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Abstract

Motivation: MicroRNAs (miRNAs) are small RNA sequences with key roles in the regulation of gene expression at
post-transcriptional level in different species. Accurate prediction of novel miRNAs is needed due to their import-
ance in many biological processes and their associations with complicated diseases in humans. Many machine
learning approaches were proposed in the last decade for this purpose, but requiring handcrafted features extrac-
tion to identify possible de novo miRNAs. More recently, the emergence of deep learning (DL) has allowed the
automatic feature extraction, learning relevant representations by themselves. However, the state-of-art deep
models require complex pre-processing of the input sequences and prediction of their secondary structure to reach
an acceptable performance.

Results: In this work, we present miRe2e, the first full end-to-end DL model for pre-miRNA prediction. This model is
based on Transformers, a neural architecture that uses attention mechanisms to infer global dependencies between
inputs and outputs. It is capable of receiving the raw genome-wide data as input, without any pre-processing nor fea-
ture engineering. After a training stage with known pre-miRNAs, hairpin and non-harpin sequences, it can identify all
the pre-miRNA sequences within a genome. The model has been validated through several experimental setups using
the human genome, and it was compared with state-of-the-art algorithms obtaining 10 times better performance.

Availability and implementation: Webdemo available at https://sinc.unl.edu.ar/web-demo/miRe2e/ and source code
available for download at https://github.com/sinc-lab/miRe2e.

Contact: jraad@sinc.unl.edu.ar

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) can regulate genes, determine the genetic
expression of cells, influence the state of the tissues and promote or
inhibit certain diseases and infections (Bartel, 2004). The discovery of
new miRNAs and their function is necessary for better understanding
their roles in genes regulation. The precursors of miRNAs
(pre-miRNAs) generated during biogenesis have a well-known RNA
secondary structure, which has allowed the development of computa-
tional algorithms for their identification. The pre-miRNAs typically
exhibit a stem-loop structure, which are also known as hairpin, with
few internal loops or asymmetric bulges. However, a very large amount
of hairpin-like structures can be found in a genome, thus the discovery
of truly pre-miRNAs remains a challenge.

For the prediction of pre-miRNAs, there is a large number of
pipelines that use genomics data as input for building a binary

classifier based on machine learning (ML) (Bugnon et al., 2021;
Stegmayer et al., 2019). All of them need an intensive pre-processing
of the raw genome: set a window length, go through the genome
and cut it into fixed sequences, calculate the corresponding second-
ary structure, check that it forms a hairpin and discard those sequen-
ces that do not (named flats). Then, a large number of handcrafted
features are extracted from the harpins, such as the number of loops
or the minimum free energy when folding the secondary structure
(MFE), among many others (de Lopes et al., 2014; Raad et al.,
2020; Yones et al., 2015). The MFE has proved to be an important
feature for distinguishing pre-miRNAs (Bartel, 2004). This feature
extraction step is highly dependent on the manual selection of many
parameters, and these human decisions in pre-processing can have
an impact in the prediction afterward. The ML classifiers are then
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trained to learn those features from positive (well-known pre-
miRNAs deposited in miRBase) and negative class samples, for the
discovery of new pre-miRNAs in non-coding and non-repetitive
regions of any genome.

In several bioinformatics domains, the big challenge today is the
development of ML methods without requiring any pre-processing
of the input, that is, a so-called end-to-end model (Chaabane et al.,
2019; Trieu et al., 2020; Tsubaki et al., 2018). In the scenario of
genome-wide pre-miRNAs prediction, such a method should be able
to be trained only with raw RNA sequences (no features), and then
be able to receive the raw genome of any species without any fea-
tures extraction nor calculation of secondary structure, to identify
hairpin-like pieces of RNA highly likely to be novel pre-miRNAs.
However, since in such a scenario, it is not possible to previously
discard those sequences that do not fold as hairpins (the flats), it is
necessary to incorporate all them into the training. Precisely for
avoiding any feature engineering step, the emergence of deep learn-
ing (DL) has produced meaningful improvements in the field of
automatic representation for computer vision, speech recognition
and many other application domains (LeCun et al., 2015). Deep
models can automatically extract relevant features by themselves,
directly from raw data, and those are considered today the best
paradigm of ML for most classification tasks (Bengio et al., 2013;
Jurtz et al., 2017). DL has already been used for small-RNA feature
extraction, identification and classification (Amin et al., 2019; Zeng
et al., 2016; Zheng et al., 2019). In addition, DL can detect motifs
in a set of homologous sequences, which are then the key for distin-
guishing among different types of protein families or predict its
structure (Senior et al., 2020; Seo et al., 2018). In Eraslan et al.
(2019), authors analyze gaps and challenges for DL in genomics,
mentioning the need for more DL-based tools capable of handling
the real genome-wide scenario with full end-to-end models, without
requiring any type of handcrafted pre-processing.

In this line of work, very recently a model based on convolution-
al neural networks (CNN), named deepMir, has been proposed for
classification of miRNA families (Tang and Sun, 2019). Differently
from most binary classification tools, the focus here is on classifying
input sequences into different miRNA families for more detailed
function annotation. It receives as input only RNA sequences, using
a one-hot-encoding scheme to convert a RNA sequence of 1�N nt
into an 4�N matrix to feed the network, coding this way the 4
nucleotides types in the sequence. The CNN model contains two
convolutional layers, followed by max pooling layers and three fully
connected layers with dropout. The model is trained with pre-
miRNAs from Rfam and mature miRNAs from miRBase. In Bugnon
et al. (2021), it was shown that the performance of deepMir was
below those deep models that use also the predicted secondary struc-
ture as input, such as deepMiRGene (Park et al., 2017) and
mirDNN (Yones et al., 2021), which receives also the MFE.
However, deepMir is an important step toward models fully train-
able from raw genomic sequences and a starting point for achieving
end-to-end models, with the potential of outperforming other
approaches thanks to the capability of learning the features auto-
matically. Nevertheless, it should be noted that deepMir has not
been designed nor tested for discovery of novel pre-miRNAs in a
genome-wide scenario. Moreover, pure CNNs have shown some
limitations for the analysis of sequences, due to the locality of its
convolutions and the loss of long-term dependencies, requiring the
stacking of several layers (Vaswani et al., 2017).

In the last 5 years, many reviews have experimentally compared
ML and DL tools for pre-miRNA prediction, in the same conditions
and datasets (Demirci et al., 2017; Stegmayer et al., 2019). In Park
et al. (2017) deepMirGene was compared against the best ML meth-
ods, showing that the DL model performance was superior. In
Stegmayer et al. (2019), ML tools based on Random Forest, Naive
Bayes, Support Vector Machines and DL-based methods were eval-
uated for several class imbalances, under conditions similar to those
found in a real genome-wide prediction. In that work, the perform-
ance of methods based on classical ML was overcome by DL-based
methods in high imbalance situations. More recently, in Bugnon
et al. (2021), a comparison of the different DL methods proposed to

date (deepMir, deepMirGene, deepBM, deeSOM, etc.) was made in
genome-wide conditions with high class imbalance. It was found
that deepMirGene obtained the best performance using sequence
and structure as input, and deepMir using only sequence obtained a
close good performance. Both methods outperformed the other
models in the prediction of pre-miRNAs in the human genome.
More recently, mirDNN has appeared as the best predictor for
genome-wide. Based on all these previous experiments, it can be
stated that these methods are the more challenging and best-per-
forming DL models for pre-miRNAs prediction up to date.

As an alternative to improve DL models in the automatic extrac-
tion of features, the Transformers have appeared very recently, com-
ing from the natural language processing domain (Devlin et al.,
2018; Vaswani et al., 2017). Transformers are deep networks with
self-attention mechanisms in each layer, which allows obtaining sev-
eral improvements with respect to recurrent and CNN models
(Dosovitskiy et al., 2020). In the past 2 years, Transformers have
also arrived to the modeling macromolecules including proteins
(Clauwaert et al., 2021; Rives et al., 2021), DNA (Ji et al., 2020; Le
et al., 2021; Nambiar et al., 2020; Rao et al., 2021) and RNA (Wan
et al., 2019). The information flow in Transformers is parallelized,
instead of being done sequentially as in recurrent networks.
Moreover, unlike convolutional networks that work with a local vi-
sion and require many layers to obtain a global vision, the attention
mechanisms allow the analysis of longer sequences without losing
context information, thus maintaining a global vision of the input in
each layer, due to their point-to-point connections (Vaswani et al.,
2017). These characteristics of the Transformers can allow learning
relationships between all nucleotides within a sequence, thus being
able to better model its secondary structure. This way, it is possible
to develop a DL model capable of, only from the raw RNA se-
quence, extracting information about its secondary structure with-
out any data pre-processing nor engineered feature extraction. Being
precisely the secondary structure one of the most important charac-
teristics for the pre-miRNA classification (de Lopes et al., 2014),
most DL models propose to use a 2D mapping of the RNA se-
quence, then applying 2D CNN to process this matrix and obtain a
contact point matrix of size L�L, which requires considerable
processing without significantly increasing the accuracy of the pre-
diction (Singh et al., 2019). To better solve these issues we propose a
Transformers-based architecture, where thanks to the point-to-point
product of its attention mechanisms it is possible to efficiently re-
place the 2D mapping. As an additional advantage, instead of
obtaining a contact matrix at the output, a model based on
Transformers can directly provide the secondary structure, with the
classical format of parentheses and points in a single row.
Furthermore, once trained, Transformers can significantly speed up
the estimation of structures and the final pre-miRNA prediction.

In this work, we propose miRe2e, a full end-to-end DL model
for pre-miRNA prediction based on Transformers and attention
mechanisms. It is capable of receiving as input the sequences of raw
genome-wide data, without any pre-processing. After a training step
with known and unlabeled sequences, it can identify pre-miRNA
sequences within a genome. This model automatically learns the in-
trinsic structural characteristics of precursors of miRNAs from the
raw data, without any feature engineering. The proposal has been
tested with several experimental setups with the human genome,
and compared with state-of-the-art algorithms.

2 Full end-to-end DL model

The miRe2e is a full end-to-end DL model based on Transformers.
A Transformer is a neural model architecture that relies on attention
mechanisms to infer global dependencies between input and output.
Each Transformer is made up of layers of attention mechanisms and
feedforward networks (Vaswani et al., 2017). The attention mecha-
nisms aim at finding relationships between each pair of elements
within a sequence (i.e. between nucleotides in a genomic sequence)
(Bahdanau et al., 2015). To do this, a dot product is calculated be-
tween each pair of elements, thus obtaining a score matrix. Then,
softmax is applied to each row of the matrix, obtaining the weights
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associated with the product of each nucleotide with the rest of the
nucleotides in the sequence. For obtaining the new vector associated
with each nucleotide, a dot product is made between its weight vec-
tor, that is the corresponding row of the score matrix, and the full
sequence. Finally, an output sequence of the same dimension as the
input sequence is obtained, but where each nucleotide is weighted
by its importance in its context. In particular, several sets of these
weights can be learnt to capture different relationships in the se-
quence, giving rise to the so-called multi-head attention (Vaswani
et al., 2017). In this case, instead of using a single large weights ma-
trix, each nucleotide is projected in parallel into a set of matrices of
less dimension, which are called heads. The output of each head is
concatenated into a single vector, which is projected to obtain a sin-
gle output. This allows the model to obtain information from differ-
ent subspaces, thus achieving a better representation for each
nucleotide position in the sequence.

The aim of miRe2e is to analyze a raw genome-wide sequence in
the search for pre-miRNA candidates. To do so, shorter sequences
are obtained with a sliding window of length L and step s. The
model receives each one of these sequences and gives a pre-miRNA
score. Thus, after the training stage, the model can run over any
genome-wide sequence and indicate the positions where there might
be a possible pre-miRNA. Each of the windowed sequences is
embedded in a L� 4 one-hot-encoding tensor, where each column
represents one of the four possible nucleotides (A, C, G, U) at each
position. The miRe2e processes this input with three internal deep
models, as depicted in Figure 1: the Structure Prediction (A), the
MFE Estimation (B) and the pre-miRNA Classifier (C). The figure
shows the complete miRe2e model, where the input/outputs of each
model are shown with numbers and the details of the neural archi-
tecture of each model are shown immediately below. The Structure
Prediction model allows obtaining the secondary structure from an
RNA input sequence. The MFE Estimation model calculates the
MFE from an input RNA sequence and its corresponding secondary
structure. Finally, the last deep model performs the pre-miRNA
classification.

The Structure Prediction model (Fig. 1A) learns to estimate the
secondary structure from an RNA sequence. Here the one-hot-
encoding tensor 1 enters a CNN of three stages, each one with
identity blocks. Each one of these identity blocks is made up of two
activation functions, two batch normalization layers, two 1D convo-
lutional layers of length L, and wA filters with identity shortcut con-
nections (He et al., 2016). The main function of this part of the
model is to automatically extract motifs from the input sequence
and increase the number of features to allow a fast processing in at-
tention layers (Vaswani et al., 2017). At the output of the CNN, the
positional encoding signal is added to each embedding (Vaswani
et al., 2017). Then, there is a stack of six Transformer encoders. In
this part of the model, each encoder layer is composed of wA input
features, hA heads and nA neurons in the hidden layers of each feed-
forward network, where the number of hidden neurons is set to
nA ¼ 4wA as suggested in Vaswani et al. (2017). The function of
this encoder is, through its attention mechanisms, to model the con-
tact matrix of each nucleotide in the input sequence, thus being able
to estimate its secondary structure. Finally, after the encoder there is
a 3-layer multilayer perceptron (MLP), ELU activation functions in
the hidden layers and hyperbolic tangent functions at the output are
used. Since in Transformer encoders the output has the same dimen-
sion as the input (L�wA), and the MLP is applied to each sample
of the input tensor without flattening, a reduction in the dimension
of features from wA to 1 is obtained, generating a tensor of L� 1 at
the output 2. To avoid the bias toward the non-pre-miRNA sequen-
ces due to the high class-imbalance, class oversampling was done,
where each training batch is constructed with the same number of
samples from the minority class (actual pre-miRNAs) and the major-
ity class. To do this, the minority class was sampled with replace-
ment. Finally for this model, the mean squared error (MSE) loss
function was used for training, which is calculated between the esti-
mated L� 1 output tensor and the reference secondary structure.
This was represented with 0, 1 and -1 for unmatched nucleotides,
matches in the 50 strand and matches in the 30 strand, respectively.
Thus, it is possible to encode the two strands of each hairpin into a
single real vector.

Fig. 1. Schematic representation of the complete miRe2e: full end-to-end architecture for pre-miRNA prediction in genome-wide data. The details of the architecture of each

model are shown below. (A) The input RNA sequence enters the Structure Prediction model, which outputs the RNA structure . (B) The MFE Estimation model receives

and and calculates the Minimum Free Energy . (C) The pre-miRNA Classifier model receives , and and provides the pre-miRNA prediction
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The second model (Fig. 1B) aims to estimate the MFE from the
input sequence and its secondary structure. It receives 1 and 2, con-
catenates them and obtaining a 5� L tensor with the fifth row being
the secondary structure predicted for the input sequence. The model
is made up of a 3-stage CNN, each one composed of an identity
block and a stacked pooling layer. Due to each pooling layer, after
each stage the length of the input tensor is reduced by a factor of 2.
At each identity block, the 1D convolutional layers are formed by
wB filters and a L=ð2NÞ length, where N is the stage number. Then,
after a flatten layer, there is a 3-layer MLP where each of these
layers has batch normalization and ELU activation functions. MSE
loss was used for training, as the error function between each pre-
dicted output value and its reference MFE value. The output of this
CNN is the estimated MFE 3 of the sequence.

The pre-miRNA Classifier model (Fig. 1C) classifies the input
sequence 1, with its secondary structure 2 and the estimated MFE
3. This model has a 4-stage CNN, each made up of three identity
blocks with wC filters and a stacked pooling layer. Then, there is
a stack of three Transformers encoders. Each encoder layer has
wC input features, hC heads and nC neurons in the hidden layers
of each feedforward network. Its function is to encode the sequen-
tial information of the input, thus modeling the dependency
between each nucleotide in a global way. After the encoder, the
wC � L=16 output tensor is flattened and concatenated with the
output of the MFE model 3. After that, it goes to a 4-layer MLP,
hidden ELU activation functions, batch normalization and
dropout. Finally, a softmax layer at the output predicts the
corresponding class for the input sequence 4. Since miRe2e is
composed of three models in cascade, a 3-stage training was
carried out, where the output of each model was the input of the
next one. More details about the miRe2e hyperparameters and
training can be found in the Supplementary Material.

3 Materials and methods

3.1 Data
Genome-wide data of Homo sapiens (http://ftp.ensembl.org/) was
used in all the experiments (Bugnon et al., 2019). For training the
first model (secondary structure prediction), all the metazoan
pre-miRNAs (23 178), excluding H.sapiens, obtained from
mirBase v.22 (http://www.mirbase.org/) were used, and
2 000 000 pseudo-hairpins were extracted from the genome with
HextractoR (Yones et al., 2020). For the secondary structure used
as reference to train the structure prediction model, two models
were evaluated: the well-known RNAfold (Hofacker, 2003) and a
recent model based on DL called Spot-RNA (Singh et al., 2019).
A better performance was found when miRe2e was trained with
the structures generated by RNAfold. We believe this might be
due to the fact that Spot-RNA was not trained specifically with
pre-miRNA structures, and could be biased toward other types of
RNA structures. Thus, to train miRe2e, the target structure to be
predicted for each input sequence was its corresponding second-
ary structure predicted with RNAfold, at a temperature of 37�C.
Regarding diversity of the pre-miRNAs in the dataset, it should
be mentioned that in spite the miRNA families contain similar
entries, families are defined according to the seed of the mature
miRNA (Bartel, 2018) and not taking into account the complete
pre-miRNA structure, which is the input of miRe2e.

For training the deep model that estimates the MFE, the second-
ary structure predicted by the first model and its respective input
RNA sequence are required. The desired output here was the
RNAfold predicted MFE value normalized by sequence length. For
this model, 23 178 metazoan pre-miRNAs (excluding H.sapiens)
were used. In addition, 48 000 pseudo-hairpins obtained with
HextractoR and 48 000 sequences that did not form hairpins (flats)
were randomly extracted from the genome. For testing the complete
model, the input sequences are obtained through a scan and cut of
each chromosome with overlapped windows (length 100 nt, step
20 nt).

3.2 Performance evaluation
The methods performance is reported with standard recall or
sensitivity (sþ), precision (p) and F1 evaluation metrics,

sþ ¼ TP

TPþ FN
; p ¼ TP

TPþ FP
; F1 ¼ 2

sþ p

sþ þ p
;

where TP, FP and FN are the number of true positives, false
positives and false negatives, respectively. The recall measures how
good a classification method is for recognizing the TPs of the task.
The precision measures the relation between TPs and FPs. In a real-
istic scenario for practical applications, precision is very important
for datasets with high class imbalance, because FPs can be many
more than the TPs. Thus, considering the characteristics of the
classification task under study, it is important to take into account
both sensitivity and precision. Therefore, F1 is used as a global
comparative measure.

It should be noted here that in this scenario of such high-class
imbalance, very low values can be expected from these measures.
For example, if a predictor has only 1% of FP in a dataset with
1,000 TP and 10,000,000 total sequences, the precision could be
below 0.001. As a consequence, very low values of F1 will be also
observed. For performance evaluation and comparison with other
methods, a 4-fold stratified cross-validation strategy was used, that
is, preserving the original percentage of each class on each fold.

These measures were also used to obtain precision–recall
curves (PRC), which is a well-known indicator for global
performance of classifiers. It has been shown (Saito et al., 2015)
that this measure is preferred over the classical receiver operating
characteristic (ROC) curve to assess binary classifiers on highly
imbalanced data. When there is a large class imbalance in a
dataset, a classifier can reach a good performance in terms of
specificity (and sensitivity), but can perform poorly in providing
good quality candidates, with a large amount of false positives. A
PRC can provide a better assessment of performance because it
also evaluates the fraction of true positives among the total
positive predictions. The area under the precision–recall curve
(AUCPR), which is a single numeric summary of the information,
will also be reported as a global measure along all the possible
output thresholds in the compared models.

4 Results

4.1 Generalization capability on cross-validation setup
To show the generalization capability of our model, a comparison
of predictions in cross-validation for the chromosome 1 of
H.sapiens was done. This chromosome was selected because it is the
one with the largest number of positive cases, which is important to
reduce the results variance in a cross-validation setup (full results for
each chromosome will be presented in Section 4.3). Training data
included all positives (156 known pre-miRNAs) in chromosome 1
and the rest of the sequences of chromosome 1 (more than
24 000 000), divided into 4-folds for training and testing. We com-
pared the performance obtained with miRe2e for this task against
the most recently proposed pre-miRNA prediction tool, deepMir
(Tang and Sun, 2019), which also receives raw input sequences (i.e.
without preprocessing and feature extraction). In this setup,
deepMir was re-trained with the same training sets that our model,
changing the output layer for binary prediction with a softmax acti-
vation function.

The results are shown in Table 1, which reports each fold results
in the rows, and then sþ, p and F1 for each method, respectively.
Regarding sþ, both methods have good results, being deepMir
slightly better on average. Instead, the precision of miRe2e is always
the best one, in all folds. It is quite remarkable here that the per-
formance of miRe2e is one order of magnitude higher than deepMir.
This is precisely reflected by F1, where miRe2e is always superior to
deepMir, in all cases with one order of magnitude of difference. This
is due to the fact that miRe2e can effectively model the secondary
structure of the RNA sequence, and since this information is key for
filtering false positives. The model can improve p without a drop in
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sþ, thus increasing the global F1. It should be noted that these
significant results were obtained in the context of the high-class
imbalance of one chromosome (156 positive versus 24 000 000
negative samples), which suggest that the performance of miRe2e in
a complete genome-wide scenario can be superior to deepMir.

4.2 Prediction of human pre-miRNAs added in the

future in miRBase
To further test the performance of miRe2e in a more realistic
scenario, involving the prediction of novel pre-miRNAs in the fu-
ture, we trained it on the human pre-miRNAs dataset from
miRBase v21 (2014) and tested with the human pre-miRNAs
introduced afterwards in miRBase v22 (2018). The training set
has 1854 positive, 87 500 negative and 787 500 flat sequences
and the test set was composed of 27 positive, 12 500 negative and
112 500 flat sequences. We have verified that pre-miRNAs from
v21 then removed in v22 were not used for training. In addition,
we checked for miRTrons in the training and testing sets, due to
their difference in trinucleotide content with respect to miRNAs
(Zhong et al., 2019). We found that the training set has 234
miRTrons, and there are only 2 new miRTrons in the testing set,
which were correctly predicted by our model.

The PR curves are shown in Figure 2 for both models in different
colors. It can be seen that miRe2e (blue line) has reached the best
results, with AUCPR ¼ 0:17. The deepMir method (orange line) has
obtained AUCPR ¼ 0:08, a very low value and half than that of
miRe2e. It should be noticed that, for the same recall in both methods
(e.g. 0.20), while miRe2e obtains a F1 ¼ 0:26 with 11 FP, deepMir
has F1 ¼ 0:08 with 113 FP (more than 10 times). This is of high im-
portance in the application domain, where if for the same TP rate a
large number of initial candidates to novel pre-miRNAs are obtained,
in the order of hundreds or thousands, it will be almost impossible to
validate them all experimentally to discover real pre-miRNAs. Thus,
a smaller number of predicted and good candidates is preferred. In
addition, in a detailed analysis of the negative training set we have
found a few entries that were subsequently added as novel pre-
miRNAs to miRBase. From the 27 positive samples in the test set, 26
were correctly predicted by our model. This shows that the perform-
ance of the classifier was not affected by some mislabeled cases in the
training set. These results show that miRe2e is effective for the predic-
tion and discovery of new pre-miRNAs in the future.

4.3 Genome-wide discovery of pre-miRNAs in a new

species
Finally, to test miRe2e in a very realistic task of discovery novel pre-
miRNAs in a new species, the following experimental setup has been
used. The Structure Prediction model was trained with all known meta-
zoan pre-miRNAs excluding H.sapiens (23 048 sequences), and nega-
tive samples from animals (2 000 000 hairpins in total from Anopheles
gambiae, Drosophila melanogaster and Caenorhabditis elegans)
(Bugnon et al., 2019). The MFE model was trained with all known
metazoan pre-miRNAs excluding H.sapiens, 48 000 pseudo-hairpins
and 48 000 flats randomly extracted from Anopheles gambiae,
Drosophila melanogaster and Caenorhabditis elegans. The pre-miRNA

Classifier model was trained with all known metazoan pre-miRNAs
excluding H.sapiens (23 048), and negative samples from animals
(1 000 000 in total from Anopheles gambiae, Drosophila melanogaster
and Caenorhabditis elegans: 100 000 hairpins and 900 000 flats). The
task was the discovery of all the pre-miRNAs in the human genome (as
if it were a novel species recently discovered). Thus, for testing, all the
sequences within each chromosome containing a known pre-miRNA,
according to the positions described in miRBase v22, were used as the
positive class, and the negatives were all the corresponding sequences
from the rest of the chromosome.

The results are presented in Table 2. The first column indicates
the chromosome, and the second and third column the number of
positive and negative examples in that chromosome, respectively.
Then the performance of each method is reported with sþ, p, F1,
AUROC and AUCPR. Finally, the last row indicates the final perform-
ance measured in the full human genome. It should be noticed the very
large class imbalance that exists in each chromosome. For example, in
chromosome 1 there are 156 positives and more than 24 millions of
negatives, that is, an imbalance ratio of about 1:160 000. Even worst,
in chromosome Y, there are only 4 positives and more than 5 millions
of negatives, making the imbalance ratio up to 1:1 430 000. As stated
in Section 3.2, in such scenarios, very low values of F1 can be
expected. Note that in this case, with just 1% of FP, the F1 drops
below 0.0001, thus the global measures of AUROC and AUCPR are
an important complement for the analysis of these results.

The results shown in Table 2 indicate that, in spite of the very
large class imbalance existing in each chromosome, the miRe2e
model has the best results in all cases. With respect to sþ, miRe2e is
twice better than deepMir for all chromosomes. Regarding p, the
precision is the best one, even one order of magnitude higher in
most cases. In particular, for chromosome 2, the miRe2e perform-
ance in precision is 20 times better than deepMir. In the only case
where deepMir has p¼1.00 (chromosome 5), it should be noticed
however that the corresponding sensitivity is sþ ¼ 0:013 (in contrast
to sþ ¼ 0:280 for miRe2e). Although at this ðsþ;pÞ point deepMir
maximizes F1, this is achieved at the cost of a very low sensitivity.
For F1 and AUROC measures, again, miRe2e clearly outperforms
deepMir in all chromosomes. Finally, regarding the best perform-
ance measure for this type of problems with very large class imbal-
ance, AUCPR, the best result for each chromosome is indicated in
bold. As it can easily be seen from the table, all best results
correspond to miRe2e.

As a deeper insight into the model training, we have compared
the previous setup where miRe2e was trained with known animal
pre-miRNAs, with miRe2e trained with human pre-miRNAs only.
In this comparison, a leave-one-chromosome-out was used, which

Fig. 2. Precision recall curves for miRe2e and deepMir, for the prediction of human

pre-miRNAs recently added in miRBase

Table 1. Performance comparison of miRe2e and deepMir for the

prediction of pre-miRNAs in the chromosome 1 of H. sapiens. Bold

indicates best performance

Fold sþ p F1

miRe2e deepMir miRe2e deepMir miRe2e deepMir

1 0.0130 0.0250 0.0020 0.0002 0.0030 0.0005

2 0.0130 0.0130 0.0020 0.0004 0.0040 0.0008

3 0.0380 0.0130 0.0010 0.0006 0.0020 0.0012

4 0.0130 0.1150 0.0110 0.0005 0.0120 0.0011

Avg. 0.0193 0.0415 0.0040 0.0004 0.0052 0.0009

miRe2e: a full end-to-end deep model for prediction of pre-miRNAs 1195

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/5/1191/6454944 by guest on 24 April 2024



means that miRe2e was trained with all the pre-miRNAs except
those of the testing chromosome. The overall performance of the
model trained with only human pre-miRNAs was AUCPR¼1e-5,
while the model trained with animal pre-miRNAs achieved
AUCPR¼0.12313 (last row in Table 2). The difference in these
results might be due to the fact that when the model was trained
with all animal pre-miRNAs, there were much more positive
training samples to learn from, which improved the capability of
modelling the positive class, which is especially important in this
high-class imbalance scenario.

As a final comparison, not only with DL methods that use raw
data but also with one of the best current methods that uses the pre-
dicted secondary structure of the sequences, we have made a full
genome-wide experiment. Figure 3 shows the PR curves for the
complete human genome (using all sequences from all chromo-
somes), for miRe2e (raw data), deepMir (raw data), deepMiRGene
(raw data þ secondary structure) and mirDNN (raw data þ second-
ary structure þ MFE). Although the last ones are not a full end-to-
end deep model because they use the secondary structure predicted
by an external non-neural model (RNAfold), they provide a valid
comparison with state-of-the-art references. In the top left of
Figure 3 it can be clearly seen that the best performance is for
miRe2e, with the largest difference with respect to all other meth-
ods. At the highest recalls (>0.6), miRe2e behaves equally to
deepMiRGene, very close to mirDNN and much better than
deepMir. However, note that this part of the PR curve is of very lim-
ited practical utility, given the high number of false positives in this
highly imbalanced scenario. It should be mentioned that this high
performance for miRe2e is obtained without requiring any other in-
formation than the raw sequence. Remarkably, in this experiment,
the total AUCPR for miRe2e is 0.12313, which is more than 10
times higher than the other methods. Therefore, the maximum F1

along the PR curve is achieved by miRe2e (F1 ¼ 0.0085), closely fol-
lowed by mirDNN (F1 ¼ 0.0072) and deepMiRGene (F1 ¼ 0.0069).
The worst method here was deepMir, with maximum F1 ¼ 0.0006.

At this point, it was interesting to analyze what contribution
each part of the model makes to the final performance of miRe2e.
To this end, an ablation study was carried out with chromosome 19,
since it is the one with the highest number of positive samples in re-
lation to the negative ones within the human genome (Table 2). The
full miRe2e reaches a maximum F1 ¼ 0.0150. The first part of the
ablation study involved removing the MFE prediction model, leav-
ing only the structure þ pre-miRNA classification prediction mod-
els. In this case, a maximum F1 ¼ 0.0082 was obtained, that is, a
drop of 46%. Then, in a second instance, the MFE and the structure
prediction model were both removed, leaving only the sequence as

Table 2. Performance comparison of miRe2e and deepMir for the prediction of pre-miRNAs in the genome of H.sapiens

Chr Pos Negatives deepMir miRe2e

sþ p F1 AUROC AUCPR sþ p F1 AUROC AUCPR

1 156 24 895 488 0.013 0.0020 0.0035 0.7115 0.00004 0.235 0.0040 0.0079 0.9439 0.11880

2 116 24 213 504 0.075 0.0002 0.0003 0.7081 0.00003 0.271 0.0038 0.0075 0.9640 0.13673

3 96 19 826 688 0.063 0.0001 0.0002 0.7024 0.00002 0.240 0.0043 0.0085 0.9623 0.12117

4 62 19 015 680 0.172 0.0000 0.0001 0.7442 0.00002 0.190 0.0025 0.0050 0.9724 0.09576

5 76 18 149 376 0.013 1.0000 0.0263 0.6978 0.01335 0.280 0.0045 0.0089 0.9585 0.14131

6 71 17 080 320 0.071 0.0001 0.0002 0.7885 0.00002 0.271 0.0043 0.0084 0.9771 0.13684

7 82 15 931 392 0.013 0.0004 0.0008 0.7880 0.00004 0.138 0.0019 0.0038 0.9537 0.06949

8 90 14 512 128 0.012 0.0030 0.0048 0.7488 0.00016 0.232 0.0044 0.0086 0.9196 0.11732

9 88 13 836 288 0.012 0.0014 0.0025 0.6767 0.00003 0.318 0.0056 0.0109 0.9580 0.16041

10 69 13 375 488 0.030 0.0001 0.0003 0.7041 0.00003 0.333 0.0044 0.0086 0.9676 0.16804

11 102 13 504 512 0.040 0.0004 0.0007 0.8100 0.00008 0.228 0.0042 0.0082 0.9669 0.11528

12 80 13 326 336 0.013 0.0526 0.0206 0.7694 0.01288 0.231 0.0042 0.0082 0.9382 0.11621

13 40 11 433 984 0.025 0.0000 0.0001 0.7227 0.00001 0.150 0.0027 0.0053 0.9581 0.07596

14 99 10 702 848 0.041 0.0004 0.0009 0.7364 0.00004 0.204 0.0061 0.0119 0.9726 0.10385

15 71 10 199 040 0.044 0.0002 0.0005 0.6519 0.00003 0.324 0.0066 0.0129 0.9564 0.16360

16 82 9 031 680 0.148 0.0003 0.0007 0.6709 0.00009 0.210 0.0035 0.0069 0.9427 0.10615

17 110 8 325 120 0.075 0.0002 0.0004 0.6709 0.00004 0.142 0.0028 0.0054 0.9501 0.07162

18 35 8 036 352 0.031 0.0001 0.0003 0.6778 0.00002 0.250 0.0040 0.0080 0.9430 0.12595

19 143 5 861 376 0.007 0.0014 0.0024 0.8321 0.00018 0.300 0.0077 0.0150 0.9661 0.15277

20 48 6 438 912 0.021 0.0024 0.0043 0.7646 0.02131 0.234 0.0034 0.0067 0.9727 0.11774

21 33 4 669 440 0.032 0.0067 0.0111 0.7025 0.03229 0.161 0.0034 0.0067 0.9610 0.08132

22 46 5 861 376 0.068 0.0002 0.0003 0.6272 0.00002 0.295 0.0038 0.0075 0.9412 0.14882

X 118 15 599 616 0.009 0.0013 0.0023 0.7605 0.00003 0.301 0.0096 0.0186 0.9741 0.15368

Y 4 5 720 064 0.250 0.0001 0.0003 0.5668 0.00002 0.500 0.0003 0.0006 0.7954 0.00010

Full 1917 309 547 008 0.004 0.0003 0.0006 0.7117 0.00003 0.244 0.0043 0.0085 0.9595 0.12313

Note: Detailed measures for each chromosome (Chr) and the full genome (Full row).

Fig. 3. Precision recall curves for miRe2e, deepMir, deepMiRGene and mirDNN for

the prediction of human pre-miRNAs in the complete genome
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input to the classifier. In this case, the maximum F1 dropped to
0.0009, which represents a 94% less with respect to the full miRe2e.
It can be concluded that each module in miRe2e has a fundamental
contribution to the final result, the structure prediction block being
the most important one.

These results indicate that miRe2e can be reliably used for the
discovery of novel pre-miRNAs in a full genome, with the best pos-
sible sensitivity and precision in such a high imbalance scenario.
That is, with a very low number of positive examples to learn for
the discovery of new ones. This makes miRe2e the first full end-to-
end DL model, based in Transformers, for the pre-miRNA predic-
tion task.

5 Conclusions

In this work, we have proposed miRe2e, the first full end-to-end DL
model for pre-miRNA prediction in genome-wide data. The advan-
tages of this model over state-of-the methods are twofold. On the
one hand, it is capable of receiving raw genome-wide data, without
any pre-processing or secondary structure prediction. Thus, it is pos-
sible to minimize the impact of handcrafted processes and improve
the reproducibility and replicability of results. On the other hand,
miRe2e can identify all the pre-miRNA sequences within a genome
with very high precision and recall. Moreover, it has shown not to
be affected by the very high-class imbalance that exists within a full
genome between possible novel pre-miRNAs and the huge amount
of negative sequences. In experiments with the human genome, it
was able to effectively discover novel pre-miRNAs, even in a future
time lapse.
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