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Abstract

Motivation: The hourglass model is a popular evo-devo model depicting that the developmental constraints in the
middle of a developmental process are higher, and hence the phenotypes are evolutionarily more conserved, than
those that occur in early and late ontogeny stages. Although this model has been supported by studies analyzing
developmental gene expression data, the evolutionary explanation and molecular mechanism behind this phenom-
enon are not fully understood yet. To approach this problem, Raff proposed a hypothesis and claimed that higher
interconnectivity among elements in an organism during organogenesis resulted in the larger constraints at the
mid-developmental stage. By employing stochastic network analysis and gene-set pathway analysis, we aim to
demonstrate such changes of interconnectivity claimed in Raff’s hypothesis.

Results: We first compared the changes of network randomness among developmental processes in different species by
measuring the stochasticity within the biological network in each developmental stage. By tracking the network entropy
along each developmental process, we found that the network stochasticity follows an anti-hourglass trajectory, and such
a pattern supports Raff’s hypothesis in dynamic changes of interconnections among biological modules during develop-
ment. To understand which biological functions change during the transition of network stochasticity, we sketched out
the pathway dynamics along the developmental stages and found that species may activate similar groups of biological
processes across different stages. Moreover, higher interspecies correlations are found at the mid-developmental stages.

Contact: yukijuan@ntu.edu.tw or hsuancheng@nycu.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Despite the large variety of morphology and anatomy in species
across different phyla, some developmental stages of different spe-
cies have been noticed to be similar in comparative embryogenesis
studies. Researchers have been searching for patterns by comparing
different developmental processes and hypothesizing how those pat-
terns might have emerged (Irie and Kuratani, 2014).

Those similarities not only include the similar basic body plan
shared among species in a phylogenetic group but also include some
sets of homologs, such as homeobox genes (hox genes), which have
been discovered to control similar developmental processes in spe-
cies across different phyla (Quiring et al., 1994). The similar expres-
sion patterns of hox genes provide a genetic explanation for
morphological similarities, allowing embryologists to link the

developmental process and the diversity of life. Hox genes have been
found to regulate and control one or multiple body parts and seg-
ments of embryogenesis (Svingen and Tonissen, 2006). The expres-
sion patterns of those regulators were found to be highly conserved
in space and time during development, and the patterns were shared
among different species in bilateral animals (�Svorcová, 2012).

Inspired by the collinearity of hox gene clusters, the hourglass
model was proposed by Duboule (1994) and extended by Raff
(1996). The model suggested that species tend to be more similar
around the middle of the developmental process. Those stages in the
mid-developmental process are referred to as phylotypic stages,
located during the period of formation of an organism’s body plan.
Based on the model, the mid-developmental stages were hypothe-
sized to be under larger constraints compared to the early and late
developmental stages (Raff, 1996).
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The hourglass model was later supported by transcriptomic ana-
lysis using methods of gene expression correlation (Kalinka et al.,
2010) and phylostratigraphy analysis (Domazet-Lo�so and Tautz,
2010). Further studies have extended those analyses and ideas to
species in different phyla, including vertebrate (Irie and Kuratani,
2011), angiosperm (Quint et al., 2012), nematode (Levin et al.,
2012) and fungi (Cheng et al., 2015). Besides the comparison of spe-
cies within a phylum, several studies have examined the gene expres-
sion patterns during development among species covering different
phyla (Gerstein et al., 2014; Levin et al., 2016; Li et al., 2014).
However, those cross-phyla research findings of similarities and dif-
ferences of developmental patterns have been inconsistent, if not
contradictory (Gildor and Ben-Tabou de-Leon, 2018).

According to the hourglass model, the selective pressure on phy-
lotypic stages is higher than the pressure on other stages (�Svorcová,
2012). However, mechanisms behind the emergence of the hourglass
patterns remain largely unknown. One detailed explanation could
be traced back to Raff’s hypothesis (Raff, 1996). Raff suggested that
the hourglass pattern might be due to the dynamic of interconnec-
tions among different parts of an embryo during development
(Fig. 1A). During the early stages, global axes are determined within
an embryo, and their formations are flexible since those axes are
global. When an embryo enters the phylotypic stages, the construc-
tion of a body plan requires coordination of different biological ele-
ments. This results in high communications among those elements.
During the late stages, different biological modules are formed, and
those modules are developed only partially independent from each
other; hence, the connections within each module are under fewer
constraints from previous interactions among the biological ele-
ments. To date, there has been little agreement over studies of Raff’s
connectivity hypothesis from molecular perspective.

By integrating gene expression across development and network
structure from protein–protein interactions, the hypothesis has been
challenged by Comte et al. (2010). By calculating network centrality
measurements in protein–protein interactions, the authors showed
that there is no evidence that the molecular interactions are signifi-
cantly higher during the phylotypic stages of zebrafish development.
On the other hand, previous in silico simulations of the developmen-
tal process have shown that the hourglass pattern could emerge
from layers of gene regulatory networks (Akhshabi et al., 2014).
Moreover, previous studies using gene expression information have
also come to inconsistent conclusions on a cross-kingdom compari-
son of developmental processes (Gerstein et al., 2014; Levin et al.,
2016). Therefore, a more detail examinations of the hypothesis from
molecular perspective is needed.

Our study reexamines the Raff’s connectivity hypothesis by inte-
grating the network and pathway analysis in studying time-series
gene expression data (Fig. 1B). The intent of this study is not to pro-
vide yet another way of defining a similarity measure among species
but to trace the systematical changes over the ontogeny process and
hence to search for possible explanations behind developmental
models in comparative embryology. We first used the concept of in-
formation diffusion in a network (Gómez-Garde~nes and Latora,
2008). Few studies have applied the idea of information diffusion in
evolutionary developmental biology before, but we notice that this
concept is suitable to test Raff’s hypothesis in the changes of inter-
connectivity. We calculated the network entropy for each sample to
measure the dynamic of connections throughout the developmental
process. From our results, we were able to show that a biological
system undergoes a systematic change in interconnections during
mid-developmental stages.

Inspired by the association between changes of signaling promis-
cuity and systematic shifts of molecular pathway activities (Banerji
et al., 2013; Li et al., 2013; Teschendorff et al., 2014), we further
performed gene set variation analysis (GSVA) to compare the trend
of system entropy rate and the dynamics of pathway activities. The
GSVA scores quantify the relative pathway activity using the con-
cept adopted from the gene set enrichment analysis (Hänzelmann
et al., 2013). One of the main benefits of pathway-centric
approaches for cross-species comparison is to avoid mapping the
orthologs across species with large evolutionary distances, which
may be a difficult task as these distances increase (Heger and
Ponting, 2007). Comparing the network entropy and different path-
way activity profiles, we found that the mid-developmental transi-
tion correlates with the shift of pathway activities from genetic
information processing to metabolism.

2 Materials and methods

2.1 Genomic phylostratigraphy
The concept of phylostratigraphy is to classify genes based on their
evolutionary history. The phylostratigraphy maps of different spe-
cies were summarized in Supplementary Figure S2. The phylostratig-
raphy of each species, except Caenorhabditis elegans, was obtained
from previous studies, including Arabidopsis thaliana (Quint et al.,
2012), Coprinopsis cinerea (Cheng et al., 2015), Drosophila mela-
nogaster, Danio rerio (Neme and Tautz, 2013), Mus musculus
(Neme and Tautz, 2013) and, Homo sapiens (human) (Neme and
Tautz, 2013). Since there were few studies in constructing phylostra-
tigraphy of C. elegans, the phylostrata of C. elegans genes were
assigned using two methods, respectively. One was acquired by
accessing the evolutionary history of each gene from Protein
Historian (Capra et al., 2012), and another one was built following
the method of Chen et al. (2014), by stratifying the homologs based
on the taxonomy tree from NCBI taxonomy and NCBI
HomoloGene data (version 68, Apr 2014) (NCBI Resource
Coordinators, 2015). The phylostrata were assigned to the taxo-
nomic ranks of C. elegans by their phylogenetic order.

2.2 Transcriptomes of developmental processes
The gene expression data were obtained from previous studies,
including A. thaliana (Xiang et al., 2011), C. cinerea (Cheng et al.,
2015), C. elegans (Li et al., 2014), D. melanogaster (Li et al.,
2014), D. rerio (Domazet-Lo�so and Tautz, 2010) and M. musculus
(Xue et al., 2013). The raw expression data were normalized by
quantile normalization for microarray and TMM normalization
for RNA-seq. To compare the phylotypic stages, developmental
stages were separated into three parts: early, middle and late stages
according to the morphology during developmental processes and
to previous studies (Cheng et al., 2015; Domazet-Lo�so and Tautz,
2010; Gerstein et al., 2014; Li et al., 2014; Quint et al., 2012). The
partition of developmental stages was listed in Supplementary
Tables S1–S6.

Fig. 1. Overview of the hourglass model and analysis work flow in this study. (A)

The graphical illustration of hourglass hypothesis and the results of network and

pathway analysis. Based on Raff’s hypothesis, there are more connections among

different biological modules in an organism during the mid-developmental stages.

The trajectories of network entropy calculated in our results has an anti-hourglass

pattern, indicating that the signal promiscuity reaches to the highest during the phy-

lotypic stages. This pattern not only supports Raff’s hypothesis but also suggests a

network reformation during the mid-developmental stages. In addition, the pathway

analysis reveals the degree of conservation for the activity of each biological path-

ways across different species. Together with our results in network stochasticity, we

proposed the systematic changes in network connection and pathway dynamics. (B)

Schematic view of analysis workflow. The gene expression data of each species is

analyzed with additional information. With the ranks by gene age (phylostrata), we

calculated transcriptomic age index (TAI) proposed by previous studies. Using a

gene-associated network, the network entropy was measured. With pathway gene

sets, we performed GSVA analysis for functional enrichment
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2.3 Transcriptome age index
The transcriptome age index (TAI) is the average of phylostrata
weighted by expression values (Cheng et al., 2015; Domazet-Lo�so
and Tautz, 2010; Xiang et al., 2011), defined as follows:

TAI ¼
Xn

i¼1

psiei=
Xn

i¼1

ei

where the psi and ei represent the phylostratum and the expression
value of gene i, respectively. Three different types of transformations
for the expression values (non-transformed, square root transformed
and log1p transformed) were considered in this study.

2.4 Pathway information and function association

network
The gene sets corresponding to different pathways and biological
processes were obtained from KEGG (Release 78.1). The pathway
association network was constructed by linking the reference path-
ways downloaded from KEGG. Each reference pathway was linked
to a set of orthologs, denoted as KO entries in the database. In the
network, each node is a pathway, and each edge represents highly
overlapped between two pathways connected. The overlap score
was determined by the Jaccard distance, and two nodes which over-
lap score falls in top 5% of all pairs of nodes were connected by
edge.

2.5 Gene association network
The gene association network of each species was downloaded from
STRING (version 10). To obtain high confidence interactions, we
filtered out the edges with scores lower than 0.7.

2.6 Network entropy analysis
The network entropy analysis was performed to obtain the entropy
of each gene in the gene association network by integrating expres-
sion profile. In this analysis, only the largest connected component
was used to perform the network entropy. The details of the analysis
were according to previous studies for calculation of network en-
tropy (Banerji et al., 2013; Teschendorff et al., 2014, 2015;
Teschendorff and Severini, 2010; West et al., 2012).

Given an expression profile of a sample, denoted as a column
vector, we acquired an expression matrix, which was symmetric and
positive.

e ¼

e1

e2

..

.

em

2
6664

3
7775;

E ¼

e2
1 e1e2 � � � e1ep

e2e1 e2
2 � � � e2ep

..

. ..
. . .

. ..
.

epe1 epe2 � � � e2
p

2
66664

3
77775 ¼ eiej½ � ¼ eeT;

Eij ¼ Eji ¼ eiej � 0:

The largest connected component of a gene association network
was presented as an adjacency matrix. Note that, the adjacency ma-
trix was a symmetric Boolean matrix,

A ¼

a11 a12 � � � a1p

a21 a22 � � � a2p

..

. ..
. . .

. ..
.

ap1 ap2 � � � app

2
66664

3
77775 ¼ aij½ �;

aij ¼ aji 2 0; 1f g:

The weighted matrix of an expression-weighted network could
thus be obtained as

W ¼ wij½ �; wij ¼ aij � eiej:

Normalizing the weighted matrix column-wise allowed us to ac-
quire the stochastic matrix,

P ¼ pij½ �; pij ¼ wij=
X

k
wkj; where 0 � pij � 1:

The stochastic matrix had following properties: if the conversion
exists, each entry will converge to a value, referred to as stationary
probability:

lim
n!1

Pn
ij ¼ pj; that is; lim

n!1
Pn ¼ p � 1T:

According to the definition of stochastic matrix, the vector of
one was the right eigenvector and the stationary vector was the left
eigenvector. We could then derive

pk ¼
X

j
pjPjk; that is; pT � P ¼ pT:

The local entropy rate reflected the randomness of route choos-
ing for each node

Si ¼ �
X
k2Ni

piklogpik:

Since nodes with higher degree contain more uncertainty of in-
formation flow than nodes with less degree, when comparing local
network entropy of different nodes, the local entropies are normal-
ized by their node degree:

S
�

i ¼ �
1

logki

X
k2Ni

piklogpik; where 0 � S
�

i � 1:

The global entropy rate involved the stationary distribution of
random walk in the network. The global network entropy is an aver-
age weighted sum of unnormalized local network entropy

SR ¼
X

i

piSi:

To compare the network entropy of different networks, the glo-
bal entropy rate is scaled using the maximum of global entropy rate.

SR
�
¼ SR=maxSR

To assume that all edges have equal probabilities of information
diffusion, the maximum of global entropy rate can be calculated as
follows:

pij ¼ aij=
X

k

akj;

where the transition matrix is constructed from adjacency matrix
only. The variations of the network entropy are calculated using
bootstrapping. To compare the patterns among all the bootstrapped
results, all entropy profiles along the developmental stages are
aligned by their mean.

2.7 Gene set variation analysis
For each stage of a species, a pathway activity score was assigned to
each pathway of a species. The details of the analysis were described
as previous study (Hänzelmann et al., 2013).

Given an expression data X, with n samples and p genes:

X ¼ xijf gp�n
¼ x1 � � � xn

� �
¼

xT
ð1Þ

..

.

xT
ðpÞ

2
664

3
775;

where xi 2 R
p; xðiÞ 2 R

n. Each row of expression values was first
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fitted with a Gaussian kernel for microarray data or Poisson kernel
for RNA-seq data, and the transformed matrix was denoted as Z,

Z ¼ zijf gp�n

Each column was then ranked normalized as

rij ¼ p=2� rankðzijÞ:

Suppose, we have m gene sets

C ¼ c1; . . . ; cmf g:

For each gene set, the KS-like random walk statistics was calcu-
lated as follows:

vjk lð Þ ¼
Pl

i¼1 rij
sIðg ið Þ 2 ckÞPp

i¼1 rij
sIðg ið Þ 2 ckÞ

�
Pl

i¼1 I g ið Þ 62 ck

� �
p� ck

;

where g ið Þ represented genes in the transcriptome data. Similar to
the strategy of GSEA, the maximum of a sequence is referred as the

enrichment score for a gene set.

ESmax
jk ¼ vjk arg max

l¼1���p
vjkðlÞ

� �

2.8 Time peak index
Time peak index was calculated as described by Olsen et al. (2010).
Suppose, we have a sequence of GSVA scores x, representing the
activities of a pathway throughout the developmental process (n

stages),

x ¼ x1 . . . xn

� �
;

and the profile was rescaled between range [0,1],

r ¼ rescale xð Þ:

The time peak index was calculated as follows:

ti�1 � ri�1 þ ti � ri þ tiþ1 � riþ1

ri�1 þ ri þ riþ1
if arg maxiðriÞ 2 ð1; n

�

ti � ri þ tiþ1 � riþ1 þ 0� rn

ri þ riþ1 þ rn
if arg maxiðriÞ ¼ 1

ti�1 � ri�1 þ ti � ri þ n� ri

ri�1 þ ri þ r1
if arg maxiðriÞ ¼ n :

8>>>>>><
>>>>>>:

2.9 Activity conservation score
The significance of GSVA score of each pathway was assessed using
permutation tests. For each sample, the genes were permutated 100

times and a distribution of GSVA scores for each pathway was
acquired by calculating scores from all permutated samples. The
one-tailed P-values of original scores were calculated and adjusted

for multiple testing. A pathway was determined to be significant if
its adjusted P-value is less than 2.5%. For each developmental stage,

a significant pathway was classified as active if it was within right
2.5% tail and repressed if it was within left 2.5% tail during the per-
mutation test.

To determine whether a pathway was active or repressed in early,
middle and late stages of each species, a pathway was classified as ac-

tive or repressed if more than half of the stages contained significant
scores. For each stage, a pathway was assigned one if it was active;

negative one if it was repressed; and zero if none of the above number
held. Each pathway was then assigned a conservation score by sum-
ming up the labels in the six species. An activity conservation score

ranged from negative six to six. A pathway was considered highly con-
served in its activity level if its conservation score was far apart from
zero and lowly conserved if the score was closed to zero.

2.10 Evolutionary conservation of developmental

stages
The evolutionary conservation of each developmental stage was esti-
mated following the method published previously (Li et al., 2020) to
avoid the problem of phylogenetic association during the pairwise
comparisons of developmental stages from multiple species (Dunn
et al., 2018). However, instead of using the expression values of
orthologs, we used pathway activity scores for calculating a distance
(expDist) of each combination of developmental stages from different
species. For each level of species comparison in the phylogenetic tree
(Supplementary Fig. S1), we calculated expDist of pathway activity
profiles for all possible stage combinations following the method pub-
lished in Li et al. (2020) and the stage combinations with the lowest
1% of expDist among the combinations were selected. The average
count of the selected stages for each species was then referred as the
Ptop score. Different thresholds of the expDist for Ptop calculation has
been tested and the global trend of the Ptop values are similar under
different thresholds and the signals are smoother across the develop-
ment process under less stringent conditions. To estimate the vari-
ation of Ptop values, we applied bootstrapping with 1000 iterations
during the expDist calculation to estimate the distribution of Ptop

score for each stage in each species. To reduce the computational
cost, one million random stage combinations were selected for calcu-
lation instead of evaluating the level of conservation for all possible
stage combinations during the estimation of evolutionary conserva-
tion in Opisthokonta and Eukaryota.

3 Results

3.1 Network entropy follows inverse hourglass pattern
To study the Raff’s hypothesis of the hourglass pattern formation
(Raff, 1996), we performed network analysis of sequential ontogen-
etic stages and compared the dynamics of network stochasticity
with the profile of transcriptional age index (TAI) in each species.
Transcriptomic data and phylostratigraphy information of six spe-
cies were collected from previous studies to repeat the TAI calcula-
tion (Supplementary Figs S1 and S2). Our TAI calculation has
shown that the hourglass patterns of TAI are observed in all species
except for C. elegans (Supplementary Fig. S3). The patterns of tran-
scriptomic age profile in most species are consistent with previous
studies (Cheng et al., 2015; Domazet-Lo�so and Tautz, 2010; Quint
et al., 2012). While the trajectories of TAI have waists around the
mid-developmental stages for A. thaliana, C. cinerea and M. muscu-
lus, the trajectories of C. elegans, D. melanogaster and D. rerio fluc-
tuate largely and do not have waists with the TAIs calculated using
different transformations of gene expression data (Liu and
Robinson-Rechavi, 2018). The TAI profiles of all six species were
collected and served as the template of the hourglass pattern when
comparing with the profiles of network stochasticity.

We found that the network entropy measured on weighted gene
association networks reveals an inverse hourglass pattern in most of
the species within this study (Fig. 2, Supplementary Fig. S4). The
network entropy begins rising in the early developmental stages and
reaches its highest point around the mid-developmental stages. The
network entropy then decreases after the middle of embryogenesis
and continues to decrease in the late developmental stages. Since the
network entropy of each developmental stage is defined by the sum
of Shannon entropy of each gene weighted by stationary probabil-
ities in a weighted gene association network, the relative changes of
network entropy represent the rewiring of the gene association net-
work. Therefore, this anti-correlation with the TAI trajectory in dif-
ferent species development not only supports Raff’s hypothesis but
also suggests a network reformation during mid-developmental
stages.

3.2 Cross-species comparisons using biological path-

way activities support the hourglass model
We then shifted our focus from network stochasticity to pathway
activities, attempting to dissect the dynamics of biological systems
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behind the anti-hourglass pattern of network entropy. We studied
the pathway activity kinetics by computing GSVA scores based on
the gene expression profile for each developmental stage (Fig. 2,
Supplementary Fig. S5).

Previous studies such as Levin et al. (2016) examined the similar-
ity of developmental processes using the expression values of ortho-
logs mapped from species across large evolutionary distances. We
assessed the comparative transcriptome analysis using the pathway
activity profiles instead of gene expression values, and the similarity
of different developmental stages is shown in Supplementary Figure
S6. The pattern of pathway correlation matrix between D. mela-
nogaster and C. elegans is similar to the matrix obtained from gene
expression data (Gerstein et al., 2014).

Although the mid-developmental stages seem to have higher cor-
relations in our pairwise species comparisons, Dunn et al. (2018)
has shown that the phylogenetic relationships among species may
violate the independent assumptions in cross-species comparison
tests of developmental stages, and thus, introduce unwanted bias
when applying simple pairwise comparisons of those stages. To
avoid this issue, we further estimated evolutionary conservation
(Ptop score, see Materials and Methods) of developmental stages
across different species based on pathway activity scores and their
phylogenetic relationship (Supplementary Fig. S1). As shown in
Figure 3, mid-developmental stages are more conserved than other
stages in A. thaliana and C. cinerea. However, we did not observe
hourglass-like conservation in C. elegans and D. melanogaster,
which have higher conservation signals at both early proliferation
and gastrulation stages. In D. rerio, the Bilateria signals are higher
during the mid-developmental and late-developmental stages. When
comparing with more species, most gastrulation and segmentation
stages show relatively higher Ptop scores than other stages. In M.
musculus, the mid-developmental stages are more evolutionary con-
served in Bilateria, and the peak widens and slightly shifts from or-
ganogenesis toward gastrulation in Opisthokonta and Eukaryota.
We also observed that the scores rise at the late development stage
before born in Bilateria and Opisthokonta. For species like A.

thaliana, C. cinerea, D. rerio and M. musculus, our results provide
another molecular support for the hourglass model from the per-
spective of biological pathway kinetics.

To further trace and compare growth trajectories in high-
dimensional space, the GSVA scores of each developmental time
point were projected to a lower dimension using PCA. By labeling
the stages on the projected data points, we observed circular pat-
terns in dimension reduction plots over sequential developmental
stages in species such as A. thaliana, C. cinerea, D. rerio and M.
musculus (Supplementary Fig. S7). In other species like C. elegans
and D. melanogaster, such circular patterns are not as obvious. For
example, the pattern of C. elegans development in the project space
is not as continuous as that of other species but appears to be more
discrete during the transition from embryo stages to larva stages and
the transition from larva stages to the adult stage.

3.3 The conserved pattern in pathway activity profiles

shows different pathways tend to activate in certain

phases of development across different species
Our results in cross-species comparisons show that different bio-
logical functions dominate the pathway activity profiles in different
stages (Fig. 2, Supplementary Fig. S5). Examining the pathway kin-
etics, we found that some pathways prefer to activate during the
early stages, mid-developmental stages or late stages. Based on these
observations, we compared one pathway to others within each on-
togeny process and summarized these relative orders by computing
the time peak index of each pathway.

We applied the time peak index method (Olsen et al., 2010) to
rank the biological pathways based on the time points where they
have higher activities. As shown in Supplementary Figure S8, many
pathways activated in early and middle stages were related to tran-
scription and translation, while most late activated pathways
belonged to nutrient utilization. This pattern seems to be conserved
across different species.

The results of the ranked time peak index reveal that different
species, even with large evolutionary distances, may have a similar
order of some pathways’ activation and repression. To perform
cross-species comparisons of such pathway activation orders under

Fig. 2. Changes of transcriptional age index, network entropy and pathway activ-

ities along the development of fish and mouse. The transcriptional age index (TAI),

network entropy (normalized SR/MaxSR) and pathway activities (GSVA score) cal-

culated for each developmental time point are aligned based on the developmental

stages. The pathways are sorted based on their time peak indices (Supplementary

Fig. S8). To acquire the pattern of pathway activation order, the categories of each

pathway are provided beside the activity matrices. (A, B) Alignment of transcrip-

tional age index and network entropy across the developmental stages of zebrafish

and mouse. (C, D) Heatmap of GSVA scores for each pathway in each developmen-

tal stage of zebrafish and mouse. The stages are grouped into three different devel-

opmental phases: Early, Middle and Late, based on previous studies (see Section 2)

Fig. 3. Evolutionarily conserved developmental stages from similarity of pathway

activity scores. Evolutionary conservation of developmental stages was estimated

across different levels based on the evolutionary tree of the six species included in

this study (Supplementary Fig. S1): (A) A. thaliana, (B) C. cinerea, (C) C. elegans,

(D) D. melanogaster, (E) D. rerio, and (F) M. musculus. The level of evolutionary

conservation for each stage is estimated by a percentage of the stage most (top 1%)

conserved stage-combinations (Ptop) (see Section 2). The distributions of Ptop score

for each stage were estimated using bootstrapping and the medians of the scores

were plotted across the developmental stages. The error bars represent the 25% and

75% quantiles of the estimated distribution for each stage
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the hourglass model, we defined the degree of evolutionary conser-
vation for each biological pathway using permutation tests.
Grouping each sequence of developmental stages into early, middle
and late ontogeny phases for every species (Supplementary Tables
S1–S6), we summarized the pathway activity results for all six spe-
cies across different Kingdoms. Each pathway in a given develop-
mental phase is assigned with an activity conservation score (ranged
from negative six to positive six), which represents how conserved a
pathway activity pattern is across species in our study. The sign of
scores indicates whether a pathway tends to be upregulated or
downregulated in a given phase. The scores are then visualized on
the pathway association network constructed based on KEGG refer-
ence pathways (Fig. 4).

The results of activity conservation scores show that during de-
velopment, genetic information pathways and related metabolic
pathways such as purine and pyrimidine metabolism tend to be
turned on in the early phase. The activity conservation scores of
those pathways are highest during mid-developmental stages and
drop in the late phase. The pattern observed is consistent with the
findings in previous studies (Cheng et al., 2015). Many metabolic
pathways, on the other hand, are downregulated in many species in

the early phase of ontogeny. Moreover, the number of upregulated
metabolic pathways related to nutrition processes rises during the
mid-developmental phase and becomes dominant in the late on-
togeny (Fig. 4).

4 Discussion

Evolutionary developmental biology has been widely investigated to
understand how the evolutionary process shapes morphology diver-
sity and species diversity. Previous studies in phylostratigraphy have
suggested the existence of an hourglass model from a molecular per-
spective (Cheng et al., 2015; Neme and Tautz, 2013; Quint et al.,
2012). In this study, we expand this finding by integrating the idea
of network entropy in our cross-species comparison of developmen-
tal processes. We further analyzed the kinetics of biological path-
ways to provide biological interpretations behind the systematical
changes during each ontogeny phase. Combining together the net-
work and pathway analysis, here we report how randomness in net-
work connectivity and activities of biological process change over
development. The integration of gene expression and other biologic-
al information allow us to avoid ortholog mapping across species
with long evolutionary distances and to perform cross-kingdom
functional analysis in comparative embryology. The major limita-
tions in this study are the number of the stages collected in our data-
set and the currently available annotations of gene interactions and
gene sets.

Our results from network analysis indicate that network entropy
increases before mid-developmental stages and drops after these
stages, exactly opposite to the trajectories of transcriptional age in-
dices. The anti-correlations between network stochasticity and tran-
scriptomic evolutionary age substantiated the Raff’s interconnection
hypothesis, stating that the high and complex connections during
mid-development stages might result in larger developmental con-
straints, leading to evolutionary conservation of those stages
(Fig. 1A). Furthermore, our results show that the pattern of net-
work entropy is more robust than TAI under different transform-
ation methods applied to gene expression values (Supplementary
Figs S3 and S4). Since the dynamic changes of network entropy have
been shown to indicate global changes of signaling flux and thus, to
reflect transitions of a system, we next calculated the pathway activ-
ities of each developmental stage.

In our study, we used the GSVA method to study the pathway
dynamics. Except for C. elegans and D. melanogaster, the
hourglass-like conservation pattern emerged as we included more
species in the stage comparisons of evolutionary conservation levels
based on pathway activity profiles. Our observation supports the
idea that such evolutionary tendency of phenotype conservation at
the mid-developmental stages are not only specific to the animal
kingdom. When comparing the kinetics of one pathway to another
within each developmental process, the time peak indices of all path-
way activities suggest that a common pattern in pathway dynamics
may exist across different species. To acquire the pathway activity
patterns across different species, each GSVA score is tested using the
permutation test and summarized in the early, middle and late
phases of development. With pathway dynamics, we were able to
compare developmental stages among different species from differ-
ent perspectives. The patterns found were further compared with
those from previous cross-species comparisons using gene expression
information (Gerstein et al., 2014; Levin et al., 2016).

Our results of pathway conservation scores supported the idea
mentioned in Cheng et al., 2015. Calculating the mean expressions
of the KEGG gene sets through each stage of development, the
authors stated that the information processing might play a pivotal
role in the waist of the hourglass model and the activities of meta-
bolic pathways would rise in the late phase of development.
However, a previous study has proposed that descriptive statistics
easily produce results biased to noise and variation of gene expres-
sion and hence may not be robust to the choice of data preprocessing
(Piasecka et al., 2013). To address this problem, we applied a func-
tional scoring method to compare different developmental time
points. Our study not only extends the idea in Cheng et al. (2015)

Fig. 4. (A) Functional association network of KEGG reference pathways and (B) ac-

tivity conservation scores of different pathways. The developmental stages were first

grouped into early, middle and late phases and then activity conservation scores of

pathways were calculated for common pathways for each phase. The absolute val-

ues of conservation scores (ranged from negative six to six) represented the degree

of the conservation in pathway activities among different species and the sign of

scores indicated whether a pathway tends to be activated or repressed during a de-

velopmental stage. The scores were visualized on the pathway association network

constructed based on KEGG reference pathways
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but also achieves a more detailed understanding of the pathway dy-
namics throughout development. By analyzing the conservation of
pathways’ activation and repression, we have captured a mosaic pat-
tern in the transition of metabolic pathways during mid-
developmental stages (Fig. 4).

However, some patterns we report in the pathway analysis differ
from those identified in the hourglass model (Irie and Kuratani,
2011). While the hourglass model suggests a diverging pattern dur-
ing the late ontogeny phase, a converging pattern is found in the
cross-species comparisons using pathway activity profiles, resulting
in a dual-phase pattern where higher correlations appeared in mid-
and very late-developmental stages (Supplementary Fig. S6). Our
results in ranked time peak index and pathway conservation score
further suggest that such high similarities at the very late ontogeny
phase are due to the domination of metabolic pathways in pathway
activity profiles (Fig. 4, Supplementary Fig. S8). Combining the
results of network and pathway analysis, we further hypothesize
that the drop of network entropy may result from the maturation of
an embryo, resulting in a major shift of pathway profiles from genet-
ic information processing into nutrition utilization (Fig. 4). It might
be worthwhile to directly address this relationship in future studies
to better understand the detailed connections between the systemati-
cal changes in the dynamics of network connectivity and those in
biological pathway activities. Furthermore, a more extensive taxon
sampling can help confirm the generality of network conservation in
cross-phyla or cross-kingdom comparisons.

5 Conclusion

In summary, we analyzed the developmental processes for different
species across different kingdoms and phyla using time-series tran-
scriptomes with their gene network structures and biological proc-
esses. The dynamic of network stochasticity suggests a network
reformation during phylotypic stages. The comparisons of pathway
activities further confirm the conservation of mid-developmental
stages across species with large evolutionary distances. Together
with the changes in network connectivity, our results in pathway
dynamics suggest that the genetic information processing may be
highly involved in the network reformation, and the nutrition me-
tabolism dominates after the network reformation.
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