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Abstract

Motivation: Liquid-chromatography mass-spectrometry (LC-MS) is the established standard for analyzing the prote-
ome in biological samples by identification and quantification of thousands of proteins. Machine learning (ML) prom-
ises to considerably improve the analysis of the resulting data, however, there is yet to be any tool that mediates the
path from raw data to modern ML applications. More specifically, ML applications are currently hampered by three
major limitations: (i) absence of balanced training data with large sample size; (ii) unclear definition of sufficiently
information-rich data representations for e.g. peptide identification; (iii) lack of benchmarking of ML methods on spe-
cific LC-MS problems.

Results: We created the MS2Al pipeline that automates the process of gathering vast quantities of MS data for large-
scale ML applications. The software retrieves raw data from either in-house sources or from the proteomics identifi-
cations database, PRIDE. Subsequently, the raw data are stored in a standardized format amenable for ML, encom-
passing MS1/MS2 spectra and peptide identifications. This tool bridges the gap between MS and Al, and to this ef-
fect we also present an ML application in the form of a convolutional neural network for the identification of oxidized
peptides.

Availability and implementation: An open-source implementation of the software can be found at https://gitlab.com/
roettgerlab/ms2ai

Contact: veits@bmb.sdu.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

technically relevant information. Advanced ML methods like
deep learning models have shown great potential to predict pep-
tide features of different charge states, as well as estimate their

1 Introduction
Liquid-chromatography mass-spectrometry (LC-MS) is the lead-

ing technique to measure the cellular proteome. LC-MS is rou-
tinely performed as tandem-MS, as this procedure allows in-
depth identification of the proteome, and delivers information
such as sequence and posttranslational modifications based on a
database search of the secondary mass spectra (MS2; Behrmann
et al., 2018). When analyzing tandem-MS data, the full informa-
tion of primary peptide mass spectra (MS1) and MS2 is mostly
simplified, and no current pipeline converts the full wealth of
data into a format amenable for machine learning (ML). In add-
ition, the plethora of publicly available MS data is a mostly un-
tapped resource for advanced ML techniques. It is thus desirable
to establish a connection between available LC-MS data and ML
applications in order to unravel any latent but biologically or

intensity (Cox and Mann, 2008), tumor classification using imag-
ing MS (Hulstaert et al., 2020) and peptide MS2 spectra predic-
tion (Sinitcyn et al., 2018).

To address the issue of data connectivity, we created MS2AI, a pipe-
line ensuring that advanced ML techniques are applicable to large-scale
MS data. This is done by standardizing heterogeneous data resources
for reliable repurposing, and further enrichment with experimental and
peptide-centric metadata. MS2ATI solves the fundamental challenges of
ML in MS, suffering from the lack of convenient acquisition of large-
scale training and test data. MS2AI automatically extracts compatible
entries (analyzed with MaxQuant) from the largest public repository of
LC-MS data, PRIDE (Vizcaino et al., 2016), and stores these in a homo-
geneous and ML ready standardized format.
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2 Materials and methods

2.1 Automated data retrieval

MS2AI fetches metadata from all ~12 000 PRIDE projects using the
PRIDE API and stores it in a MongoDB collection. These projects
can be filtered according to specific metadata entries (see
Supplementary Table S1), as well as file specific information found
in the MaxQuant XML files, such as fixed peptide modifications.
For convenience, MS2AI contains a complete database collection of
PRIDE project metadata (as of July 2021) that is easily updatable to
include newer projects.

Currently, MS2AI can only process projects that come with pep-
tide identifications from the MaxQuant suite, which is the predom-
inantly used software for bottom-up proteomics. This information
yields details about peptide identity and quantification, such as the
peptide location, sequence, intensity and modifications. By restrict-
ing the database to MaxQuant identifications, MS2AI ensures a
more homogeneous identification and extraction of peptides across
all projects and their raw data files.

Based on the PRIDE metadata file, which is automatically fil-
tered with regard to MaxQuant analysis and user-specified require-
ments, MS2AI retrieves the MaxQuant output files, along with the
corresponding raw files, from the PRIDE database. These raw files
are in a proprietary file format used by the majority of MS instru-
ments in PRIDE and contain information from the data acquisition
process, most notably the objects in the m/z—retention time—intensity
space (Zeng et al., 2019).

The following data transformations are executed after raw file
download; (i) conversion of raw files into the community standard
mzML data format using the ThermoRawFileParser (Zohora et al.,
2019) and (ii) further extraction from the mzML file, including all
MS2 spectra, and values in the mi/z-retention time-intensity space
from the MS1 spectra. The output of the processed raw files is stored
in the local data directory, while the raw files themselves are dis-
carded (see Supplementary Material for file storage structure).

Along with the automatic PRIDE data retrieval, MS2AI also
allows for the extraction of local in-house data. This requires the
MaxQuant and corresponding raw file(s) to be available to the soft-
ware. The key steps of the extraction are identical to the steps taken
during the PRIDE method. The user has the possibility to provide
additional metadata to their local data comparable to the metadata
(instrument, modifications, etc.) available on PRIDE, to seamlessly
integrate local and PRIDE received data.

2.2 Peptide representation (PR)

From the extracted information described in Section 2.1, we are able
to create a run representation (RR) of the entire LC-MS run (see
Fig. 1). However, due to the sheer amount of 71/z and retention time
entries in the LC-MS spectra, data reduction is paramount, as LC-
MS base resolution would make ML methods insurmountably com-
putationally challenging (see Supplementary Fig. S6). The user can
freely define the range of m/z and retention time to be summarized
into a single data point of the RR; the smaller the range in both m/z
and retention time, the less data-loss will occur, at the expense of
increased data size. This increase in size influences both storage
space and the runtime of any future ML applications (see
Supplementary Section S7). To account for the inevitable data-loss
on the RR, we have constructed a 4-channel data representation of
the MS1 spectra consisting of: (i) mean value of all summarized data
points, (ii) minimum value of all summarized data points, (iii) max-
imum value of all summarized data points and (iv) absolute number
of summarized data points. To avoid unwanted bias in the inten-
sities, all intensities in a single raw file are normalized based on the
highest value in the individual raw file. The PR consists of the pep-
tide and its neighborhood of configurable size, and which is drawn
directly from RR, along with the MS2 spectra for the corresponding
peptide.

The MS2 information is either extracted exactly as represented
in the mzML file (with differing length of m/z—intensity space), or in
a binned fashion, to ensure equal length and homogeneity between
spectra. The m/z bin-size of MS2 can be calculated in two methods:
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Fig. 1. Pipeline structure from data sources to ML applications

fixed length (e.g. 500 bins ranging from 0 to 2500/z) or in a vari-
able length (e.g. 500 bins ranging from 0 to the precursor m/z).
Furthermore, intensity information can be retained as the mean of
the normalized values in a bin, or binarized; indicating whether a
peak exists in the binned area or not. All of these options give users
full flexibility to adjust the PR to their specifications.

Each PR is accompanied by relevant information from the
MaxQuant output file, which is appended to a MongoDB collection
for ML purposes. MS2AI also gives the user additional data depend-
ent information that allows adding pre- or postprocessing steps by
interacting with the MongoDB database. This information includes
entries such as file specific RT step size, and normalized m/z and RT
values. This collection can then be filtered and sorted to help transi-
tion into any ML application, by querying and removing entries
based on needs.

2.3 ML applications
The MS2AI PR is well suited for a multitude of ML applications, as
it delivers homogeneous data representations of heterogeneous MS
experiments. The generation of PRs, along with the metadata
accompanying each of the peptide data, trivialize the task of getting
from unsuitable raw data to ML ready peptide information files.
MS2AT also includes a functional convolutional neural network
that uses a tailored data generator for TensorFlow, allowing easy in-
tegration of the 4-channel images along with #71/z and rt information
from MS1 and the MS2 spectra. In order to demonstrate the utility
of MS2AIL, we trained and tested a simple neural network (see
Supplementary Fig. S6) on ~200 000 PRs from 307 different projects
(filtered from ~69 000000 total PRs with 98th percentile score fil-
ter) separated into peptides with an oxidation on methionine, and
peptides without an oxidation on methionine. We then trained and
tested whether the network could, using MS1 and MS2 information,
distinguish the two classes. Doing this, we obtained 95% training
accuracy and 93% validation accuracy along with an 85% test ac-
curacy on a different set of PRIDE projects consisting of 25 000 PRs;
entire projects from which none of the data were not used for train-
ing or validation. This separation of training and test data causes the
highest possible heterogeneity between data points and increases ro-
bustness in the neural network capabilities (see Supplementary
Section S6).
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3 Conclusion

MS2AI is the first automated pipeline for strategic and large-scale
extraction and processing of LC-MS experiments that allows
hassle-free and powerful ML applications in the realm of computa-
tional proteomics.

MS2AI offers unique and a concise peptide data representation that
combines the measurements in the multidimensional area around a peak
in the m/z—retention time-intensity space with the raw or binned MS2
spectra. This customizable representation enables researchers to sum-
marize peptide information in accordance with specific needs, along
with a comprehensive database structure of known information on the
peptides gathered from MaxQuant. In general, MS2AI will facilitate the
advancement of ML techniques performed in the field of MS, potential-
ly opening the door for more in-depth analysis of the proteome. We
illustrated this by using the simple in-built neural network to identify
oxidized peptides, achieving 85% testing accuracy.
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