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Abstract

Summary: Non-coding RNAs are often neglected during genome annotation due to their difficulty of detection rela-
tive to protein coding genes. FindNonCoding takes a pattern mining approach to capture the essential sequence
motifs and hairpin loops representing a non-coding RNA family and quickly identify matches in genomes.
FindNonCoding was designed for ease of use and accurately finds non-coding RNAs with a low false discovery rate.

Availability and implementation: FindNonCoding is implemented within the DECIPHER package (v2.19.3) for R (v4.1)
available from Bioconductor. Pre-trained models of common non-coding RNA families are included for bacteria, ar-
chaea and eukarya.

Contact: eswright@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Non-coding RNAs play central roles in the information flow from
DNA to protein and many other cellular processes (Fremin and Bhatt,
2021). While it is common to analyze the protein content of a genome,
non-coding RNAs are often ignored in bioinformatic analyses. This is
partly because it remains challenging to annotate the wide variety of
non-coding RNAs relative to the ease with which proteins can be anno-
tated. Protein coding genes are readily identifiable by their distinct com-
position and the start/stop codons delimiting their boundaries. In
contrast, non-coding RNAs are difficult to identify ab initio because
their distinguishing characteristics—elevated GC-content and density of
folding—are common throughout the genome. Therefore, detection of
non-coding RNAs often requires prior knowledge of their sequence,
complicating their identification. Simple software for identifying known
non-coding RNAs would facilitate their analysis and inclusion in bio-
informatic pipelines.

Many of the existing tools to identify non-coding RNAs are
family-specific. For example, there are methods designed to detect
only transfer RNAs (tRNAs), such as tRNAscan-SE (Lowe and
Eddy, 1997). Analogous tools exist for many other families of RNAs
that leverage specific features of the non-coding RNA for detection
(Stadler, 2014). General purpose tools based on searches for se-
quence homology have low sensitivity because non-coding RNA
families are often highly divergent (Freyhult et al., 2007). High ac-
curacy approaches, such as Infernal (Nawrocki and Eddy, 2013),
apply models of covariation that search for a combination of se-
quence and structure consensus. Since these models tend to be diffi-
cult to apply, user-friendly packages have been developed to
facilitate their adoption [e.g. StructRNAfinder (Arias-Carrasco

et al., 2018)]. Nevertheless, ease of use remains a major impediment
to the routine annotation of non-coding RNAs in genomes, partly
because existing tools lack the simplicity of protein coding gene call-
ers where annotation is often a one step process.

Here, I set out to take an alternative approach to the annotation
of non-coding RNAs that was designed specifically for ease of use.
The method begins with a sequence alignment and learns a compact
representation of sequence and structure patterns specific to the
RNA family. Multiple families are combined into a single object that
allows for the rapid and accurate detection of many non-coding
RNAs in genomes. Care was taken to avoid complex training proce-
dures or poor scalability for long RNAs. Using a new validation ap-
proach, I show the merits of FindNonCoding for the quick and
practical annotation of common non-coding RNAs.

2 Materials and methods

The training process begins with a multiple alignment of sequences
belonging to a non-coding RNA family (Fig. 1A). The
LearnNonCoding function automatically extracts four features:
(i) sequence motifs in the form of a position weight matrix, (ii) con-
served hairpin loops and pseudoknots in the consensus secondary
structure predicted by DECIPHER (Wright, 2020), (iii) a k-mer
usage profile and (iv) the distribution of sequence lengths. These sig-
nals are used to construct a log-odds model of the sequences, where
the score is obtained by summing the log-odds of features represent-
ing the RNA family relative to a background of random nucleotides
(see Supplementary Methods for a complete description). Matches
to sequence motifs and hairpin loops are separated into multiple
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bins based on their score or predicted free energy of pairing (Yilmaz
et al., 2012), respectively. Patterns are ranked by their log-odds
scores, and up to 20 (by default) are selected for the model. A collec-
tion of models can then be given along with a genome sequence to
the FindNonCoding function, which returns any hits and their asso-
ciated scores (Fig. 1A).

Previous attempts to benchmark tools for identifying non-coding
RNAs have relied on embedding distant homologs in a background of
random DNA representing a genome (Nawrocki, 2014). To quantify ac-
curacy in a more realistic fashion, 2774 NCBI Refseq representative
genomes were searched for a set of RNA families conserved among bac-
teria. RNA families were chosen that were found by Rfam (Kalvari
et al., 2018) (via Infernal) in more than half the genomes belonging to at
least 10% of bacterial phyla. Up to 1000 representatives of each family
were obtained from Rfam and aligned with DECIPHER (Wright,
2020). Hits to each non-coding RNA family were classified as false posi-
tives if they substantially overlapped (>50% of RNA sites) with pre-
dicted open reading frames or true positives if they did not (<10%).
Since this approach only provides information about true and false posi-
tives, Infernal’s predictions were used to identify false negatives absent
from FindNonCoding’s predictions under the assumption that Infernal
had a 0% false-positive rate. To this end, covariance models for each
non-coding RNA family were downloaded from Rfam and combined
with cmpress. Genomes were searched for matches using the cmscan
command with non-default parameters ‘–cpu 1 -oskip –fmt 2 –tblout –
notrunc’. Per the developer’s suggestion, I subset hits to those spanning
90% of the model’s length (CLEN), rather than using the ‘-g’ parameter,
to obtain global hits for equivalence with FindNonCoding.

3 Results

FindNonCoding is conceptually different from other non-coding
RNA detection tools in that it searches for patterns relative to the
ends of the non-coding RNA rather than searching for the entire

sequence or structure. Since the number of patterns is fixed,

FindNonCoding scales independently of query sequence length,

making it amenable to the quick detection of longer RNAs such as

ribosomal RNA genes. This approach also facilitates the handling
of large insertions and deletions within the non-coding RNA, so

long as conserved patterns remain uninterrupted. FindNonCoding

takes about one second to detect each RNA family (query) per
million base pairs searched (Supplementary Fig. S1).

FindNonCoding was able to detect almost all non-coding RNAs

embedded in random sequence when the training set did not con-

tain any sequences within 40% sequence identity of a test se-
quence (Supplementary Fig. S2). This benchmarking approach is

similar to that used by most previous analyses of non-coding

RNA detection programs but lacks realism because genomic se-

quence is non-random.
Bacterial genomes are around 90% protein coding and gene

calling is relatively high accuracy (Korandla et al., 2020), which

permits the quantification of true and false positives under the as-

sumption that most non-coding RNAs should fall largely within
intergenic spaces between protein coding genes. Figure 1B

shows the breakdown of non-coding RNAs found by

FindNonCoding across genomes spanning bacterial phyla in

Refseq. FindNonCoding correctly detected non-coding RNAs
across most genomes, with a false discovery rate far less than one

per genome on average. The ubiquitous non-coding RNAs, such as

tRNAs, ribosomal RNAs, transfer-messenger RNA (tmRNA),

RNase P and the signal recognition particle, were identified in al-
most every bacterial group. The main exception being the tmRNA

of Alphaproteobacteria, which is two-piece and has its own Rfam

family (RF01849). The false-negative rate, i.e. non-coding RNAs
identified by Infernal but not by FindNonCoding, was generally

low with the exception of some families with scores near the

threshold of detection (Supplementary Fig. S3). Notably,

FindNonCoding identified some RNAs that were not found by
Infernal and did not overlap protein coding genes (Supplementary

Fig. S4), suggesting Infernal occasionally misses some non-coding

RNAs or FindNonCoding misclassifies some non-coding RNAs as

belonging to the wrong RNA family.
FindNonCoding works well to annotate non-coding RNAs in

practice, and has several attributes that make it straightforward to

use. First, a secondary structure annotation is not required with the

input multiple sequence alignment, although LearnNonCoding is
dependent on alignment quality and sequence diversity to correctly

predict conserved secondary structure (Wright, 2020). To further

simplify use, pre-trained models are provided based on alignments

of common non-coding RNAs belonging to archaea, bacteria and
eukarya. Second, FindNonCoding selects the top scoring model in

each region when there are multiple hits. This facilitates greater

resolution when multiple models are expected to match the same

region, although it is also possible to obtain all hits by allowing
overlaps. Third, the use of LearnNonCoding and FindNonCoding

is well documented and requires few commands, making the soft-

ware relatively user-friendly. A direct comparison of default out-
puts from StructRNAfinder with an E-value cutoff � 1e-4 are

shown in Supplementary Table S1 for the genome of the bacterium

Chlamydia trachomatis (NC_000117). FindNonCoding provides

information on cognate amino acids for tRNAs, does not report
any hits to eukaryotic Rfam families, and avoids multiple hits of

related RNA families (e.g. rRNAs) matching the same region. It is

anticipated that these features will facilitate non-coding RNA gen-

ome annotation with FindNonCoding.
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Fig. 1. Application of FindNonCoding to detect non-coding RNA families. (A) The

process begins by training a set of NonCoding models using LearnNonCoding or loading

the pre-built models that come with the program. Each model contains a compact

description of features characteristic of sequences belonging to a family. Models are then

provided with a genome to FindNonCoding, which returns the location and score of any

hits. (B) The distribution of true and false positives among bacteria for common non-cod-

ing RNA families. Non-coding RNAs were correctly identified within the intergenic space,

with relatively few false positives substantially overlapping with protein coding genes.

Ubiquitous non-coding RNAs were identified in an average of one or more copies among

almost all genomes with few false negatives found by Infernal but not FindNonCoding.

Only phyla with at least 10 representative genomes are shown
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Data availability

The data underlying this article are publicly available in Rfam at
http://rfam.xfam.org and RefSeq at https://www.ncbi.nlm.nih.gov/
refseq/.
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