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Abstract

Motivation: Understanding antibody–antigen interactions is key to improving their binding affinities and specific-
ities. While experimental approaches are fundamental for developing new therapeutics, computational methods can
provide quick assessment of binding landscapes, guiding experimental design. Despite this, little effort has been
devoted to accurately predicting the binding affinity between antibodies and antigens and to develop tailored dock-
ing scoring functions for this type of interaction. Here, we developed CSM-AB, a machine learning method capable
of predicting antibody–antigen binding affinity by modelling interaction interfaces as graph-based signatures.

Results: CSM-AB outperformed alternative methods achieving a Pearson’s correlation of up to 0.64 on blind tests.
We also show CSM-AB can accurately rank near-native poses, working effectively as a docking scoring function. We
believe CSM-AB will be an invaluable tool to assist in the development of new immunotherapies.

Availability and implementation: CSM-AB is freely available as a user-friendly web interface and API at http://biosig.
unimelb.edu.au/csm_ab/datasets.

Contact: david.ascher@unimelb.edu.au or douglas.pires@unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antibodies are powerful research and clinical tools, due to their abil-
ity to achieve high binding affinity and specificity to antigens. The
interactions between antibodies and their targets are mediated by

highly variable loops, the complementary determining regions,
which have distinctive amino acid propensities considerably

enriched in aromatic residues and Asp (Koide et al., 2007), allowing
antibodies to form better shape complementarity to diverse epitopes
using less close contacts compared with globular protein recogni-

tions. This allows for a small fraction of variable loops to contribute
to the majority of antibody–antigen binding energy (Robin et al.,
2014), indicating that finding unique features across antibody–anti-
gen binding interfaces should be key to improve the binding affinity
and specificity of antibodies.

Structural insights have proven important for guiding antibody
design and engineering, but are often limited by availability of ex-

perimental structures. Significant efforts have, therefore, been
focussed on improving molecular docking approaches (Agrawal
et al., 2019); however, their success rate on identification of native

poses of antibody–antigen complexes was lower than for enzyme–

inhibitor complexes (Yan and Huang, 2019). Most scoring functions
also showed only weak correlations to the experimentally deter-
mined binding affinities (KD) of antibody–antigen complexes (Guest
et al., 2021), highlighting the need for more accurate scoring func-
tions and affinity predictors for antibody design.

Graph-based signatures are a simple way of describing the geom-
etry and physicochemical properties of biological molecules, which
allows complex networks of amino acids in antibody–antigen inter-
faces to be efficiently modelled. We have previously shown that they
are a powerful tool for predicting the binding affinity of small mole-
cules to proteins (Pires and Ascher, 2016), and understanding the
effects of mutations on antibody binding (Myung et al., 2020a,b;
Pires and Ascher, 2016). Here, we have developed CSM-AB, the first
dedicated scoring function for antibody–antigen docking and bind-
ing affinity predictor by adapting our concept of graph-based signa-
tures in order to capture not only close-contact features but also
surrounding structural information relevant for antibody–antigen
binding. We show that this is an accurate and scalable way of not
only scoring docking poses, but to also predict the antibody binding
affinity. We validate CSM-AB using independent blind tests and
show it outperforms alternative methods. Details on data collection,
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feature engineering, model training and evaluation can be found in
Supplementary Materials.

2 Results

CSM-AB achieved a Pearson’s correlation coefficient of up to 0.40
(RMSE ¼ 1.71 kcal/mol, Supplementary Fig. S1) when attempting
to predict antibody–antigen binding affinity on 472 complexes
under cross-validation, performance that was consistent for different
validation strategies (5-, 10-, 20- and leave-one-out cross valid-
ation), demonstrating that there were no significant sampling biases
during training. When we compared the performance of our ap-
proach with other 18 existing methods, CSM-AB significantly out-
performed all of them (P-value < 0.001) when predicting antibody–
antigen binding affinity (as the Gibbs Free Energy of binding, DG, in
kcal/mol) (Supplementary Table S1).

As experimental structures might not always be available, the per-
formance on theoretical models of structures can be important in anti-
body–antigen docking platforms. To assess the scoring capability of
CSM-AB on mutated antibody–antigen complexes, we collected
single-point and multiple-point mutants (up to 14 mutations per struc-
ture) from mCSM-AB2 (Myung et al., 2020b) and mmCSM-AB
(Myung et al., 2020a) datasets, respectively, which were used as blind
tests. CSM-AB achieved a Pearson’s correlation coefficient of 0.61
(RMSE ¼ 1.68 kcal/mol) and 0.64 (RMSE ¼ 1.75 kcal/mol) on 689
single-point and 301 multiple-point mutations (Supplementary Fig.
S2). A significant number of the least accurate predictions (18) were
in tight-binders (DG ¼ �12 to �14 kcal/mol, for the PDB 3L5X) or
(6) of constructs with many point mutations introduced (6 to 14
mutations per case for the PDB 3BDY), which accounted for more
than 70% of outliers (Supplementary Fig. S3). Compared with other
methods, CSM-AB showed superior performance on both single-point
and multiple-point mutants (Supplementary Table S1), significantly
outperforming (P-value < 0.001) all 18 methods used in the
comparison.

We further investigated the ability of CSM-AB in ranking docked
poses on the Dockground (Kundrotas et al., 2018) and ZDOCK
benchmark v4 (Hwang et al., 2010) datasets. The predicted DG of
each complex was ranked and counted if the near-native model was
ranked first. CSM-AB showed comparable performance to 18 avail-
able tools in scoring docked poses showing six Top1 ranked models
(counts of near-native models) out of 15 antibody–antigen com-
plexes (Supplementary Table S1). Also, we measured the perform-
ance of available docking methods on local perturbation poses using
the ZDOCK dataset which were filtered by CaRMSD and DockQ-
CAPRI quality (Basu and Wallner, 2016). Using Kendall’s rank cor-
relation coefficient between the predicted DG and DockQ-score,
CSM-AB ranked Top1 out of 19 methods (Supplementary Table S2)
achieving the average Kendall’s tau of 0.43. Notably, obtaining cor-
rectly docked structures from unbound antibody and antigen chains
has been more challenging than of using its bound form due to the
possible structural changes upon binding. The 19 tools showed lim-
ited performance on the seven antibody–antigen complexes (avg.
Kendall’s tau of 0.16) from their unbound forms than the six struc-
tures (avg. Kendall’s tau of 0.21) from their original antibody–anti-
gen complexes. CSM-AB also showed better performance on the
seven bound complexes (avg. Kendall’s tau of 0.43) than those of
the six antibody–antigen complexes (avg. Kendall’s tau of 0.157).

The CSM-AB web-server provides two prediction modes. The
single mode predicts the binding affinity of antibody–antigen com-
plexes (DG) and allows users to inspect the distribution of interac-
tions found in the antibody–antigen interfaces via bar chart and 3D
visualization (Fig. 1). The docking scoring mode allows re-scoring
of docked structures. All docked structures should be provided in a
single-receptor PDB file and a multiple-pose (up to 100 poses) PDB
file. Users can browse the result of each pose in docking scoring

mode with the interactive datatable with 3D visualization (Fig. 1).
CSM-AB has also been made available as an Application

Programming Interface (API) to facilitate incorporation in
Bioinformatics pipelines.

3 Conclusions

Antibody–antigen docking approaches have been widely needed for
accelerating lead characterization and optimization processes of

immunotherapy development. While significant effort has been
devoted to improve the performance of docking scoring functions,

currently available methods show limited accuracy in predicting the
binding affinity of antibody–antigen complexes.

CSM-AB is a machine learning approach, taking account of
structural features such as graph-based signature and atomic interac-
tions across the antibody–antigen interface residues. Compared to

other approaches, CSM-AB presented better performance on cross-
validation and blind test, sets demonstrating its capability of binding
affinity prediction and applicability in re-scoring docked antibody–

antigen complexes. CSM-AB is available as a user-friendly web-ser-
ver and API at http://biosig.unimelb.edu.au/csm_ab/.
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Fig. 1. The workflow of this study is described in four steps (top). In data collection

and curation, binding affinity datasets (472 training data, 689 single-point muta-

tions and 301 multiple-point mutations) and docking poses (15 Dockground and 13

ZDOCK antibody–antigen complexes) were collected and curated for evaluation of

binding affinity and scoring poses. At the feature engineering step, graph-based sig-

natures, Arpeggio interactions, free solvent accessible surface area, residue depth,

secondary structure information were extracted and evaluated on collected datasets.

During machine learning, all the extracted features were used for cross-validation

and greedy feature selection with supervised machine learning algorithms. The per-

formance of CSM-AB and available methods on single-point and multiple-point muta-

tions were compared (middle). On the last step, the best performing model across both

binding affinity and scoring docked poses was implemented into CSM-AB webserver.

Users can predict DG and atomic interactions of an antibody–antigen complex via

‘affinity prediction’ mode and re-score up to 100 docked poses via ‘scoring poses’

mode (bottom)
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