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Abstract

Motivation: Epistasis may play an etiologic role in complex diseases, but research has been hindered because iden-
tification of interactions among sets of single nucleotide polymorphisms (SNPs) requires exploration of immense
search spaces. Current approaches using nuclear families accommodate at most several hundred candidate SNPs.

Results: GADGETS detects epistatic SNP-sets by applying a genetic algorithm to case-parent or case-sibling data. To
allow for multiple epistatic sets, island subpopulations of SNP-sets evolve separately under selection for evident
joint relevance to disease risk. The software evaluates the identified SNP-sets via permutation testing and provides
graphical visualization. GADGETS correctly identified epistatic SNP-sets in realistically simulated case-parent triads
with 10 000 candidate SNPs, far more SNPs than competitors can handle, and it outperformed competitors in simula-
tions with many fewer SNPs. Applying GADGETS to family-based oral-clefting data from dbGaP identified SNP-sets
with possible epistatic effects on risk.

Availability and implementation: GADGETS is part of the epistasisGA package at https://github.com/mnodzenski/
epistasisGA.

Contact: weinberg@niehs.nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Substantial missing heritability remains for many complex diseases.
Genome-wide association studies (GWAS) have identified many sus-
ceptibility alleles, but typically with small relative risks. Most analy-
ses have focused on individual single nucleotide polymorphisms
(SNPs) while overlooking the potential role of epistasis, in part, be-
cause of methodologic limitations. Because biologic systems often
involve failure-resistant redundancy, deleterious traits may require
joint effects of several SNPs whose marginal signals are weak (Shi
and Weinberg, 2011). Our goal was to develop methods to identify
sets of SNPs that jointly increase risk of a dichotomous disease
outcome.

The search space can be huge for detecting epistatic effects.
While genome-wide exhaustive search methods exist for pairwise
interactions (Purcell et al., 2007), run times quickly become prohibi-
tive for higher-order interactions. For example, even for a set of
10 000 candidate SNPs, there are 49 995 000 two-SNP sets but

416 416 712 497 500 four-SNP sets. As a consequence, methods for
detecting higher-order interactions must constrict the search space.
Some approaches, like Multifactor Dimension Reduction (MDR;
Ritchie et al., 2001), exhaustively search all possible interactions in
a small set of candidate SNPs, but one must restrict the number of
candidate SNPs using external criteria. Others, like SNPHarvester
(Yang et al., 2009) search for interactions among SNPs that first
passed a filter based on statistical associations. Still others, like
BEAM (Zhang and Liu, 2007), use Markov Chain Monte Carlo
search techniques to explore the sample space. More recently, other
stochastic search algorithms like ant colony optimization (Jing and
Shen, 2015; Wang et al., 2010) and heuristic search algorithms
(Aflakparast et al., 2014) have been used.

Another limitation of existing methods is that few are applicable
to family studies. Family studies typically genotype an affected child
and either both parents (case-parent triad) or an unaffected sibling
(affected/unaffected sib-pairs). Such studies resist bias due to popu-
lation stratification and can allow assessment of maternally
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mediated genetic effects and imprinting effects, but they may require
more genotyping than a case–control study. MDR-PDT (Martin
et al., 2006) extends MDR to case-parent triad or affected/unaffect-
ed sib-pair studies, and further extensions have been developed
(Cattaert et al., 2010; Chen et al., 2014; Fang and Chiu, 2012; Liu
et al., 2019; Lou et al., 2008). All of these search exhaustively, limit-
ing the number of candidate SNPs that they can process. Trio logic
regression (Li et al., 2010) and its extension TrioFS (Schwender
et al., 2011) can also search for epistatic interactions using case-
parent triads but permit a maximum of 500 candidate SNPs.
GCORE is applicable genome-wide (Sung et al., 2016) but only con-
siders pairwise interactions. EPISFA-LD (Xiang et al., 2020) does
not require an exhaustive search and can detect higher-order interac-
tions, but how successfully it scales up beyond 200 candidate SNPs
has not been demonstrated.

Here, we propose GADGETS (Genetic Algorithm for Detecting
Genetic Epistasis using Triads or Siblings) to detect higher-order
interactions in family studies. For a specified SNP-set size, the algo-
rithm stochastically searches for SNP-sets that may jointly be associ-
ated with disease, and nominates multiple sets. After running the
algorithm allowing for a range of set sizes, we use permutations to
test whether the algorithm overall provides evidence of association
with risk. For an identified SNP-set, we propose a further method to
probe whether those SNPs have a joint effect that is super-
multiplicative. We also propose graphical methods for visualizing
epistatic sets of SNPs nominated as risk-related by GADGETS.

This paper is organized as follows. We first describe GADGETS
and our proposed permutation tests. We illustrate our algorithm’s
performance using realistically simulated data for 10 000 SNPs
where risk depends on more than one epistatic set. Then we com-
pare our proposal to MDR-PDT, TrioFS and EPISFA-LD after
restricting to a smaller number of candidate SNPs to accommodate
their limitations. Finally, we apply our method to candidate SNPs
from a GWAS of cleft lip (Beaty et al., 2010; Li et al., 2015) to ex-
plore epistatic effects.

2 Materials and methods

2.1 Algorithm for identifying sets of single nucleotide

polymorphisms
We code the genotypes for a diallelic autosomal SNP as 0, 1 or 2,
counting copies of the minor allele. We genotype either affected/un-
affected sib-pairs, or unrelated cases and their parents. When
parents are used, each case is paired with a ‘complement’, a hypo-
thetical pseudo-sibling who inherited the parental alleles not trans-
mitted to the case. We use ‘control’ generically to mean either the
complement or the unaffected sibling.

To identify risk-associated SNP-sets, GADGETS employs a sto-
chastic search algorithm, known as a genetic algorithm, that mimics
biological evolution through natural selection (Holland, 1975).
Specifically, GADGETS (i) initializes a fixed-size population of
chromosomes, each a set of d SNPs, by randomly sampling without
replacement from all available SNPs; (ii) calculates a ‘fitness score’
for each chromosome that measures its association with case status
and influences its chance of passage to the next generation; (iii)
passes that fixed-size population of chromosomes through multiple
generations where stochastic processes of mutation, crossover and
preferential selection for higher fitness increasingly enrich the popu-
lation for risk-related (fittest) chromosomes (Fig. 1).

2.1.1 Initialization

For a specified number (d) of SNPs per chromosome, the algorithm
randomly and without replacement draws an initial population of
200 chromosomes from the SNPs being considered. We consider d
from 2 to 6.

2.1.2 Fitness score

We designed a chromosome’s fitness score (S) based on three objec-
tives. First, the score should be high if those SNPs were jointly

transmitted to cases much more frequently than to their paired con-
trols. Second, the computation cannot be burdensome. Third, we
would ideally be able to determine which component SNPs contrib-
ute most to its fitness score, so we could favor propagation of those
SNPs.

We base our fitness score on paired case–control genotype differ-
ence vectors. For a given chromosome, let Di and Ci be vectors with
d elements, each element containing minor allele counts for the ith
case and control, respectively, and let xi ¼ Di � Ci. That is, the ele-
ments of xi correspond to the difference in minor allele counts be-
tween cases and controls. If a chromosome’s SNPs exhibit multi-
SNP effects, these difference vectors should be consistently different
from the zero-vector and preferentially point in a particular direc-
tion across families. To assess how well a given chromosome meets
these expectations, we upweight families based on the number of
nonzero genotype differences and compute a weighted mean differ-
ence vector, xw. The fitness score compares that xw to the zero-
vector using a quadratic form similar to a paired Hotelling’s T2 stat-
istic (Supplementary Appendix A).

This fitness score satisfies all three aims. Let xwj be the element
of xw corresponding to SNP j, and let r̂j be the square root of the jth
diagonal element of the estimated weighted covariance matrix. We
reasoned that, among a chromosome’s SNPs, those with larger

Fig. 1. Flowchart of the GADGETS algorithm for a single island. In this simple illus-

tration, we include four chromosomes of size d¼3. The text describes chromosome

migration among islands
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values of xwjj j=r̂j show stronger association with disease. We use
these measures at the mutation and crossover steps to prioritize se-
lection of promising SNP subsets for propagation into subsequent
generations (Supplementary Appendix B). Additionally, a positive
(negative) sign of xwj=r̂j nominates the minor (major) allele as
enhancing disease risk in that chromosome; the allele’s mode of in-
heritance is provisionally assigned as recessive or not using a data-
driven approach (Supplementary Appendix A).

2.1.3 Passage to next generation

One copy of the chromosome with the highest fitness score passes to
the next generation intact, guaranteeing a nondecreasing maximum
fitness score over generations. The remaining 199 chromosomes for
the next generation are created by sampling chromosomes from the
current generation [including the top scorer(s)], with replacement
and with probabilities proportional to their fitness scores. A random
80% of these are randomly paired with another chromosome and
subjected to crossover. The remaining chromosomes are mutated. In
crossover, a nonempty proper subset of a chromosome’s SNPs is
exchanged with an equally sized subset in another. For a given pair
of chromosomes assigned to crossover, elements of the lower-
scoring chromosome with larger xwjj j=r̂ j are preferentially
exchanged with the elements having smaller xwjj j=r̂j in the higher-
scoring chromosome (Supplementary Appendix B).

For each chromosome to be mutated, a random number of SNPs
with the smallest xwjj j=r̂j are exchanged with SNPs from the input
candidate pool (Supplementary Appendix B). Selection of SNPs
from the candidate pool to be inserted as mutations is random with
selection probability proportional to the �v2 statistic from a likeli-
hood ratio test of its marginal disease association (Cordell and
Clayton, 2002) but could alternatively be a preset probability based
on prior information. For both mutation and crossover, no single
chromosome can contain redundant SNPs; but any generation after
the first can contain multiple copies of the same chromosome. On
completion of the new generation, fitness scores are calculated for
the new chromosomes and the process repeats.

To enlarge the effective range of the stochastic search, the algo-
rithm creates independently evolving subpopulations of chromo-
somes, referred to as islands (Andre and Koza, 1996); we randomly
partition islands into disjoint clusters of four. Within a cluster, is-
land subpopulations evolve independently except for periodic inter-
island migration, and distinct island clusters evolve entirely
independently from one another (Supplementary Appendix C).
Evolution of an island subpopulation continues over generations
until stopping criteria related to stable top-scoring chromosomes are
satisfied or a prespecified number of generations is reached. We har-
vest each island’s fittest chromosome from the final generation for
later analysis (Appendix C). We run GADGETS repeatedly on the
same input data over a range of d, typically 2 through 6, harvesting
a top list for each d.

2.2 Permutation-based inference
We consider two kinds of questions: (i) Taking all chromosome sizes
2–6 together, can we reject a global no-effect null? (ii) Does epistasis
contribute to a specific SNP-set’s association with risk?

2.2.1 Global tests integrating evidence across single-nucleotide-

polymorphism-set sizes

To create an outcome-permuted dataset, we randomize the case and
control labels in each family. We create N � 1 outcome-permuted
datasets and run GADGETS on each. Calculating a test statistic for
each permuted dataset based on its harvested fitness scores provides
a null reference distribution.

To construct a test of the omnibus null that no SNPs are associ-
ated, either marginally or epistatically, with risk, first consider tests
using SNP sets of size d. For each d separately, and each dataset, we
sum the fitness scores of the k highest scoring distinct chromosomes.
(If, for the observed data or any permute, GADGETS identifies
fewer than k distinct chromosomes for a particular d; letting l

denote the minimum number of distinct chromosomes in any of the
N lists, we instead sum the l scores for each list for that d.) We then
rank the sums among the observed and permuted datasets, assigning
rank 1 to the smallest. Let Rd;q denote the rank for dataset q, where
q ¼ 1 denotes the observed data. We compute Tq ¼
�2
P

d ln½ N � Rd;q þ 0:5
� �

=N� for every dataset. The p-value of the

test is p ¼
PN

q¼1 ðTq � T1Þ=N (Phipson and Smyth, 2010). In prac-

tice, we used N¼101 and k¼10. We caution readers that if candi-
date SNPs are chosen based on marginal association with disease,
the null hypothesis is false a priori.

2.2.2 Quantifying evidence for epistasis for a candidate single

nucleotide polymorphism set

Because high fitness of some chromosomes may be attributable to
marginal rather than synergistic effects, we developed a
permutation-based assessment of epistasis. It uses data only from
families that are informative (Supplementary Appendix A) for the
specified chromosome and requires at least two component SNPs
not in linkage. We consider SNPs on the same biological chromo-
some to be in linkage, but other definitions could be used. Whereas
our global test for association permutes case/control labels while
retaining family identity, this measure retains case/control identity
while independently permuting family labels.

First, suppose no two SNPs in the chromosome are in linkage.
We exploit that independence by preserving the paired case/control
genotypes and randomly reassembling those paired single-SNP geno-
types into pseudo-family chromosomes to form a permuted dataset
in which individual SNP transmission distortions are preserved but
epistatic associations are disrupted (Supplementary Appendix D).
Assuming only multiplicative marginal effects with no epistasis,
these pseudo-family genotypes are as likely as the observed geno-
types to occur (Piegorsch et al., 1994). For each permuted dataset,
we calculate the fitness score for the chromosome. This permutation
process generates a null reference distribution of fitness scores,
thereby allowing a calculation of a permutation-based epistasis ‘p-
value’ in the same way as the global test. We used 10,000
permutations.

If one or more pairs of SNPs in a chromosome are in linkage, we
proceed similarly except that we treat linked loci as a unit. If all SNP
pairs in a chromosome are in linkage, however, other methods are
needed. When this assessment of epistasis is carried out on SNP-sets
identified through GADGETS, caution is needed because the sto-
chastic search may have selected sets that appear to be interacting,
even under a multiplicative-effects null. We regard these epistasis ‘p-
values’ as primarily useful for constructing network plots, to be
described. To test epistasis with full control of the type I error rate,
one would need to use independent validation data. To avoid mis-
leading interpretations of these ‘p-values’ not computed using inde-
pendent data, we instead refer to them as ‘h-values’.

2.3 Clustering single nucleotide polymorphisms as risk-

related: a graphical approach
We restrict attention to top-scoring chromosomes. If we have per-
muted datasets under the global null, we use chromosomes with fit-
ness scores exceeding the 95th percentile of the N � 1 maximal
scores from the permuted datasets for each d. Otherwise, we use the
10 top-scoring distinct chromosomes of size d, or all distinct chro-
mosomes if GADGETS nominates fewer than 10. For each chromo-
some surviving that filter, we compute an epistasis h-value. If all
SNPs are linked and the h-value cannot be computed, we set
h¼0.5. We remove chromosomes whose h-value exceeds a specified
threshold, defaulting to 0.05. We then identify all distinct SNPs and
SNP-pairs that appear within the remaining chromosomes and as-
sign two graphics scores. We assign a pair-specific graphics score to
SNP-pair m that reflects evidence for epistasis across d as
Wpm ¼ � 2

P
d

P
jln hj

� �
; j ¼ 1; . . . ; Jpmd, where Jpmd represents

the number of chromosomes of size d containing pair m.
Analogously, we assign a SNP-specific graphics score to SNP m:
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Wsm ¼ � 2
P

d

P
jln hj

� �
; j ¼ 1; . . . ; Jsmd, where Jsmd represents the

number of chromosomes of size d containing SNP m.
To improve the legibility of network graphs, we plotted the

SNPs and connectors included in the top 25% of those highest scor-
ing SNP-pairs. The thickness of the SNP-to-SNP connectors is pro-
portional to lnðWpmÞ and the area of the node circle (identifying an
SNP) is proportional to lnðWsmÞ.

2.4 Simulations
We used a simulation method that creates realistic simulated data
using actual GWAS data from case-parent triads, approximating the
linkage disequilibrium (LD) structure in the genome. It effectively
clears away any signal present in the original data by scrambling the
transmitted and untransmitted genomes. We seed in one or more
sets of risk-related SNPs (Shi et al., 2018). GADGETS simulations
were based on oral-cleft case-parent triads downloaded from dbGaP
(Beaty et al., 2010). To construct input data, we first conducted
modest LD pruning to ensure that no two SNPs in the input data
had pairwise R2>0.8. From those remaining, we randomly selected
2500 SNPs from each of four chromosomes (chromosomes 10, 11,
12 and 13). Each simulated dataset contained 1000 case-parent
triads.

We simulated five datasets under each of four risk scenarios and
four datasets under a fifth scenario; each scenario involved more
than one risk-associated SNP-set (Supplementary Tables S1 and S2).
The risk SNPs were located roughly evenly across the 10 000 SNPs.
Due to computational demands, we carried out permutation testing
of the global null hypothesis for only one randomly selected simu-
lated dataset from each scenario.

2.5 Comparison to competing methods
We compared our proposed method with three existing methods
designed for family analysis: TrioFS, MDR-PDT and EPISFA-LD
(Supplementary Appendix E). For these comparisons, we used simu-
lated data from simplified versions of scenario 2 with only the three-
SNP risk set and scenario 5 with only the first four-SNP risk set. To
accommodate restrictions in the competing methods’ capabilities,
we used 25, 100 and 500 candidate SNPs. Other than the simulated
risk set, SNPs were randomly and independently chosen from the
10,000 for each candidate set size. We report the maximal number
of risk-set SNPs nominated by each method in a single model among
its 10 highest-ranking models. When GADGETS identified fewer
than 10 distinct top chromosomes, we report the maximal number
of risk-set SNPs among the selected chromosomes. EPISFA-LD does
not rank-order the sets it identifies, so we report the maximal num-
ber of risk-set SNPs returned among any of its output models and,
for k>1 models, we assign the rank as ‘top k’.

3 Results

3.1 Risk-associated sets of single nucleotide polymor-

phisms identified via GADGETS
Though designed to aggregate information across chromosome
sizes, GADGETS also performed well at the true risk-related SNP-
set size (Supplementary Tables S3–S7). The highest scoring chromo-
some matched one of the multi-SNP risk sets in 18 of 29 simulations
across scenarios and replicates (counting d¼3 and d¼5 separately
for scenario 2, and only counting d¼4 for scenario 3) and three of
the four risk-set SNPs for four simulations. In 4 of 19 simulations
with two multi-SNP risk sets of equal size, GADGETS identified
both as the top two chromosomes.

3.2 Risk-associated sets of single nucleotide polymor-

phisms identified from network graphs
Integrating results across chromosome sizes, our network plots typ-
ically identified at least one of the risk-associated SNP-sets in each
scenario (Fig. 2 and Supplementary Figs S1–S23). Visualization per-
formance was particularly strong when using global permutations to

filter chromosomes that contributed to the plots (Fig. 2 and
Supplementary Figs S1–S4). Among five scenarios, four network
plots contained all complete multi-SNP risk-related sets, and the
remaining plot contained one complete risk set and three of the four
SNPs in the second. Even without global permutations, however,
visualization performance was good. Over 19 simulations
(Supplementary Figs S5–S23), 16 plots contained at least one com-
plete multi-SNP risk-related set and 18 contained at least one risk-
related SNP. Of 15 simulations with two multi-SNP risk-related
sets, five plots contained both sets and three contained one set and
three of four SNPs in the second.

3.3 Permutation inference
The global test declared the presence of risk-associated SNP-sets for
all five scenarios/datasets, regardless of the number of highest-
ranking chromosomes used in the calculation (Supplementary Table
S8). Chromosomes identified by GADGETS as having the highest-
ranking fitness score also showed strong epistasis (Supplementary
Table S9), although one was a spurious finding, having no risk-
related SNPs.

3.4 Run times
Running GADGETS on an input dataset of 10 000 SNPs and 1000
families is computer intensive. On a computing cluster allowing up
to 135 simultaneous single core (NVIDIA V100 Tensor Core GPU,
16G—32G memory) jobs per user, running GADGETS over all
chromosome sizes typically took around 15 min. For smaller data-
sets, precise timings for single core jobs, not incorporating the
distributed-computing capability of GADGETS, are reported in
Table 1. The epistasis test required seconds to complete.

3.5 Comparison of GADGETS to competitors
When compared with MDR-PDT, TrioFS and EPISFA-LD,
GADGETS typically outperformed them by more completely identi-
fying risk-related sets and by running substantially faster (Table 1).
For 500 candidate SNPs, GADGETS always identified all three risk-
related SNPs for scenario 2 and identified at least three of four risk-

Fig. 2. Network plot for scenario 1, replicate 2. Chromosomes were filtered for in-

clusion using global permutations. SNP labels ‘1’ and ‘2’ indicate membership in

epistatic risk sets 1 and 2, respectively. Larger, darker nodes and thicker, darker

edges correspond to larger SNP and SNP-pair scores, respectively. Dashed connec-

tions indicate pairs of SNPs located on the same biological chromosome with pair-

wise R2 of at least 0.1 in complement pseudo-siblings
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related SNPs for scenario 5. No other method could identify even a
single risk-related SNP among 500 candidates. MDR-PDT was
stopped for scenario 5 due to projected run times exceeding one
month, and EPISFA-LD did not run with 500 candidate SNPs for
any replicate of either scenario.

For 100 candidate SNPs, GADGETS either ran faster or more
completely identified risk-related SNPs than competitors for every
scenario except for scenario 5, replicate 3. For 25 candidate SNPs,
MDR-PDT and EPISFA-LD ran faster than GADGETS, but MDR-
PDT failed to completely identify risk sets. Both TrioFS and
EPISFA-LD occasionally failed to output results, even with fewer
than 500 input SNPs.

3.6 Application to oral-cleft data
Cleft lip (with or without cleft palate) (CL/P) is a strong candidate
for multi-SNP effects. Based on substantial recurrence risk within
families (Sivertsen et al., 2008), clefting is largely genetic; yet one
would expect strong genetic selection against any individual risk al-
lele because of high neonatal mortality before modern surgical
repairs. We used GADGETS to reanalyze candidate SNPs curated
by Li et al. (2015) from a GWAS of CL/P (Beaty et al., 2010).
Because etiology may differ among ethnic groups (Beaty et al.,

2010), we analyzed Asian and European families separately. In the
Asian data, we analyzed 347 SNPs from 889 families. In Europeans,
we analyzed 395 SNPs across 668 families. Candidate SNPs were
chosen based on marginal associations with CL/P or from genes in
the WNT signaling pathway (Li et al., 2015).

Global test p-values were low for both ancestry groups, which
would in part reflect selection of SNPs based on marginal effects.
Network plots suggested possibly epistatic SNP-sets in the Asian
(Fig. 3 and Supplementary Tables S10–S14) and European ancestry
groups (Fig. 4 and Supplementary Tables S15–S19), with some over-
lap. For both, the ABCA4 region (rs952499, rs560426) exhibited a
strong signal. In Asians, the top-scoring five-SNP set (rs952499,
rs2013162, rs12506428, rs9788972, rs6102085; risk alleles:
TCCAG, none recessive) appeared prominently in the network, and
epistasis permutations suggested that epistasis within the set contrib-
utes to the etiology of CL/P (h¼0.0004; joint relative risk¼3.2;
Supplementary Table S13). In Europeans, the second ranked four-
SNP set (rs560426, rs4254782, rs987525, rs8069536; risk alleles:
GAAT, none recessive) was prominent in the network plot and
showed evidence of epistasis (h¼0.0009; joint relative risk¼4.7;
Supplementary Table S17). Comparable evidence for epistasis
among SNPs in the ABCA4 and NTN1 regions was also seen in

Table 1. Comparison of GADGETS to competitors in finding simulated three-SNP and four-SNP risk sets over a range of input SNP numbers

Replicate Input SNPs GADGETS MDR-PDT TrioFS EPISFA-LD

Max risk

SNPs founda

(Rankb)

Run time Max risk

SNPs founda

(Rankb)

Run time Max risk

SNPs founda

(Rankb)

Run time Max risk

SNPs foundc

(Rankc)

Run time

Scenario 2

1 25 3(1) 00:01:27 2(1) 00:00:05 3(1) 00:51:57 3(1) 00:00:45

100 3(1) 00:01:28 0 00:04:30 2(1) 00:51:30 3(1) 00:04:24

500 3(1) 00:07:17 0 10:10:36 0 04:21:09 ** **

2 25 3(1) 00:01:23 2(4) 00:00:05 2(1) 00:49:39 3(1) 00:00:38

100 3(1) 00:01:31 0 00:04:39 2(1) 00:52:20 3(1) 00:01:59

500 3(1) 00:07:39 0 10:05:11 0 05:08:08 ** **

3 25 3(1) 00:01:31 2(1) 00:00:05 2(1) 00:50:41 3(1) 00:00:47

100 3(1) 00:01:34 0 00:05:03 2(1) 01:01:15 ** **

500 3(1) 00:07:59 0 09:54:09 0 05:08:00 ** **

4 25 3(1) 00:01:36 2(3) 00:00:05 3(1) 00:51:02 3(1) 00:00:41

100 3(1) 00:01:46 0 00:05:08 3(1) 01:00:43 3(1) 00:03:35

500 3(1) 00:08:16 0 10:15:04 0 05:08:30 ** **

5 25 3(1) 00:01:24 2(10) 00:00:05 3(1) 00:52:22 3(1) 00:00:43

100 3(1) 00:01:27 0 00:04:29 3(3) 01:16:02 3(1) 00:03:05

500 3(1) 00:08:26 0 10:09:43 0 05:49:41 ** **

Scenario 5

1 25 4(1) 00:06:22 2(1) 00:00:42 ** ** 3(Top 2) 00:02:18

100 4(1) 00:06:41 1(6) 05:22:33 2(1) 03:37:32 3(Top 2) 00:03:46

500 3(1) 01:10:29 ** ** 0 15:28:29 ** **

2 25 4(1) 00:07:55 2(1) 00:01:15 3(1) 02:48:52 3(1) 00:00:49

100 4(1) 00:06:03 1(3) 05:20:51 4(2) 03:38:17 3(1) 00:03:48

500 3(1) 00:47:38 ** ** 0 15:14:56 ** **

3 25 4(1) 00:05:52 2(6) 00:00:39 4(2) 02:26:17 4(1) 00:00:37

100 3(1) 00:06:12 1(1) 04:55:31 3(3) 03:39:14 4(1) 00:02:52

500 3(1) 00:46:16 ** ** 0 12:32:09 ** **

4 25 4(1) 00:07:03 2(6) 00:00:55 4(1) 02:56:46 4(Top 2) 00:01:09

100 4(1) 00:07:21 1(1) 04:55:50 3(3) 02:35:18 3(1) 00:04:42

500 4(1) 00:41:00 ** ** 0 14:23:52 ** **

Note: Due to limitations in the number of SNPs that competitors could analyze with reasonable run times, we reduced the number of SNPs input to the proce-

dures to at most 500. Run times are hours:minutes:seconds.
aMaximum number of SNPs in the risk set contained in any single chromosome/model among the top 10 highest-ranking chromosomes/models.

**Indicates TrioFS or EPISFA-LD failed to output results or MDR-PDT could not be run due to projected run times exceeding one month.
bRank of the chromosome/model (1¼ highest) among the top 10 that contained the most SNPs from the risk set. Ranks are not specified when zero risk-set

SNPs were found.
cMaximum number of SNPs in the risk set among any output model. A rank of ‘Top 2’ indicates EPISFA-LD output two unordered models.
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three of the five top-scoring six-SNP sets in Asians (Supplementary
Table S14). Recapitulating findings from Li et al. (2015), markers
from IRF6 appeared in several potentially epistatic sets in Asians,
and markers from the 8q24 region appeared to be epistatic in
Europeans.

4 Discussion

We showed through simulations that, despite a search space exceed-
ing 1021 (implied by searching SNP-sets of size 2 through 6 with
10 000 SNPs), GADGETS could correctly identify multiple jointly
acting SNP-sets even when attributable fractions were small. Further
work is needed to determine how well GADGETS scales up beyond
10 000 SNPs, but it outperformed the existing family methods while
accommodating substantially more candidate SNPs.

In assessing epistasis using nuclear families, we were looking for
sets of SNPs that were jointly transmitted to affected offspring more
frequently than expected based on their parents. We needed a ‘fit-
ness’ measure that could quantify that excess transmission. Our
measure is an informativeness-weighted version of the paired
Hotelling’s T2 statistic, based on comparing multi-SNP genotypes in
cases versus their sibling (or pseudo-sibling). The genetic algorithm
then enables one to sift through a very large number of possible
combinations by imitating biological evolution through natural
selection.

For our simulations, we started with a collection of up to 10 000
candidate SNPs based on chromosomes 10 through 13 after some
filtering for LD. (In practice, candidates would be chosen genome-
wide based on biology or marginal association and LD filters are not
necessary.) We then randomly sample a fixed number of SNP-sets of
fixed size, and let that ‘population’ evolve by selecting the fittest
combinations across successive generations. Diversity is enhanced
by allowing mutation and an analog of crossover in each generation.
Because there could be more than one set of SNPs with interacting
effects, parallel evolutions take place in many separate ‘island’ popu-
lations to allow distinct epistatic sets to emerge.

Oral cleft is a particularly good candidate for epistasis because,
while familial recurrence risk is high (Sivertsen et al., 2008),

historically the phenotype must have implied high infant mortality
and any single-SNP effect should have been strongly selected
against. When we reanalyzed an oral-clefting dataset using candi-
date SNPs (Li et al., 2015), we identified potentially novel epistatic
sets in Asians and Europeans. These results support epistasis in the
etiology of clefting and suggest particular SNP-sets that warrant fur-
ther investigation.

The selection of candidate SNPs for applications of GADGETS
can exploit the fact that epistatic effects typically induce small mar-
ginal individual SNP associations for the SNPs that participate.
However, in our simulations, we directly simulated candidate SNPs
without conducting selection. GADGETS can build toward the
higher-order epistatic sets through mutation and crossover because
subsets of risk-related SNP-sets will also show lower-order epistatic
associations and chromosomes containing those subsets will prefer-
entially propagate.

GADGETS requires a number of tuning parameters, family
weights being the most consequential. Aggressively upweighting
families where SNPs in an SNP-set are jointly differentially transmit-
ted prioritizes identification of SNP-sets whose components act
jointly rather than only through their individual marginal effects,
and does so in a computationally efficient way. As evidenced by
simulation results, GADGETS’ default weights work well across a
diverse set of risk scenarios. An automated method for selecting
family weights (and other tuning parameters) may ultimately be
achievable, but must be weighed against increases in run time.

The performance of GADGETS is also impacted by marginal
associations of candidate SNPs with disease. In particular, SNPs
with larger marginal effects are more frequently considered due to
higher mutation sampling probabilities and thus are more readily
incorporated into top-scoring chromosomes. In our simulations,
risk-related SNPs generally had a mix of large and small marginal
effects (Supplementary Table S2). We feel these scenarios are realis-
tic examples of how epistatic SNPs might function.

The extent to which singleton risk-related SNPs obscure jointly
risk-related SNP-sets from GADGETS is not completely clear. In
simulation three, GADGETS found the multi-SNP set in three of five
replicates despite the presence of singleton risk-related SNPs

Fig. 3. Network plot for Asian (cleft lip with or without cleft palate) case-parent

triad data. Chromosomes were filtered for inclusion using global permutations.

Larger, darker nodes and thicker, darker edges correspond to larger SNP and SNP-

pair scores. Dashed connections indicate pairs of SNPs located on the same biologic-

al chromosome with pairwise R2 of at least 0.1 in complement pseudo-siblings

Fig. 4. Network plot for European (cleft lip with or without cleft palate) case-parent

triad data. Chromosomes were filtered for inclusion using global permutations.

Larger, darker nodes and thicker, darker edges correspond to larger SNP and SNP-

pair scores. Dashed connections indicate pairs of SNPs located on the same biologic-

al chromosome with pairwise R2 of at least 0.1 in complement pseudo-siblings
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(Supplementary Table S5). We did not, however, examine scenarios
with dozens or hundreds of singletons, as might be possible for com-
plex traits. Although the global p-value reflects both marginal and
epistatic effects, GADGETS more often nominated epistatic SNP-
sets than those with only marginal effects on risk; we believe a low
global p-value may signal epistatic effects rather than those due only
to marginal effects.

GADGETS can be applied to case-parent triad data, to disease-
discordant sibling pairs or a mix of the two. A mixed design may be
easiest to implement, where, for each case, one genotypes parents
when available but an unaffected sibling otherwise. Whether the
two sorts of data should be weighted differently in GADGETS is an
open question.

GADGETS does accommodate missing SNP genotypes. If any fam-
ily member’s genotype is missing for a particular SNP, that family is
considered uninformative for that SNP but still contributes information
from their remaining nonmissing genotypes. At present, it does not ac-
commodate genotypes imputed with uncertainty, sometimes known as
dosages. For those SNPs, the most likely genotype could be used.

The extent to which undetected epistasis explains missing herit-
ability for complex diseases remains to be explored. GADGETS
should help to advance that work. We expect purely genetic syner-
gisms to be most important for conditions like oral clefting, for
which any single risk-related SNP variant would have been very
strongly selected against. For other diseases, environmental factors
and behavioral factors might interact with multi-SNP sets; that pos-
sibility will be a focus of future work.
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