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Abstract

Motivation: Knowledge of subcellular locations of proteins is of great significance for understanding their functions.
The multi-label proteins that simultaneously reside in or move between more than one subcellular structure usually
involve with complex cellular processes. Currently, the subcellular location annotations of proteins in most studies
and databases are descriptive terms, which fail to capture the protein amount or fractions across different locations.
This highly limits the understanding of complex spatial distribution and functional mechanism of multi-label pro-
teins. Thus, quantitatively analyzing the multiplex location patterns of proteins is an urgent and challenging task.
Results: In this study, we developed a deep-learning-based pattern unmixing pipeline for protein subcellular localiza-
tion (DULoc) to quantitatively estimate the fractions of proteins localizing in different subcellular compartments from
immunofluorescence images. This model used a deep convolutional neural network to construct feature representa-
tions, and combined multiple nonlinear decomposing algorithms as the pattern unmixing method. Our experimental
results showed that the DULoc can achieve over 0.93 correlation between estimated and true fractions on both real
and synthetic datasets. In addition, we applied the DULoc method on the images in the human protein atlas database
on a large scale, and showed that 70.52% of proteins can achieve consistent location orders with the database
annotations.

Availability and implementation: The datasets and code are available at: https://github.com/PRBioimages/DULoc.
Contact: yyxu@smu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction location, amount or fraction of proteins. Thus, pinpointing the sub-

Proteins are found in various subcellular compartments with specific
chemical environments, which can provide clues for their functions,
interactions and molecular mechanisms. Automated recognition of
protein subcellular location patterns has been an important part of
bioinformatics over the past decades (Rastogi and Rost, 2010; Thul
et al., 2017). As many proteins show highly complex location pat-
terns in human cells, the recognition task is still challenging. Over
half of human proteins reside in more than one subcellular structure.
These proteins are called multi-label proteins (Chou and Shen, 2010;
Simha et al., 2015; Stadler et al., 2013), and many of their transloca-
tions within cells involve with diseases, such as metabolic, cardiovas-
cular, neurodegenerative diseases and cancers (Hung and Link,
2011). These translocations refer to the change of subcellular

cellular locations and quantifying distribution fractions of these
multi-label proteins can significantly expand our knowledge of them
and help in disease diagnosis and treatments.

Compared with amino acid sequences, bioimages can intuitively
show protein spatial distribution and variation, and are suitable for
location analysis. Immunofluorescence (IF) microscopy imaging, as
a low-cost and high-efficiency biotechnology, has gained increasing
popularity in automated analysis of protein location patterns (Barbe
et al., 2008; Fagerberg et al., 2011). Currently, most of the studies
about protein subcellular localization are qualitative classification.
The methods mainly include traditional feature engineering (Boland
et al., 1998; Murphy et al., 2000) and deep learning (Kraus et al.,
2017; Long et al., 2020; Nanni ef al., 2019; Piarnamaa and Parts,
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2017), where the latter has achieved impressive performance in re-
cent years. For example, a convolutional neural network (CNN)
model called bestfitting, which was trained based on DenseNet
(Huang et al., 2017), got a macro F1 score of 0.593 over 28 subcel-
lular classes, and won the first prize in a worldwide competition of
protein localization classification (Ouyang et al., 2019).

To date, there are only a few works that tried to quantitatively
estimate the fractions of protein distribution in various subcellular
organelles. One reason is the lack of labeled data. The human pro-
tein atlas (HPA, https://proteinatlas.org) database stores tens of
thousands of IF images of human proteins, but the subcellular loca-
tion annotations for these images are descriptive terms without
quantitative information. For this problem, Murphy group gener-
ated a quantitatively labeled dataset of fluorescent images using mo-
lecular probes to control mitochondrial and lysosomal concentration
fractions (Peng et al., 2010). Based on this dataset, they developed
automated unmixing models to map the amount of fluorescence to
quantitative fractions (Coelho et al., 2010; Peng et al., 2010; Zhao
et al., 2005). The models used morphological and texture features to
describe fluorescent objects in images and clustered all the objects,
thus each image was represented by the object frequencies across the
clusters. Then the patterns of multi-label proteins were regarded as
linear mixtures of fundamental single-label patterns, and were
resolved by linear unmixing algorithms. Besides, Yang ez al. assumed
that the pattern unmixing was a nonlinear problem, and proposed to
use nonlinear regression method to unmix the protein patterns
(Yang et al., 2016). They employed a variable-weighted support vec-
tor machine (VW-SVM) model optimized by particle swarm opti-
mization, and demonstrated that nonlinear techniques could achieve
better performance in this task.

These works have provided useful strategies for protein quantita-
tive analysis, but there still exist some limitations. First, the protein
patterns were represented by only fluorescent object features in these
methods. Considering the remarkable representation power of
CNNs, more accurate descriptors should be adopted. Second, due to
the constraint of quantitatively labeled data, the unmixing was only
performed on two subcellular location classes, i.e. mitochondrion
and lysosome. The VW-SVM model could not be extended to other
classes because the training process requires lots of mixed data
labeled with fraction annotations. Therefore, it is necessary to de-
velop new models with high accuracy and better applicability for
protein subcellular location pattern unmixing.

In this study, we proposed a new deep-learning-based unmixing
method, called DULoc, to quantify the fractions of protein distribu-
tion in subcellular compartments. The DULoc has two core modules,
where the first one used the bestfitting network to construct a fea-
ture space for IF images, and the second utilized a combined nonlin-
ear approach to decompose the mixed patterns. The model did not
need large amount of quantitatively labeled data to train, and it was
tested effective on the real labeled dataset, a synthetic dataset and a
large-scale quantitative analysis of images in the HPA database.

2 Materials and methods

2.1 Datasets
There were two datasets used during the construction of our unmix-
ing models (Fig. 1).

2.1.1 Real dataset

The first dataset was the fluorescence image dataset constructed by
Murphy group (Peng et al., 2010). The dataset consisted of 64
groups of high-throughput microscopy images, where each group
was labeled with a specific mixture fraction of fluorophore-tagged
mitochondrial and lysosomal probes. The total number of images in
the real dataset is 2056, and each image has nucleus and protein
channels. The advantage of the real dataset is that the quantitative
annotations are true and reliable, while the limitation is that there
are only two labels assigned.

2.1.2  Synthetic dataset

As the fact that the real dataset only has two classes limits the gener-
alization of unmixing algorithms for multi-label proteins, we tried to
synthesize a new dataset with various mixed patterns. The steps of
the image synthesis process are shown in Figure 2. First, 1648 IF
images of the U-2 OS cell line that were annotated with one of five
major subcellular locations, i.e. cytosol, nucleoplasm, plasma mem-
brane, nucleoli and mitochondria, were selected from the HPA data-
base. Each image has four channels, i.e. protein (green), nucleus
(blue), ER (yellow) and microtubule (red). All of the images were
annotated with enhanced or supported reliability in the database
and can be regarded as pure fundamental patterns. Using cell masks
provided by the HPA database, the images were segmented into sin-
gle cells. Nucleus regions were also segmented by morphological
operations to outline contours of the nuclei. Then, the subsequent
processing for the segmented cells included rotating to make the
long axis of nuclei horizontally and padding. This was to facilitate
the matching of cells of different patterns. Pairs of regions that have
over 90% overlap in nucleus masks and over 75% overlap in cell
masks were selected to conduct cell mergence. The mergence
assumed that a mixed subcellular location pattern was approximate-
ly the weighted sum over fundamental patterns. The cells of mixed
patterns were generated with five concentration fractions, i.e. 0:1,
0.25:0.75, 0.5:0.5, 0.75:0.25 and 1:0 between two fundamental pat-
terns. In addition, considering that the difference of IF image inten-
sity between two images had impact on the protein quantitation, we
adjusted the gray levels of images in mixed regions into similar dis-
tribution by matching the peak value in their gray histograms and
scaling histograms. Finally, single-cell regions of the same mixed
concentration fraction pattern were tiled to synthesize new images.
The number of cells in each image was set to 9, as it is the average
number of cells in one IF image in HPA (Li et al., 2012). These syn-
thesized images would provide a supervised quantitative data source
to estimate the performance of pattern unmixing models.

2.2 Image representation by deep learning features

As the CNN model, bestfitting, has been demonstrated effective in
protein image classification and its learned features have the ability
to put multi-label proteins between clusters of single-location pro-
teins (Ouyang et al., 2019), we used the bestfitting model to encode
the subcellular location patterns in fluorescence images. The model
was built by retraining DenseNet121 (Huang et al., 2017) using over
109 000 IF images from 28 subcellular location classes, with the loss
function combining focal loss (Lin et al., 2017) and Lovasz loss
(Berman et al., 2018) to handle the class imbalance. To alleviate
overfitting, data augmentation was utilized in the bestfitting during
training and testing stage.

The input of the bestfitting model was 1024x1024 pixel IF
images having protein channel and reference channels (nucleus,
microtubules and ER). Because the images in the real dataset have
no microtubules and ER channels, we set these two reference chan-
nels as background with gray values of 13, which was the average of
those in HPA images. The output of bestfitting encoder were 1024-
dimensional features from the penultimate layer and 28-dimensional
features from the last layer, which were then used as image represen-
tations in pattern unmixing.

2.3 Pattern unmixing methods

In this work, it was assumed that a mixed pattern was an approxi-
mate linear combination of fundamental patterns, and also was
influenced by variation of cell morphology and fluorescent staining
(Zhao et al., 2005). Based on the deep features of protein patterns,
one linear and three nonlinear unmixing algorithms were used to
quantify the protein locations. Here, we supposed that the funda-
mental patterns were known, as they could be constructed by aver-
aging image representations of single-location proteins. All of the
unmixing algorithms utilized the fundamental patterns for solving
the fractions.
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Fig. 1. Flowchart of the experiments in this article. There are two sections, i.e. the construction of DULoc model and its application. In the first section, the fluorescence images
were processed by the deep learning module to extract subcellular pattern features. The fundamental patterns are the patterns of single-location proteins and the mixed patterns
are those of multi-label proteins. Each mixed pattern was decomposed by the pattern unmixing module to get fractions. The unmixing module was tested on a real and a syn-
thetic dataset, and the final DULoc was constructed according to their results. In the second section, the IF images with qualitative annotations from the HPA database were fed
into the DULoc to get the fractions of proteins across the annotated subcellular locations. Evaluation of the fractions was based on the fact that each of the annotated subcellu-
lar locations for one image was manually assigned as either main or additional in the HPA. If all of the fraction(s) of protein in main location(s) are higher than those of add-
itional location(s), the image would be regarded as a correct prediction. The consistency between the predicted fractions and the order of qualitative annotations was used as

the evaluation criterion of the large-scale application
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2.3.1 Linear unmixing

Under the linear assumption, a mixed pattern can be expressed as
products of a coefficient vector a=[o1, %2, ....,0y] and fundamental
patterns:

U
x:sz,,fp+e (1)
=

lefly = 1,2>0

where x € RK*! represents an image encoded by the bestfitting
model (K represents the number of features), f, (p=1,2, ..., U) rep-
resents the fundamental pattern of the pth subcellular location, a,
represents the proportion of pattern f, in the composition of the
mixture, U is defined as the total number of fundamental patterns in

the mixture, and e is the error term that releases the difference be-

tween the true value x and predicted value. The task of the problem

is to calculate the mixture coefficient vector a by minimizing the
U

error term ||e|? under the constraint Zocp =1 and non-negative

constrain Yoy, > 0. p=1

2.3.2 R-NNMF nonlinear model

Robust-Non-negative matrix factorization (R-NNMF) model is a
nonlinear unmixing model which was originally used in hyperspec-
tral unmixing application (Févotte and Dobigeon, 2015). Here we
used it to solve the problem of subcellular location pattern unmix-
ing. The R-NNMF model can be expressed as Equation 2:

U
xR~ Za,,fp +7r )
> 2)
llelly =1, >0
where 7 represents the nonlinear term of the models. Equation 2 can

also be shown as a non-negative matrix factorization problem for all
samples:

X~FA+R (3)

F>0,A>0,R>0
where A =[oy,%,...,an] represents the set of mixed fractions (N
represents the total number of samples), F =[f;,f,,...,fy] repre-
sents a set of fundamental patterns, and R =[ry,72,...,7N] includes

the nonlinear term of all the predicted samples. The optimization ex-
pression of the minimization problem can be denoted as Equation 4:

A" F",R" = arg[gnb_irllzD(X|FA+R) + 0|IR]], 4 (4)
where D(X|FA + R) represents the f-divergence (Févotte and Idier,

2011) between X and FA+R, and the divergence is defined as
Equation S:
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In addition, 6 is a non-negative hyperparameter to adjust the weight
between the divergence term and the sparse penalty term. Here, it
was set as 0.08. The sparse term of the model, ||R|, ;, was calculated
by Equation 6:

N
IRl = lIrill, (6)
i=1

To handle the minimization problem Equation 4 subject to the con-
straint of o, summed up to one, we initialized A* and R* based on
singular value decomposition (Boutsidis and Gallopoulos, 2008) and
F* based on fundamental patterns, and then updated them with
block coordinate descent strategy. The algorithm for updating R*
and F* is majorization-minimization, and for A" is a heuristic
scheme algorithm (Dobigeon and Févotte, 2013). After the optimiza-
tion, we used the S-divergence and the fundamental patterns F to ad-
just the order of coefficients in A* to match with the labels.

2.3.3 Multilinear mixture unmixing model

An alternative nonlinear mixing model is multilinear mixture (MLM)
model extending from bilinear model (Wei ez al., 2017). The formula
of multilinear mixing model can be simply expressed as Equation 7:

x=(1—2)Fa+ AFa’x +e
flelly = 1,2 >0 (7)
0<21<1

where ° denotes the Hadamard product, and 4 is a specific parameter
for each sample controlling the tradeoff between linearity and nonli-
nearity. The optimization problem of above formula can be
expressed as Equation 8:

N
A" F'I" = argmi 113 8
F argg};{;;ﬂe 12 (8)

The A, F and [ represent the coefficient matrix, base matrix and non-
linear parameter vector composing of all the 4, respectively. To solve
the optimization problem, block coordinate descent strategy (Beck
and Tetruashvili, 2013) with gradient projection algorithm is
adopted to update A, F and L. In the initialization of the three param-
eters, the nonlinearity vector [ was set as zero, A was set as a linear
unmixing result, and F was initialized with fundamental patterns.
The result of the optimization problem converged to a stationary
value with the error range below 1075,

2.3.4 K-nonlinear unmixing model
This model is a kernel-based method that maps data from the origin-
al input space into a high-dimensional feature space, and resolves
the linear problem in the new space (Chen et al., 2013). The formula
of the model can be represented as Equation 9:
{x:‘P(a,F)Jre )

flelly =1, 2> 0

The ¥ denotes a nonlinear function defining the relationship be-
tween fundamental patterns and the mixed pattern. To get the mixed
coefficient o, the nonlinear function ¥ was mapped into Hilbert
space denoted by V¥ to transform the nonlinear problem into a linear
problem. Thus, the minimizing function of Equation 9 is defined as
Equation 10:

1 1
W :ar%FinZ|\¢\|z+ﬂ‘|e|‘§ (10)

where l// = wlin + l//nlin with ‘//lin (b/) = aTb/ SubjeCt toej =x;j — l//(b/)
x; is the element of x, b; represents the row vector of base matrix F,
and the parameter u is used to control the tradeoff between regular-
ization and fitting.

The kernel trick mapping from ¥ to  utilizes a polynomial ker-
nel, which is defined as Equation 11:

K(bi,b;) = Kij+1usin = bi b; + (b by) (11)

Then, Lagrange function associated with Equation 10 was con-
structed and single iteration gradient projection algorithm (Rosen,
1961) was conducted to solve the problem for the mixture
coefficients.

3 Results

3.1 Comparison of object-based features and deep fea-

tures on the real dataset

As mentioned before, the previous works about protein quantitative
analysis, including the works of Murphy group and the VW-SVM
model, used only the features of fluorescence objects for image rep-
resentation. The object-based features mainly include morphological
and spatial features of objects, frequencies of different types of
objects in each image, and fluorescence intensity of objects (Yang
et al., 2016). We first investigated whether the features extracted by
the deep model, bestfitting, can achieve more accurate representa-
tion than the object-based features.

Here t-SNE (Maaten and Hinton, 2008) was used to visualize the
object-based features and bestfitting features of images in the real
dataset. As shown in Figure 3A, the two subcellular locations, i.e.
mitochondria (deep red points) and lysosomes (deep blue points),
can be clearly differentiated by the features from the three encoders,
while multi-label samples are found between the clusters of them.
With the increasing fraction of lysosomes and decreasing of mito-
chondria, the color of points changes from deep red to deep blue

CNN-penuItimaté

[ .
0 0.5 1
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( 1—Fraction of Mitochondria)

£a5

'-’."‘f'-i
CNN-last
B
( ) []Object-based [I CNN-penultimate [l CNN-last
= 1
]
S 0.015
% 0.9 m
8 08 R S
§ o7 0.005
o
£ 06 0
o SVR ANN SVR ANN

Fig. 3. Comparison of the object-based features and deep features. (A) t-SNE visual-
ization of object-based features and the bestfitting features from the penultimate
layer and last layer, respectively. Each dot represents one image. (B) Regression
results of using different feature sets on the real dataset
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(A) Synthetic images Table 1. Details of the datasets used in this study
: (with quantitative HPA images ; . ;
HPA images annotations) (no quamit%tive Dataset Subcellular location combination Number of images
aﬁHOTat'Qn) Real dataset Lysosomes and mitochondria 2056
0.75:0.25, Synthetic dataset Cytosol and nucleoplasm 187
Cytosol and plasma membrane 44
Nucleoli and nucleoplasm 23
0.5:0.5 - Mitochondria and nucleoplasm 91
—
0.25:0.75 Bl Linear R-NNMF MLM B K-nonlinear IlM+K HllR+M+K
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Fig. 4. Comparison of synthetic and real cell images. (A) Examples of synthetic and
real cells of the cytosol and nucleoplasm pattern. (B) t-SNE visualization

gradually. It seems that the feature points of mixtures from the deep
learning model are more evenly distributed in the feature space than
the object features, which reveals that the deep learning features
might be a more effective quantitative descriptor for mixed patterns.

Then we fed each of the three feature sets into a support vector
regression (SVR) (Smola and Scholkopf, 2004) and an artificial neur-
al network (ANN) (Wang, 2003) model, respectively, and used 5-
fold cross validation on the real dataset to assess the features.
Correlation coefficients and mean-square errors (MSE) were calcu-
lated to represent the model performance (Fig. 3B). Detailed results
on images with different fraction patterns were shown in
Supplementary Figure S1. It can be seen that the deep learning fea-
tures show better regression performance than the object features.
This indicated that the features extracted by the bestfitting model
contain more accurate and abundant subcellular localization infor-
mation compared with the object-based features, which might help
to improve quantitative analysis of subcellular location patterns.
The regression results of the penultimate layer features had 0.9576
correlation coefficient with the ground truth, which was slightly
higher than that of the last layer features.

Although the SVR and ANN models can achieve promising
unmixing performance, they are supervised methods that need
labeled data in the model construction. In fact, the subcellular loca-
tions of proteins are various and mostly have no quantitative anno-
tations, so this study attempted to unmix the multi-label patterns
without training supervised models.

3.2 Comparison of synthetic and real images

Synthetic dataset was constructed to enable more comprehensive
evaluation of the unmixing methods (Table 1). The four subcellular
location combinations in the synthetic dataset were selected through

CNN-penultimate  CNN-last
Real dataset

CNN-penultimate  CNN-last
Synthetic dataset

Fig. 5. Results of different pattern unmixing methods. M + K represents the ensem-
ble of MLM and K-nonlinear unmixing, and R + M+K represents the ensemble of
all the three nonlinear unmixing methods

investigating the number of proteins belonging to each location, as
well as the occurring frequency of multi-label patterns in the HPA
database.

Figure 4 shows some examples of synthetic cells showing differ-
ent protein fractions in cytosol and nucleoplasm, and example
images of other three label combinations could be seen in
Supplementary Figure S2. It can be seen that the protein (green)
regions in the cells was visually similar with real cells labeled with
cytosol and nucleoplasm in the HPA. Furthermore, we used t-SNE
to visualize the real cells without quantitative annotation and the
synthetic cells. Here, the real cells were derived from the images of
U-2 OS cell line in the HPA, where they were annotated with cytosol
and nucleoplasm subcellular location with enhanced or supported
reliability score. Then, the real and synthetic cell images were
padded and fed into the bestfitting model, and the penultimate layer
features were used to conduct the visualization. It can be seen that
the real and synthetic cells were mixed together, and the deep fea-
tures can distinguish synthetic cells with different pattern fractions.
This implied that our synthesis method can generate cell images very
close to the real ones, and the synthetic images could be effectively
used in test of unmixing methods.

3.3 Performance of the unmixing methods
We compared the performance of the linear and nonlinear unmixing
methods based on both the real dataset and the synthetic dataset.
Each method was repeated ten times, and the mean correlation
coefficients and ranges were shown in Figure 5, while MSEs
and performance on different fraction patterns can be seen in
Supplementary Figures S3 and S4. The K-nonlinear method achieved
the best and most stable performance compared with other nonlin-
ear methods, and had quite similar performance with the linear de-
composition in this task. At the same time, we found that the linear
unmixing method was prone to misclassify multi-label proteins as
single locations, which means that the fractions of the dominant pat-
terns are likely to be predicted as 1 and the other are predicted as 0.
Specifically, among the multi-label images in the real dataset, over
10% are misclassified as single-label ones by the linear method,
while the misclassification ratios of nonlinear methods are below
2% (Supplementary Table S1). Overall, the K-nonlinear method was
more sensitive and accurate in detecting and unmixing the multi-
label patterns.

In addition, it can be observed that the features from the penulti-
mate layer of the bestfitting network slightly outperformed these
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Table 2. Comparison of the performance between the linear unmixing method and DULoc in the large-scale prediction for the HPA images

Cell line Number of labels Number of images Ratio of correct predictions Ratio of correct predictions
(linear method) (DULoc method)
U-2 OS Double 632 71.68% 81.96%
Triple 271 49.08% 52.40%
Quadruple 32 28.13% 37.50%
A-431 Double 471 71.97% 81.32%
Triple 227 56.83% 58.15%
Quadruple 25 24.00% 28.00%
U-251 MG Double 275 65.46% 72.73%
Triple 153 51.63% 52.94%
Quadruple 14 35.71% 42.86%
In total 2100 63.48% 70.52%

from the last layer. But in terms of the time spending on decompos-
ing, the work using penultimate layer features was much more time-
consuming (Supplementary Table S2). For example, the averaged
computing time of K-nonlinear algorithm using the penultimate
layer features was over one thousand times longer than that using
the last layer features.

3.4 Construction of DULoc model

To build a final efficient solution of pattern unmixing, we combined
the models by weighted sum of their results. Since all the three non-
linear algorithms have linear terms, we only integrated the nonlinear
methods (Fig. 5). The weights were obtained by grid search.
Twofold cross validation was performed on the real and synthetic
dataset, respectively. Half of the data was used to grid search the
best weight parameters, which were then used on the other half to
get the unmixing results. The data partition was repeated for ten
times, and the averaged correlation coefficients (Fig. 5) and MSEs
(Supplementary Fig. S3) were shown. The ensemble models brought
slightly improvements on the prediction. The learned weights on the
K-nonlinear were much higher than those of other models, indicat-
ing that the K-nonlinear dominated the results. Besides, the ensemble
models improved the stability and robustness of the prediction. The
misclassification ratios of assigning the single label to multi-label
images were decreased to 0 (Supplementary Table S1). In consider-
ation of both accuracy and time spending, the final DULoc model
were constructed by combining results of K-nonlinear with weight
of 0.7556 and MLM with weight of 0.2444, and the features used in
the decomposing were from the last layer of bestfitting model. Given
an IF image of one protein and its qualitative subcellular locations,
the built DULoc model could use constructed fundamental patterns
to estimate fractions of the protein across the locations.

The DULoc was compared with a previous non-training pattern
unmixing method proposed by Murphy group (Peng et al., 2010).
On the real dataset, the predicted fractions of that model have 0.83
of correlation coefficient and 0.055 of MSE with the ground truth,
while our DULoc can achieve over 0.93 of correlation coefficient
and 0.017 of MSE. This indicated that using deep features and com-
bining multiple unmixing algorithms can lead to a promising result
in the quantitative subcellular location prediction.

3.5 Large-scale pattern unmixing for images in the HPA

To further validate the ability of our method in estimating protein
amounts, we applied the DULoc on the IF images annotated with
‘main location(s)’ and ‘additional location(s)’ in the HPA database.
The database marked each of the subcellular locations annotated to
one protein as main or additional according to the protein staining
intensity. For example, protein RPL9 was annotated as localized to
endoplasmic reticulum, cytosol and nucleoli, in which the former
two are main locations and the last is an additional location for this
protein. These annotations allowed us to assess our model. Here, a
subset of representative IF images of proteins from the HPA Cell
Atlas (HPA v20) were used. These images were annotated with both

main and additional locations, and the reliability scores of these
annotations were enhanced or supported. The images were from
three cell lines, i.e. U-2 OS, A-431 and U-251 MG, which have the
most abundant images of stained proteins. To exclude the effect of
single-cell level expression, the images with description of single-cell
variations or cell cycle-dependent variations were removed. Thus,
2100 images having main and additional locations were employed
as test samples in this application. When performing the DULoc
unmixing, fundamental pattern representations were generated by
deriving single-location proteins from the HPA and averaging the
bestfitting features.

For one protein, it was assumed that its fraction(s) in main loca-
tion(s) was/were higher than those in additional location(s). So, the
image samples whose lowest fraction for main location(s) was higher
than the highest fraction for additional location(s) were regarded as
being predicted correctly. If only one of the locations was predicted
as 1 and all the other locations was predicted as 0, it means that the
sample was misclassified as single-locational, and the case would be
regarded as a wrong prediction. The consistency between the model
predictions and HPA annotation orders was defined as ratio of
images that had correct predictions.

It is noted that our method can handle with images having over
two subcellular locations. Table 2 lists the consistency results of
applying DULoc and linear method on the test images of the three
cell lines. Both of the methods used the bestfitting last layer features.
The results showed performance of the DULoc was better than the
linear unmixing, as the overall consistencies of DULoc results for U-
2 OS, A-431 and U-251 MG were 71.87%, 72.20% and 64.93%,
respectively, while the results of linear method were 63.64%,
65.56% and 59.73%, respectively. What is more, it is the same trend
for all the cell lines that the more locations the model unmixing, the
lower consistency it shows. This assessment by using the annotations
in the HPA can be considered as a reference to prove the predictive
ability of our model.

In addition, we also investigated the performance of DULoc
when using the features of the penultimate layer as image representa-
tions (Supplementary Table S3). The ratio of correctly predicted
images was 69.05%, slightly lower than the DULoc using last layer
features. This indicated that using the last layer features could
achieve good results with low time cost in the large-scale validation
experiment.

4 Conclusions

In this study, we proposed a DULoc for quantitative analysis of
multiplex protein subcellular localizing patterns. The DULoc model
used a pre-trained convolutional neural network to extract protein
patterns, and combined two nonlinear methods for pattern unmix-
ing. Given an IF image with known subcellular locations, the model
can estimate the fractions of the protein in these locations. The per-
formance of DULoc achieved 0.93 of correlation coefficient on the
real dataset, which outperformed existing models. Moreover, on the
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synthetic dataset having multiple patterns of subcellular location
combinations, this model can also achieve high correlation coeffi-
cient with ground truth. Besides, the application of DULoc on the
large-scale quantitative prediction of images in the HPA database
demonstrated that our approach can achieve better performance
than the linear unmixing, indicating its utility in practice.

In future works, we intend to further enhance the accuracy and
robustness of the unmixing model, especially the performance on
complex subcellular location patterns. In addition, for increasing the
image data with reliable quantitative annotations, deep generative
models would be applied to create IF cell images with exact quanti-
tative labels. Finally, current protein locations are assigned for all
cells together in one image, but there exists single-cell heterogeneity
in subcellular pattern, so developing models capable of segmenting
and labeling each individual cell with precise quantitative subcellular
distribution would be an important direction.
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