on LFQbench dataset which had known ratios of mixed
species. The LFQbench dataset was identified by DIA-NN with or
without Alpha-XIC, and the quantitative information of the identi-
fied peptides under 1% FDR of six files (two types of samples and
both with triplicates) was obtained. The R package attached to
LFQbench project merged the six identification results, visualized
the distribution of the relative quantitative and the experimental

ratios (Fig. 6a) and reported the number of peptides and proteins fell
within the valid ratios (which were defined as a range of five stand-
ard deviations from the average ratio by LFQbench, Fig. 6b). As we
can see, on the one hand, Alpha-XIC significantly increased the
number of peptides and proteins fell within valid ratios compared to
DIA-NN (16.4% and 17.8% improvements for human peptides and
proteins; 3.4% and 2.6% for yeast peptides and proteins; 12.9%
and 8.0% improvements for E.coli peptides and proteins), on the
other hand, the results of Alpha-XIC slightly enlarged the median
deviations between the experimental ratios and the expected ratios
(Alpha-XIC introduced the median deviations: 0.000 and 0.000 for
human peptides and proteins, respectively, -0.051 and -0.043 for
yeast peptides and proteins, respectively, 0.235 and 0.168 for E.coli
peptides and proteins, respectively, compared to the median devia-
tions by DIA-NN: 0.000 and 0.000 for human peptides and pro-
teins, respectively, -0.049 and -0.035 for yeast peptides and proteins,
respectively, 0.230 and 0.170 for E.coli peptides and proteins, re-
spectively). In other words, unlike Avant-garde tool (Jacome et al.,
2020) which achieved fewer identification but more accurate global
quantification, we believed Alpha-XIC delivered more identification
at the expense of the reduction of integral quantitative accuracy
slightly on LFQbench dataset. This may be due to the fact that
Alpha-XIC recovered some of the interfered peptides, but DIA-NN
quantitative algorithm cannot eliminate the influence of the interfer-
ence thoroughly. A better quantification algorithm for peptides with
interference correction needs to be developed in the future.

(a)

(b)

(c)

Fig. 5. Performance evaluation of Alpha-XIC on HeLa dataset. The gradient lengths of HeLa dataset cover 0.5, 1, 1 and 2 h. (a) The number of identified precursors against the

FDR by DIA-NN, DIA-NN coupled with PSS score or Alpha-XIC. (b) Scatter plot of log2-quantities of identified precursors at 1% FDR by DIA-NN. (c) Scatter plot of log2-

quantities of identified precursors at 1% FDR by Alpha-XIC
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4 Conclusion

In this study, we propose a neural network, Alpha-XIC, to score the
coelution of peak groups. Instead of manually designing functions,
Alpha-XIC characterizes the coelution by learning the peak group it-
self, which makes it possible to eliminate the influence of interference
and achieve the robust coelution score. We found that Alpha-XIC
could give a high coelution score to a peak group even in the circum-
stance of severe interference. By appending the coelution scores from
Alpha-XIC to the initial scores from DIA-NN, Alpha-XIC obtained
improvements by 9.4–16.2% in terms of the number of identified pre-
cursors at 1% FDR for HeLa dataset. Besides, on the LFQbench data-
set, Alpha-XIC increased the number of peptides and proteins fell
within the valid ratios range by up to 16.4% and 17.8%, respectively,
compared to the identification by DIA-NN solely.

As models like Alpha-Frag (Song et al., 2021) have implemented
the presence prediction of fragment ions of a peptide, in the future,
Alpha-XIC can extend the ions involved in the construction of peak
groups to precursor ions, unfragmented precursor ions and the pre-
dicted present fragment ions as well as their isotopic ions, rather than
just the few fragment ions provided in the spectral library. In this
way, Alpha-XIC takes into account the coelution of all ions derived
from one targeted peptide, thus making full use of the coelution infor-
mation and improving the identification of DIA data further.
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Röst,H.L. et al. (2014) OpenSWATH enables automated, targeted analysis of

data-independent acquisition MS data. Nat. Biotechnol., 32, 219–223.

Song,J. et al. (2021) Alpha-Frag: a deep neural network for fragment presence

prediction improves peptide identification by data independent acquisition

mass spectrometry. bioRxiv.

Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res., 15, 1929–1958.

Sturm,M. et al. (2008) OpenMS—an open-source software framework for

mass spectrometry. BMC Bioinformatics, 9, 163.

Zhang,F. et al. (2020) Data-independent acquisition mass spectrometry-based pro-

teomics and software tools: a glimpse in 2020. Proteomics, 20, e1900276.

(a) (b)

Fig. 6. Performance evaluation of Alpha-XIC on LFQbench dataset. (a) Visualization of the distribution of the relative quantitative and the experimental ratios using the

LFQbench R package. (b) Comparisons of the numbers of valid ratios. Both the distribution and the valid ratios are plotted on the peptide and protein levels

Alpha-XIC 43

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/1/38/6353024 by guest on 19 April 2024

Deleted Text: &hx0025; &hx223C; 
Deleted Text: )

