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Abstract

Summary: Large-scale pre-trained language models (PLMs) have advanced state-of-the-art (SOTA) performance on vari-
ous biomedical text mining tasks. The power of such PLMs can be combined with the advantages of deep generative mod-
els. These are examples of these combinations. However, they are trained only on general domain text, and biomedical
models are still missing. In this work, we describe BioVAE, the first large-scale pre-trained latent variable language model
for the biomedical domain, which uses the OPTIMUS framework to train on large volumes of biomedical text. The model
shows SOTA performance on several biomedical text mining tasks when compared to existing publicly available biomed-
ical PLMs. In addition, our model can generate more accurate biomedical sentences than the original OPTIMUS output.

Availability and implementation: Our source code and pre-trained models are freely available: https://github.com/ais
tairc/BioVAE.

Contact: long.trieu@aist.go.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Large-scale pre-trained language models (PLMs) (Beltagy et al.,
2019; Lee et al., 2020) have shown state-of-the-art (SOTA) perform-
ance on various biomedical text mining tasks. These models provide
contextualized representations, learned from large volumes of bio-
medical text, which then can be easily applied to achieve SOTA on
downstream tasks such as named entity recognition (NER), relation
extraction (REL) and question answering (QA) (Kim et al., 2019;
Lin et al., 2019; Nentidis et al., 2019).

Combining such large-scale PLMs to train latent variables based on
deep generative models (DGMs) has been shown to improve representa-
tion learning tasks (Bowman et al., 2016; Li et al., 2020). A recent
framework called OPTIMUS, has successfully combined BERT-based
PLMs (Devlin et al., 2019) and GPT-2 (Radford et al., 2019) with vari-
ational autoencoders (VAEs) (Kingma et al., 2013) (a powerful model
of DGMs), achieving SOTA in both representation learning and lan-
guage generation tasks when trained on two million Wikipedia senten-
ces. However, the data distributions between general and biomedical
domain are different, which makes it challenging to apply these models
directly to biomedical text mining tasks (Lee et al., 2020). In addition,
training such large-scale models on a massive amount of biomedical text
is costly (Supplementary Appendix SF).

To leverage the advantages of VAE-based PLMs for biomedical text

mining, we release BioVAE, the first large-scale pre-trained latent vari-
able language model for biomedical texts. The model is trained using the

OPTIMUS framework on 34 million sentences from PubMed articles.

We evaluate our BioVAE model on downstream text mining tasks, i.e.

NER, REL and QA, and achieve SOTA on most of the tasks when com-
pared with previous powerful biomedical PLMs, i.e. BioBERT (Lee

et al., 2020), SciBERT (Beltagy et al., 2019) and PubMedBERT (Gu

et al., 2020). For language generation, BioVAE generates more accurate
biomedical sentences than the original OPTIMUS output.

2 Approach

OPTIMUS: The OPTIMUS framework (Li et al., 2020) is a large-

scale VAE-based language model. VAE defines a joint distribution of

observed inputs x and latent variables z with unknown prior distri-
butions p(z). The objective is to maximize the Evidence Lower
Bound (ELBO):

log phðxÞ � Eq/ðzjxÞ½log phðxjzÞ� � KLðq/ðzjxÞjjðpðzÞÞ; (1)

where phðxjzÞ is known as decoder, and q/ðzjxÞ is known as encoder.
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BioVAE: We used the OPTIMUS framework with the same con-
figurations to train a large-scale VAE language model on biomedical
data. We initialize the encoder with the biomedical pre-trained
SciBERT (Beltagy et al., 2019) and the decoder with the pre-trained
GPT-2 (Radford et al., 2019). We illustrate our model in
Supplementary Appendix SA.

Corpus: We train BioVAE on the latest biomedical abstracts
from the PubMed 2021 Baseline (https://ftp.ncbi.nlm.nih.gov/
pubmed/baseline/). Our data contain 34M sentences (3.35M
abstracts).

Settings: We follow the same settings used in OPTIMUS. We set
the latent size as 32 and 768, and beta as 0.0 and 0.5. For training
on large batch sizes, we used the LAMB optimizer (You et al.,
2020). We used 128 GPUs from the AI Bridging Cloud
Infrastructure (ABCI https://abci.ai/), which take 3 days to train
34M sentences for one epoch.

3 Results

Tasks: The pre-trained BioVAE model is evaluated on three NER
tasks, i.e. BC5CDR (Li et al., 2016), JNLPBA (Kim et al., 2004) and
NCBI-disease (Do�gan et al., 2014); a REL task, i.e. ChemProt
(Kringelum et al., 2016); and a QA task, i.e. BioASQ (Nentidis
et al., 2019). We follow the same evaluation settings used in Lee
et al. (2020) and Beltagy et al. (2019).

Fine-tuning: We follow the same settings used in our baseline
SciBERT model (Beltagy et al., 2019). The final BERT vectors from
the encoder of our pre-trained BioVAE model are fed into a classifi-
cation layer. The pre-trained model is fine-tuned for 2–5 epochs
with a batch size of 32 and a learning rate of 2e-5, similarly to
SciBERT’s tuning parameters. For QA, we follow the BioBERT set-
tings and evaluation scripts.

Results: Table 1 compares our BioVAE with biomedical pre-
trained SciBERT (Beltagy et al., 2019), BioBERT (Lee et al., 2020)
and PubMedBERT (Gu et al., 2020) models on the NER, REL and
QA tasks. Our baseline is the SciBERT since we use this model to
initialize the encoder. BioVAE outperforms the SciBERT on all
tasks, i.e. þ0.54 F1 (JNLPBA), þ0.17 F1 (BC5CDR), þ1.55 F1 (for
NCBI-disease) and þ0.85 F1 (for ChemProt); and þ3.57 accuracy
(for QA) compared with BioBERT. BioVAE scores are lower than

PubMedBERT in REL and QA, but better in NER tasks, and we dis-
cuss the reasons in more details in Supplementary Appendix SC.

Text generation: Given an input sequence, our model can recon-
struct the input sequence. We compare sentences that have been
reconstructed by both our BioVAE and OPTIMUS models in
Table 2. The table shows that sentences generated by BioVAE are
more accurate than the original OPTIMUS output. Further samples
are presented in Supplementary Appendix SB.

4 Conclusion

We have described BioVAE, the first large-scale pre-trained latent
variable language model for the biomedical domain. The model is
trained using the OPTIMUS framework on large volumes of biomed-
ical text. We achieve SOTA when evaluating the model on text min-
ing tasks such as NER, REL and QA. Our results provide strong
evidence that it will be possible to apply the BioVAE model to fur-
ther biomedical tasks in the future.
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ried out on gastric cancer cell lines and

xenografts
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