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Abstract

Motivation: Identifying variant forms of gene clusters of interest in phylogenetically proximate and distant taxa can
help to infer their evolutionary histories and functions. Conserved gene clusters may differ by only a few genes, but
these small differences can in turn induce substantial phenotypes, such as by the formation of pseudogenes or inser-
tions interrupting regulation. Particularly as microbial genomes and metagenomic assemblies become increasingly
abundant, unsupervised grouping of similar, but not necessarily identical, gene clusters into consistent bins can pro-
vide a population-level understanding of their gene content variation and functional homology.

Results: We developed GeneGrouper, a command-line tool that uses a density-based clustering method to group
gene clusters into bins. GeneGrouper demonstrated high recall and precision in benchmarks for the detection of the
23-gene Salmonella enterica LT2 Pdu gene cluster and four-gene Pseudomonas aeruginosa PAO1 Mex gene cluster
among 435 genomes spanning mixed taxa. In a subsequent application investigating the diversity and impact of
gene-complete and -incomplete LT2 Pdu gene clusters in 1130 S.enterica genomes, GeneGrouper identified a novel,
frequently occurring pduN pseudogene. When investigated in vivo, introduction of the pduN pseudogene negatively
impacted microcompartment formation. We next demonstrated the versatility of GeneGrouper by clustering distant
homologous gene clusters and variable gene clusters found in integrative and conjugative elements.

Availability and implementation: GeneGrouper software and code are publicly available at https://pypi.org/project/
GeneGrouper/.

Contact: erica.hartmann@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Physically proximate groups of genes, called gene clusters, are pre-
sent in many microbial taxa (Medema et al., 2015). Gene clusters
can include genes that form biosynthetic pathways or efflux, secre-
tion or signaling systems, for example (Chen et al., 2020; Li et al.,
2015; Medema et al., 2015; Price et al., 2006; Williams and
Whitworth, 2010). Some gene clusters are arranged into one or mul-
tiple operons (Brandis et al., 2019). More broadly, microbial
genomes are under constant gene flux, driven by gene gain, loss and
rearrangements (Karcagi et al., 2016; Price et al., 2006; Tetz, 2005).

The interaction of these two evolutionary forces makes identification
of functional, conserved gene clusters across different genomes chal-
lenging, but when possible can allow for inferences of the gene clus-
ter’s functionality, stability, phylogeny and taxonomic distribution
(Axen et al., 2014; Brandis et al., 2019).

Several different, partially overlapping approaches have been
used previously for the identification and classification of gene clus-
ters. Generally, these identify one or more gene clusters either in sin-
gle genomes (Cao et al., 2019; Martı́nez-Garcı́a et al., 2015; Moller
and Liang, 2017; Xie et al., 2018) or simultaneously in a set of
genomes (Darling et al., 2010; Horesh et al., 2018; Medema et al.,
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2013; Svetlitsky et al., 2019; Tang et al., 2015; Veltri et al., 2016;
Winter et al., 2016, 3). For the latter, some methods place gene clus-
ters into bins demonstrating a baseline level of similarity (Cao et al.,
2019; Svetlitsky et al., 2019; Winter et al., 2016) while others return
homology scores relative to the query gene cluster (Horesh et al.,
2018; Medema et al., 2013). A challenge when applying these meth-
ods to large numbers of gene clusters across multiple genomes is that
many conserved gene clusters will display little variation in gene con-
tent, but that variation may nevertheless be biologically signifi-
cant—for example, an insertion disrupting key genes in a
biosynthetic operon (Brandis et al., 2019; Zangelmi et al., 2021).
Existing approaches that search for a specific gene cluster architec-
ture may miss these by penalizing insertions or deletions and not
including functionally related gene clusters undergoing gene loss.
Approaches that search for all gene clusters in a set of genomes prior
to their binning, when only a handful of gene clusters are being
investigated, may encounter issues with accuracy or scalability.
These features have become especially important recently, since the
number of microbial isolate genomes now exceeds 100 000, and that
count is being rapidly overtaken by metagenomic assemblies (Pasolli
et al., 2019).

A population-level understanding of gene cluster content can
help to identify which genes are typically located in a gene cluster,
and which are variable, providing hints as to their joint functional-
ity. We thus developed GeneGrouper to identify, quantify, context-
ualize and visualize the degree of similarity for gene clusters that
contain a queried gene of interest in a (potentially large) population
of user-supplied genomes. It is designed to work on many thousands
of genomes and is suitable for use, even at scale, on a personal
computer.

We demonstrate the utility of GeneGrouper by comparing its un-
supervised clustering accuracy with existing tools in the identifica-
tion of two distinct gene clusters, the 23-gene catabolic
microcompartment Pdu gene cluster found in Salmonella enterica
LT2 and the four-gene MexR/MexAB-OprM Resistance–
Nodulation–Division (RND)-type efflux pump gene cluster from
Pseudomonas aeruginosa PAO1 in 435 genomes (Cheng et al., 2011;
Poole et al., 1996). These genomes were drawn from six taxa:
S.enterica, P.aeruginosa, Klebsiella pneumoniae, Citrobacter,
Enterobacter and Clostridium. Taxa were selected based on prior
evidence for carriage of either LT2 Pdu or PAO1 Mex gene clusters,
or unrelated gene clusters with multiple homologs to either pduA
and/or mexB (Axen et al., 2014; Connolly et al., 2018; Kalnins
et al., 2020; Li et al., 2015). The LT2 Pdu gene cluster was selected
to test whether GeneGrouper could detect and accurately bin a large
gene cluster that contains multiple paralogs (i.e. pduA, pduJ and
pduT), present in multiple phylogenetically distinct genomes (i.e.
S.enterica, K.pneumoniae and Citrobacter) while avoiding the inclu-
sion of other separate microcompartment gene clusters present in all
six genera that share some orthologs (Axen et al., 2014; Connolly
et al., 2018; Kalnins et al., 2020). The PAO1 Mex gene cluster
(mexR, mexA, mexB and oprM) encodes for a regulator and an
RND efflux pump that has multiple homologs present within a gen-
ome and across virtually all Gram-negative species (Li et al., 2015).
The PAO1 Mex gene cluster is distinguished by its MarR-type prox-
imal repressor, MexR, in P.aeruginosa. The PAO1 Mex gene cluster
was selected to test whether GeneGrouper could specifically detect a
short gene cluster with multiple homologs within a species, and
across all five Gram-negative taxa in our collection of genomes.

After benchmarking, GeneGrouper was used to examine the di-
versity and distribution of gene-complete and -incomplete LT2 Pdu
gene clusters in 1130 S.enterica genomes. Using GeneGrouper’s vis-
ual and tabular outputs, we identify a novel pseudogene present in a
subset of otherwise gene-complete LT2 Pdu gene clusters. This
pseudogene was validated in vivo, with its loss of functionality nega-
tively impacting microcompartment formation.

2 Implementation

GeneGrouper is written in Python 3 and uses the Biopython and
scikit-learn libraries for sequence processing, clustering and analysis

(Buitinck et al., 2013; Cock et al., 2009). Multithreading is imple-

mented via the multiprocessing library (McKerns et al., 2012).

GeneGrouper calls on BLASTþ, mmseqs2-linclust and MCL for se-

quence detection and orthology clustering (Camacho et al., 2009;
Enright et al., 2002; Steinegger and Söding, 2017). Visualizations

are generated using R packages gggenes and ggtree (Wilkins and

Kurtz, 2020; Yu et al., 2017).

2.1 Input and pre-processing
GeneGrouper requires two inputs: genome files and a translated

seed gene sequence (Fig. 1A and B). Genome files must be in
GenBank file format like those from the NCBI Refseq database

(O’Leary et al., 2016). All genome files have coding sequence fea-

tures extracted and stored in an SQLite database. A BLAST database

is constructed from all extracted amino acid sequences.

2.2 Seed homology searching
A BLASTp search for the translated seed gene is performed using
user-specified identity and coverage thresholds (default 60% identity

Fig. 1. Overview of the GeneGrouper algorithm for gene cluster identification and

grouping. (A, B) Basic operation of GeneGrouper, which uses a specified gene seed

to query all related clusters from a set of microbial genomes and bin them into hom-

ologous groups. (C) GeneGrouper algorithm overview for gene cluster grouping.

The genomic region surrounding the seed gene is extracted, and all genes within the

region are mapped to their orthologous families. Orthology results are in turn

mapped back to all genes, on which the DBSCAN algorithm is run to identify groups

of similar gene clusters across genomes by Jaccard dissimilarity. (D) Overview of

GeneGrouper results, using the LT2 Pdu gene cluster search in 1130 S.enterica

genomes with PduA as the query. Four groups of gene clusters are generated (labeled

0–3). The main output consists of three parts. The left panel shows the seed gene

coverage and amino acid identity of each member of that group relative to the initial

translated query gene. The middle panel shows the representative architecture of

each GeneGrouper group (anchored on the start of each seed gene homolog).

‘Group Unb.’ contains all gene clusters that DBSCAN leaves unbinned into any dis-

crete group. Genes are shown with RefSeq gene name, or product annotation if this

is not available. Numbers above genes indicate internal ortholog family identifiers.

The right panel shows the Jaccard dissimilarity of each group’s members.

Dissimilarities are presented for each member relative to the group representative

shown in the middle panel, and also its average pair-wise dissimilarity to all other

members in the group. On the right-hand side of the right panel are the counts of all

members that belong to that group
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and 90% coverage), with higher values of either corresponding to
stricter homology requirements (Fig. 1C). The genomic region sur-
rounding the seed gene (default 10 000 bp upstream and down-
stream) is extracted. Users have the option to provide their own
upstream/downstream values to select for distances that specifically
encompass the gene cluster of interest. In instances where extracted
regions overlap, the region with the lowest E-value is chosen. The
genomic position of hits and the amino acid sequences within the
defined genomic region are written to a seed gene-specific SQLite
database. All sequences within the defined genomic region are stored
as a FASTA file.

2.3 Orthology inference and assignment
GeneGrouper assigns orthology to all sequences extracted from the
defined genomic region using a standard all-versus-all BLAST search
followed by Markov graph clustering of E-values (Bayliss et al.,
2019; Emms and Kelly, 2019; Hu and Friedberg, 2019; Li et al.,
2003). Specifically, during the pre-processing phase, amino acid
sequences are clustered using mmseqs2 linclust to generate a set of
representative amino acid sequences in FASTA format (Steinegger
and Söding, 2018). An all-versus-all BLAST search, where each rep-
resentative amino acid sequence is BLAST-ed against every other
representative amino acid sequence to produce an E-value, is per-
formed. The resulting E-values are then used as input for Markov
graph clustering with MCL (Enright et al., 2002). MCL is run over
multiple inflation values, a parameter that impacts the granularity of
inferred orthologous sequence clusters (Enright et al., 2002; Li et al.,
2003). Increasing inflation values will typically yield more clusters
with fewer numbers of sequences. GeneGrouper selects the lowest
inflation value containing the highest count of unique orthologous
sequence clusters by default. The MCL and mmseqs2 linclust ortho-
log cluster assignments are transferred to every sequence and stored
(Fig. 1C).

2.4 Genomic region grouping
Pair-wise Jaccard distances of gene content are calculated for all gen-
omic regions (Fig. 1C) (Buitinck et al., 2013). The DBSCAN algo-
rithm is then run using a fixed minimum cluster size value over
increasing epsilon values, which specify the radius of the cluster
undergoing expansion (Ester et al., 1996). For each epsilon value,
the number of clusters, noise, silhouette score and Calinksi-
Harabasz score are calculated (Cali�nski and Harabasz, 1974). The
epsilon value demonstrating the best separation of clusters (default-
ing to the highest Calinksi-Harabasz score) is selected. The previous-
ly constructed Jaccard distance matrix is subsetted for genomic
regions within each DBSCAN cluster (hereon referred to as groups
and specified with the prefix ‘group’). The pair-wise mean dissimi-
larity for each member of a group is calculated. Within each group,
the member with the lowest pair-wise mean dissimilarity is selected
as the group representative.

2.5 Outputs
Tabular outputs containing the group, region identifier, mean group
dissimilarity and relative dissimilarity to the group representative are
generated. All gene regions that could not be assigned to any group
are placed in group ‘un-binnable’. Three main visualizations are pro-
duced: the gene cluster architecture for each group representative
along with population-level metadata (Fig. 1D), the percentage of
genomes with at least one gene cluster in a per group, and the num-
ber of genomes searched and the number of genomes with at least
one gene cluster total. For each group, users can generate an add-
itional visualization that displays the count, dissimilarity and struc-
ture of each unique gene cluster architecture within that queried
group (Supplementary Fig. S3). A phylogenetic tree containing each
group’s representative seed sequence can also be produced. This out-
put uses MAFFT followed by FastTree to create a phylogenetic tree
and ggtree for visualization (Katoh and Standley, 2013; Paradis and
Schliep, 2019; Price et al., 2010; Revell, 2012; Yu et al., 2017). Each
tip label is annotated with the group identifier.

3 Experimental methods

3.1 Bacterial strain generation
Modifications to the Pdu operon of S.enterica serovar Typhimurium
LT2 were made using the k Red recombineering method developed
by Thomason et al. (2014). In this method, a cat/sacB selectable in-
sert is PCR amplified containing upstream and downstream homolo-
gous overhangs corresponding to the target gene locus. The
selectable marker is inserted into the desired locus and subsequently
knocked out, as in the case of the DA DJ double knockout strain and
DN single knockout strain, or replaced with a modified open reading
frame, as in the case of the DN::N* frameshift mutation. Note that
for the DN::N* frameshift, a gBlock Gene Fragment from IDT was
used. For gene knockouts, 30 bp is left upstream of the downstream
open reading frame to avoid polar effects. All knockouts and modifi-
cations were sequence verified using Sanger sequencing performed
by Quintara Biosciences.

3.2 GFP encapsulation assay
To visualize changes to microcompartment formation and morph-
ology, a GFP encapsulation assay was used as previously described
(Nichols et al., 2019). Modified S.enterica serovar Typhimurium
LT2 were transformed with an inducible fluorescent reporter con-
struct, pBAD33t-ssD-GFPmut2. This plasmid contains an open read-
ing frame that has an N-terminal signal sequence sufficient for
targeting the fluorescent reporter, GFPmut2, to the lumen of micro-
compartments. Transformed strains were first streaked from glycerol
stocks to single colonies on LB plates supplemented with 34mg/ml
chloramphenicol (incubated at 37�C for 16 h after streaking). Single
colonies were selected and used to inoculate 5 ml LB liquid cultures
supplemented with 34mg/ml chloramphenicol, which were grown
for 16 h at 37�C, 225 RPM. These starter cultures were subsequently
used to subculture 5 ml LB expression cultures supplemented with
34mg/ml chloramphenicol, 0.02% (w/v) L-(þ)-arabinose and 0.4%
(v/v) 1,2-propanediol. Expression cultures were grown for 6 h at
37�C, 225 RPM before imaging.

Cells were imaged using phase contrast and fluorescence micros-
copy on a Nikon Eclipse Ni-U upright microscope, 100X oil immer-
sion objective, Andor Clara digital camera and NIS Elements
Software (Nikon). Cells were prepared by placing 1.47mL of the ex-
pression culture onto FisherbrandTM frosted microscope slides and
cleaned 22 mm � 22 mm, #1.5 thickness coverslips (VWR Cat#
16004-302). For GFP fluorescence micrographs, the C-FL Endow
GFP HYQ bandpass filter was used and images were acquired with
an 80 ms exposure. Digital micrographs were processed using
ImageJ (Schneider et al., 2012).

4 Results and discussion

4.1 GeneGrouper benchmarking and comparisons

overview
Two separate analyses were performed to benchmark GeneGrouper.
In the first analysis, GeneGrouper, MultiGeneBlast and CSBFinder
were used to search for two gene clusters: the 23-gene LT2 Pdu and
four-gene PAO1 Mex gene clusters (Fig. 2A, Table 1) in a set of
435 genomes drawn from six taxa (Supplementary Table S1). For
each tool, each gene cluster was manually labeled for being either
gene-complete (100% of expected genes present in the gene cluster),
gene-incomplete (<100–75% genes present) or ‘unrelated’ (<75%
genes present), to the query gene cluster architecture. Afterwards,
the overlaps and discrepancies in gene clusters identified were exam-
ined. In the second analysis, the number of complete, incomplete or
unrelated LT2 Pdu or PAO1 Mex gene clusters in each of
GeneGrouper’s groups was manually calculated to verify that groups
were composed of gene clusters with similar gene content.
Afterward, we used GeneGrouper’s automated grouping as predic-
tors for whether genomes were carrying complete or either complete
or incomplete LT2 or PAO1 Mex gene clusters. The precision and
recall of these predictions were compared with the manually
obtained complete, incomplete and unrelated labelings from the first
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analysis. Overall, we find the accuracy of predictions made by
GeneGrouper’s unsupervised classifications is comparable to or
greater than those obtained using manual classification methods
with existing tools.

4.2 Comparison of LT2 Pdu and PAO1 Mex gene cluster

identification using different tools
435 chromosomal-level assembly genomes drawn from S.enterica,
K.pneumoniae, P.aeruginosa, Citrobacter, Enterobacter and
Clostridium were downloaded from the NCBI Refseq database on
March 23, 2021 (Supplementary Table S1) (O’Leary et al., 2016).
These taxa were selected based on prior evidence for carriage of ei-
ther LT2 Pdu or PAO1 Mex gene clusters, or unrelated gene clus-
ters with multiple homologs to either pduA and/or mexB (Axen
et al., 2014; Li et al., 2015). The high assembly quality was chosen
to minimize the chance of detecting genes or gene clusters or
incomplete gene clusters resulting from incorrect assemblages or
fragmentation. For the detection of the LT2 Pdu gene cluster,
GeneGrouper was run using the translated S.enterica LT2 PduA se-
quence as a seed, and a genomic search space of 2000 bp downstream
and 18 000 bp upstream that encompassed the two genes downstream
and 22 genes upstream of pduA. PduA was selected as the seed because
it is a member of the pfam00936 protein family, which is the hallmark
indication of BMC (bacterial microcompartment) loci (Axen et al.,

2014). For the detection of the PAO1 Mex gene cluster, the
P.aeruginosa PAO1 MexB sequence was used as a seed with a uniform
search space of 3000 bp upstream and downstream to capture all genes
upstream and downstream of mexB while allowing for potential inser-
tions. For both searches, a �30% identity and �80% coverage thresh-
old was used to capture potentially distant functional seed homologs.
The orthology assignments for each gene in the LT2 Pdu or PAO1 Mex
gene clusters were then used to score a gene cluster’s completeness rela-
tive to the orthology assignments of the LT2 Pdu gene cluster from
S.enterica LT2 (GCF_000625775) or the PAO1 Mex gene cluster from
P.aeruginosa PAO1 (GCF_000148745).

MultiGeneBlast was run in search mode with default settings on
each individual genome, using an input FASTA file that contained
all the translated gene sequences belonging to either LT2 Pdu or
PAO1 Mex gene clusters. BLAST results for each identified gene
cluster were filtered such that each individual query gene was
matched to its single best hit. Each gene cluster was then scored for
completeness as above.

CSBFinder inputs were pre-processed prior to gene cluster
searching, as required by its implementation. The proteomes for
all six taxa were generated by clustering with mmseqs2 linclust
with default settings (Steinegger and Söding, 2018). Afterwards,
orthology identification was performed using OrthoFinder with
default settings (Emms and Kelly, 2019). Genomes with orthol-
ogy assignments were then converted into the CSBFinder format.
The orthology assignments for each gene present in either the
LT2 Pdu or PAO1 Mex gene clusters were converted to a ‘pat-
terns’ file and used to search all genomes for the respective gene
clusters using default settings and then scored for completeness as
above.

The expected total count of predicted complete and incomplete
LT2 Pdu gene clusters (316) was based on prior evidence for their
existence as a single copy in S.enterica, K.pneumoniae and
Citrobacter spp. (Fig. 2B). Between all three approaches, 224–308
complete and 5–20 incomplete LT2 Pdu gene clusters were predicted
(Fig. 2D) (Axen et al., 2014). Complete LT2 Pdu gene clusters were
predicted in 93.8–99% of S.enterica, 89.2–96.4% of Citrobacter
spp. and 0–93.4% K.pneumonia genomes. GeneGrouper and
MultiGeneBlast had comparable predicted counts of complete and
incomplete LT2 Pdu gene clusters, with GeneGrouper identifying
fewer complete and more incomplete LT2 Pdu gene clusters.
CSBFinder had the most conservative results and did not identify
any K.pneumoniae genomes carrying an LT2 Pdu gene cluster.

We next searched the same set of genomes for the presence of the
PAO1 Mex efflux pump operon and its proximal regulator, MexR.
The expected total count (78) was based on prior evidence, where it
is expected to be present in a single copy in only and all P.aeruginosa
genomes (Li et al., 2015). All approaches predicted between 92.3%
and 100% of P.aeruginosa genomes to carry the PAO1 Mex gene
cluster, with no other taxa predicted to carry the complete gene clus-
ter (Fig. 2C and E). CSBFinder only identified complete gene clus-
ters. GeneGrouper identified three incomplete PAO1 Mex gene
clusters, all in P.aeruginosa. MultiGeneBlast identified 397 incom-
plete PAO1 Mex gene clusters, distributed throughout P.aeruginosa,
S.enterica, K.pneumoniae, Citrobacter and Enterobacter.

Our standardized labeling method for qualifying complete/in-
complete/unrelated LT2 Pdu or PAO1 Mex gene cluster showed all
tools compared similarly in the counts of predicted complete gene
clusters. CSBFinder reported lower numbers of complete or

Fig. 2. GeneGrouper cluster search and completeness comparisons with alternative

approaches. (A) The canonical LT2 Pdu and PAO1 Mex gene cluster architectures

used for precision and recall comparisons. Single letter abbreviations indicate a pdu

prefix. (B, C) The counts of all gene clusters identified by each evaluated search

method for these two gene clusters. Red dashed line indicates the expected counts of

complete and incomplete gene clusters in the dataset. (D, E) Counts of all gene clus-

ters identified by each search method, separated by taxa. Red line is again the

expected count (per taxon, when greater than zero)

Table 1. Genes, and the gene clusters they represent, used for gene cluster searches and comparisons in this study

Gene name Species Gene cluster namea Gene cluster length Accessionb

pduA Salmonella enterica LT2 Pdu 23 P0A1C7

mexB Pseudomonas aeruginosa PAO1 Mex 4 P52002

pstS Escherichia coli Pst 5 P9WGU1

traC Salmonella enterica T4SS 15 P18004

aInternal gene cluster name used.
bUniProt accession ID.
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incomplete gene clusters in phylogenetically distant genomes. This is
likely due to conservative orthology assignments in its pre-
processing step using OrthoFinder. MultiGeneBlast had higher num-
bers of incomplete gene clusters detected for PAO1 Mex gene clus-
ters. This discrepancy is likely attributable to the BLAST-based
scoring system that predicts a gene hit regardless of identity and
coverage, resulting in potential pseudogenes counting toward a gene
cluster’s completeness metric. Taken together, these results demon-
strate that GeneGrouper’s gene cluster search method identifies gene
clusters that are either complete or incomplete gene clusters in the
range of the expected count.

4.3 Accuracy of GeneGrouper automated gene cluster

binning
GeneGrouper uses an unsupervised learning approach to aggregate
each individual gene cluster into discrete groups. Each group should
contain gene clusters that have similar, but not necessarily solely
identical, gene content, over the inputted upstream/downstream bp
distance. Therefore, a group will likely contain both complete and
incomplete gene clusters, but not unrelated gene clusters as those
will be assigned their own group(s). We tested whether this was the
case by identifying the distribution of gene complete, incomplete or
unrelated gene clusters in all groups. We then compared the accur-
acy of the automated labeling with that of the manual labeling of
gene clusters using the GeneGrouper, MultiGeneBlast and
CSBFinder search outputs.

The LT2 Pdu gene cluster was searched for in all genomes with
GeneGrouper using the same parameters as before. GeneGrouper
assigned 654 gene clusters to four different groups and had 15 gene
clusters that were un-binnable and placed in group ‘Unb’ (group un-
binnable) (Table 2, Supplementary Fig. S1A and B). The complete-
ness of each gene cluster for the LT2 Pdu gene cluster was assessed
as before. When separated by group assignment, all complete and in-
complete LT2 Pdu gene clusters, but no unrelated gene clusters,
were placed in group 0 (Fig. 3A). We calculated the accuracy of
using gene clusters from GeneGrouper group 0 for predicting the
presence of complete, or either complete or incomplete, LT2 Pdu
gene clusters in all 435 genomes. This was done by labeling all gene
clusters in group 0 as true for being complete, or either complete or
incomplete, and measuring the precision and recall compared to a
ground truth dataset. For comparative purposes, the precision and
recall for the manually labeled GeneGrouper, MultiGeneBlast and
CSBFinder search outputs, that include all detected gene clusters
from each search output, was also measured (Fig. 3C).

GeneGrouper group 0 showed high precision and recall for pre-
diction of complete or either complete or incomplete LT2 Pdu gene
clusters. The precision was lower for the prediction of only complete
LT2 Pdu gene clusters compared with complete or incomplete gene
clusters. This was expected as GeneGrouper’s grouping method
placed gene complete and incomplete LT2 Pdu gene clusters into the

same group. MultiGeneBlast demonstrated similar recall scores but
over-predicted the number of complete LT2 Pdu gene clusters,

resulting in a lower precision score. CSBFinder had high precision

but lower recall due to a lack of detection of true LT2 Pdu gene clus-
ters in all K.pneumoniae genomes in the dataset. Taken together,

these results demonstrate GeneGrouper’s automated grouping

method can accurately bin related complete and incomplete gene
clusters into discrete groups.

PAO1 Mex gene clusters were searched for using GeneGrouper

as previously described, identifying 2214 gene clusters contained

within 25 groups (Table 2, Supplementary Fig. S2A and B). All gene
clusters were labeled as predicted complete, incomplete or unrelated.

When separated by group assignment, results showed that group 0

contained all complete and incomplete, but no unrelated, gene

Table 2. Search parameters and processing time for all GeneGrouper gene cluster searches in this study

Gene cluster

namea

Upstream–

Downstream

search length

(bp)

Seed identity

(%)/coverage

(%)/hit count

Total gene clusters

found

Total

groups

Total unclustered gene

clusters

Genomes with

hit

Dataset Run time

(h:m:s)b,c

LT2 Pdu 2000–18 000 30/80/unlimited 654 4 15 324 435 mixed

genomes

00:01:48

PAO1 Mex 3000–3000 30/80/unlimited 2214 24 54 423 435 mixed

genomes

00:03:22

Pst 8000–8000 15/70/1 394 5 16 394 435 mixed

genomes

00:00:54

T4SS 20 000–20 000 15/70/unlimited 81 3 26 59 435 mixed

genomes

00:00:37

LT2 Pdu 2000–18 000 30/80/unlimited 2252 4 2 1128 1130

Salmonella

genomes

00:04:12

aInternal gene cluster name used.
bhours:minutes:seconds.
cRun on a 2.2Ghz Intel i7 quad core processor with 16 Gb of DDR3 RAM.

Fig. 3. GeneGrouper unsupervised gene cluster grouping accuracy. (A, B) Counts of

gene clusters identified by GeneGrouper separated by assigned groups. Red dashed

line indicates the expected counts of complete and incomplete gene clusters in the

dataset. (C, D) Precision and recall scores for all methods evaluated. The ‘search’

suffix indicates that each individual gene cluster was manually labeled for complete-

ness prior to comparison with ground truth dataset. The GeneGrouper-group 0

method labeled all gene clusters within that group as true for being complete, or ei-

ther complete or incomplete, prior to comparison with ground truth dataset
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clusters (Fig. 3B). The sole exception was a predicted incomplete
PAO1 Mex gene cluster placed in group ‘Unb’ containing other un-
binnable gene clusters. The precision and recall for GeneGrouper
group 0 in predicting complete or either complete or incomplete
PAO1 Mex gene clusters was measured as previously described
(Fig. 3D). Precision and recall were greater or equal to 0.98 for both
categories, with GeneGrouper group 0 missing four instances of true
incomplete PAO1 Mex gene clusters. The first was in ‘gUnc’, which
had a truncated mexR, and the other three had a mexB pseudogene
and were thus not detected during the initial BLAST search. Other
tools performed similarly. A notable exception was the 0.12 preci-
sion score for the prediction of gene complete or either gene com-
plete or incomplete PAO1 Mex gene cluster by MultiGeneBlast. This
low score is likely to due to difficulties in homology score-based
methods in differentiating between closely related, but distinct gene
clusters, when all components are not present. These results indicate
the GeneGrouper grouping assignments can differentiate between
highly similar gene content and identify specific RND efflux pump
components.

4.4 Application: distribution and diversity of full and

partial Pdu gene clusters in S.enterica
Although S.enterica is known to carry the LT2 Pdu gene cluster, it is
unclear how full and partial LT2 Pdu gene clusters are distributed
within the species, and whether unique insertions, deletions or out-
right losses of the gene cluster have occurred and propagated. This is
of interest because even in the presence of interruptions, functional
LT2 Pdu gene cluster variants may still exist, and these disruptions
can thus inform as to which genes may not be necessary. We used
GeneGrouper to search for the LT2 Pdu gene cluster in 1130 com-
plete or chromosomal-level genome assemblies from the RefSeq
database downloaded on March 23, 2021 (Supplementary Table S2)
(30). The S.enterica LT2 PduA sequence was used as a seed to search
and cluster the gene content for a genomic region of 2000 bp down-
stream and 18 000 bp upstream of any pduA homolog (Table 2).

The search returned four distinct groups with distinct gene clus-
ters and two total unclustered gene clusters, which were visualized
using GeneGrouper’s visualization command (Fig. 1B).
GeneGrouper reports the Jaccard dissimilarities of each region with-
in a cluster relative to the region representative so that differences in
gene content can be efficiently quantified and assessed. Group 0 con-
tained the S.enterica LT2 strain LT2 Pdu gene cluster, which had
zero dissimilarity with the representative region of the cluster. In
total, this cluster contained 1120 regions with a 0 and 0.076 Jaccard
dissimilarity at the 50th and 95th percentiles, respectively. These
low dissimilarities indicated that group 0 had very little variation in
gene content relative to its representative region.

To examine the variability in gene content within group 0,
GeneGrouper’s group inspection command was run to visualize the
count of identical occurrences of each gene cluster (Supplementary
Fig. S3A and B). Thirty-five separate identical gene clusters were pre-
sent, the majority of which had all 23 LT2 Pdu genes. The tabular
output was queried to reveal that of all gene clusters identified, 920
(81.4%) carried all 23 LT2 Pdu genes, 10 (0.88%) did not have a
LT2 Pdu gene cluster identified, and the remaining 200 (17.6%) had
predicted LT2 Pdu gene clusters with between one and five pseudo-
genes. Interestingly, gene clusters carrying a pduN pseudogene but
otherwise complete were the most common incomplete gene cluster
observed (Fig. 4A).

To examine the phylogenetic relationships between genomes and
pduN pseudogene carriage, a whole-genome phylogeny of all 1130
genomes was created using PhyloPhlAn 3.0 and the provided 400
marker gene database. The resulting tree was visualized with ggtree
along with a heatmap for each Pdu component extracted from
GeneGrouper’s tabular output (Asnicar et al., 2020; Yu et al.,
2017). We found that genomes with pduN pseudogenes were present
almost entirely in the same section of the phylogenetic tree
(Fig. 4B). This is a surprising finding, as PduN is a necessary compo-
nent for proper Pdu microcompartment formation (Cheng et al.,
2011). PduN is a member of the BMC vertex protein family
(pfam03319), which are necessary for capping the vertices of BMCs

and imparting the standard polyhedral morphology (Cheng et al.,
2011; Tanaka et al., 2008; Wheatley et al., 2013). Absence of PduN
leads to malformed and elongated microcompartment structures and
disrupted growth on the substrate 1,2-propanediol (Cheng et al.,
2011). The pduN mutation found in strain S.enterica Ty2
(GCF_000007545.1) contained a nucleotide deletion at position 68
that resulted in a frame-shift mutation (Supplementary Fig. S4).

The effects of this nucleotide deletion on microcompartment for-
mation were tested in S.enterica LT2. To determine the effect of the
PduN frameshift and resulting pseudogene seen in our analysis,
strains containing this frameshift (denoted DN::N*) were generated
and compared with strains containing the intact Pdu gene cluster
(WT), a full PduN deletion (DN) and a negative control lacking the
essential pfam00936 genes pduA and pduJ (DADJ) (Fig. 5)
(Kennedy et al., 2021). Microcompartment formation was tested
using a GFP encapsulation assay, in which GFP is targeted to micro-
compartments using an N-terminal signal sequence sufficient for
microcompartment targeting (Fan and Bobik, 2011; Nichols et al.,
2020). We found that strains expressing the pduN pseudogene
(DN::N*) exhibited aberrant microcompartment morphologies simi-
lar to those observed in the pduN knockout strain (DN), indicating
improper microcompartment assembly due to a loss of vertex cap-
ping. This phenotype is distinct from the bright fluorescent puncta
throughout the cytoplasm in the WT strain, indicative of normal
microcompartment assembly and morphology, as well as the DADJ
negative control containing polar bodies, indicative of aggregation.
These results demonstrate the utility of GeneGrouper in rapidly
identifying pseudogenes that dramatically alter the functionality of
BMC gene clusters.

Fig. 4. Whole-genome phylogenomic analysis of LT2 Pdu gene cluster completeness

in 1130 S.enterica genomes. (A) Cumulative count of pseudogene occurrences identi-

fied by GeneGrouper in 1120 LT2 Pdu gene clusters. PduN had a particularly high

frequency of pseudogene occurrence. (B) Comparison of these genomes’ whole-gen-

ome phylogeny (as determined by PhyloPhlAn 3.0 using the provided 400 gene

marker database) with LT2 Pdu gene cluster composition and completeness in each

genome
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4.5 Additional gene cluster searches using

GeneGrouper
To demonstrate the applicability of GeneGrouper to other gene clus-
ter types and use cases, we searched for two additional seed genes in
our dataset of 435 genomes (Tables 1 and 2). The Pst gene cluster
(pstSCAB) which regulates the uptake of inorganic orthophosphate
(Mandal and Kwon, 2017) is present in many Gram-negative and
positive bacteria. It encodes for a four-component phosphate ABC-
transporter and is adjacent to the negative phosphate regulon regula-
tor, phoU (Fischer et al., 2006). GeneGrouper was used to investi-
gate whether distant or proximal homologs of the Escherichia coli
Pst gene cluster were present in the dataset. Identity and coverage
cutoffs of 15% and 70%, respectively, were used to detect distant
seed homologs, and an upstream/downstream distance of 8000 bp
was selected to encompass all expected members of the Pst gene clus-
ter and possible insertions (Table 2). Only the best BLAST hit from
each genome was kept.

A total of 394 gene clusters were found and subsequently binned
into five groups (Supplementary Fig. S5A and B). Interestingly,
S.enterica, K.pneumoniae and Enterobacter spp. had similar gene
cluster architectures, even between groups, with the main difference
being upstream gene content. This likely drove their binning into dif-
ferent groups as the core Pst gene cluster content was identical.
Interestingly, the Pst gene cluster has been described in Clostridium
and verified to be an ortholog of the E.coli Pst gene cluster (Fischer
et al., 2006). In this search, only one Clostridium genome had a Pst
gene cluster identified and (uniquely) left unclustered, suggesting
that the Pst gene cluster may not be carried by all Clostridium.
Another unexpected finding was that only 62.8% of P.aeruginosa
genomes carried a homolog of pstS in a conserved gene cluster
assigned to group 0. However, gene clusters in this group lacked
other members of Pst and instead were associated with type II secre-
tion genes. This context suggests that the pstS gene in group 0 may
serve a different functional role compared pstS found in the func-
tionally verified Pst gene cluster in E.coli (Korotkov et al., 2012; Sun
et al., 2016).

In another example use case, we searched for gene clusters con-
taining traC, a type IV secretion system (T4SS) gene found in inte-
grative and conjugative elements (ICEs) (Table 2) (Beker et al.,
2018). ICEs have highly variable gene content across both cargo
genes and the components necessary for integration and conjugation
(Johnson and Grossman, 2015; Wallden et al., 2010). A 20 000 up-
stream/downstream genomic range was used, which is on the lower
end of ICE sizes (shown to range in size from 37 to 143 kb) to cap-
ture conserved conjugation components (Liu et al., 2019).
Clustering returned 81 separate gene clusters binned in three differ-
ent groups, and 26 gene clusters left unassigned (Supplementary Fig.
S6A and B). Expectedly, there was high dissimilarity within groups,

as transferred ICE are hotspots of gene gain, loss and recombination

(McFarland et al., 2021; Oliveira et al., 2017). One group, group 1,

exhibited low mean dissimilarity and was present in both S.enterica
and K.pneumoniae genomes, suggesting these genomes carry the
same ICE. Group 0 was found in 46% of all K.pneumoniae
genomes, raising the possibility of a particular mobile or ancient ICE

acquisition. These search results demonstrate the utility of
GeneGrouper in understanding genomic regions with highly variable

gene content.

5 Conclusions

We demonstrate that GeneGrouper is a simple and accurate tool for
identifying gene clusters containing a common gene in a large num-

ber of genomes and binning them into discrete, relevant groups.

GeneGrouper’s automated grouping of gene clusters showed high

precision and recall for the prediction of gene complete and incom-
plete LT2 Pdu and PAO1 Mex gene clusters and performed similarly

to or better than existing tools. An advantage of GeneGrouper’s out-

put is that gene clusters with similar, but not necessarily exact, gene
content are grouped together, allowing for population-level compar-

isons of similar gene clusters. This feature allows to better under-

stand and contextualize the combination of ancestral and fixed,

versus recent or neutral, variation in a gene cluster of interest across
the microbial tree of life.

In an example application, GeneGrouper was used to determine

whether the LT2 Pdu gene cluster was present in 1130 complete

S.enterica genomes and, if so, how complete the gene cluster was.

Analysis of GeneGrouper groups showed incomplete LT2 Pdu gene
clusters most commonly contained pduN pseudogenes, compared

with the other 22 components of the gene cluster. We further probed

the consequences of pseudogene formation in pduN and found that
the pduN pseudogene results in formation of distinct, aberrant

microcompartment structures similar to those observed in a pduN
knockout strain. This was surprising given PduN’s necessary role in

microcompartment formation (Cheng et al., 2011), and the potential
1,2-propanediol catabolic capacity of strains with pduN pseudo-

genes warrants further investigation.
There exist some limitations in our approach, primarily the guar-

anteed absence of gene clusters that do not have the seed gene and

the presence of incomplete gene clusters from genomes with frag-
mentary assemblies. In addition, some genomic regions that contain

the gene cluster but have dissimilar surrounding gene content can be

binned into different groups if the genomic distance is too high. In
this case, user-guided refinement of the upstream/downstream search

distance to more specifically encompass the desired gene cluster can

solve this issue. Despite these limitations, GeneGrouper’s automated

binning provides users with biologically relevant groups of similar
gene clusters in minutes (Table 2), much faster than existing tools

and with similar or higher accuracy. GeneGrouper’s comparative ap-

proach to gene cluster analysis has the potential to save time in situa-

tions where researchers are choosing model gene clusters and want
to determine which genes are typically present. This can help to pre-

vent erroneous conclusions if studies are performed on a gene cluster

containing unique genetic features compared with its homologs
across a microbial population. GeneGrouper can also help to iden-

tify unusual gene content in similar gene clusters for further investi-

gation of these variants’ functional consequences.
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