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Abstract

Motivation: Kernel-based association test (KAT) has been a popular approach to evaluate the association of expres-
sions of a gene set (e.g. pathway) with a phenotypic trait. KATs rely on kernel functions which capture the sample
similarity across multiple features, to capture potential linear or non-linear relationship among features in a gene
set. When calculating the kernel functions, no network graphical information about the features is considered. While
genes in a functional group (e.g. a pathway) are not independent in general due to regulatory interactions, incorpo-
rating regulatory network (or graph) information can potentially increase the power of KAT. In this work, we propose
a graph-embedded kernel association test, termed gKAT. gKAT incorporates prior pathway knowledge when con-
structing a kernel function into hypothesis testing.

Results: We apply a diffusion kernel to capture any graph structures in a gene set, then incorporate such information
to build a kernel function for further association test. We illustrate the geometric meaning of the approach. Through ex-
tensive simulation studies, we show that the proposed gKAT algorithm can improve testing power compared to the
one without considering graph structures. Application to a real dataset further demonstrate the utility of the method.
Availability and implementation: The R code used for the analysis can be accessed at https://github.com/JialinQu/

gKAT.
Contact: cuiy@msu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Significant developments in gene expression analysis in the past dec-
ades have drastically promoted our comprehension of genomic as-
pect of diverse diseases. There is a paradigm shift of gene expression
analysis from the single gene-level analysis to analyses focusing on
gene sets, with the hope to gain better biological insights into the
molecular mechanisms of various phenotypic traits, in particular
disease traits. The resultant gene sets are analyzed as a whole to de-
termine which of these properties are relevant to the phenotype of
interest (Mathur et al., 2018). This global view of gene-set analysis
(e.g. pathway analysis) features a number of advantages when com-
pared with a single-gene analysis. First, identifying pathways and
processes can have more explanatory power. Gene sets tend to be
more interpretable and more reducible than a simple list of different
genes. Second, genes within a pathway are likely to interact with
each other. Gene-set analysis can boost the signal-to-noise ratio and
make it possible to detect modest changes in individual genes when
there exists strong cross-correlation between the members of a gene
set (Subramanian et al., 2005). Moreover, it reduces the number of
tests that need to be performed and further reduces computational
complexity by grouping thousands of genes or proteins sharing
biological, functional or other characteristics. Gene-set analysis

approach can also provide valuable insight into the collaboration
of particular biological pathways or cellular functions of complex
diseases by considering functionally associated gene sets
simultaneously.

With well over a decade of development of gene set analysis,
various methods are available. Subramanian ez al. (2005) proposed
gene set enrichment analysis, ranking all genes in a gene set depend-
ing on differential expressions and calculating enrichment score
from a ranked list to test gene set significance. In a study by Liu
et al. (2007), a semiparametric regression model called least squares
kernel machines for assessing pathway effects on a continuous out-
come is presented, where the kernel machines is utilized to handle
interactions between expressions of several genes. This model estab-
lished a close connection between kernel machine methods and a lin-
ear mixed model. A similar idea was applied to develop a logistic
kernel machine regression model for binary outcome, establishing
close relationship between logistic kernel machine regression and lo-
gistic mixed model (Liu et al., 2008). Similar ideas were also gener-
alized to SNP data. For example, Wu et al. (2010) proposed to
assess the association of a group of SNPs with a binary disease trait
using a logistic kernel machine. The method was later on extended
to incorporate rare variants, called sequence kernel association test
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(SKAT), to analyze the joint influence of region-based multiple var-
iants on a disease phenotype (Wu ez al., 2011).

During the last decade, the abundance of biological knowledge
or pathway information from multitudinous scientific research has
made it possible to incorporate biological information, particularly
molecular interactions networks, in the analysis of gene expression
data. Networks or graphs are popular ways of characterizing these
biological messages which contain valuable information. With rapid
development of well-known pathway databases containing tens of
thousands of reactions and interactions, such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa er al.,
2004), Reactome (Joshi-Tope et al., 2005), STRING v10.0
(Szklarczyk et al., 2015), BioCyc (Karp et al., 2005) and BioCarta
(Nishimura, 2001), how to utilize these knowledge to supplement
the standard experimental data raises interesting statistical
challenges.

A lot of published literatures have been focused on taking advan-
tages of the prior network knowledge to solve classification or clus-
tering problems. For instance, Liu et al. (2014) developed a
‘network-assisted co-clustering for the identification of cancer sub-
types’ (NCIS) algorithm that incorporated gene network informa-
tion to simultaneously cluster both samples and features. Rapaport
et al. (2007) showed how to derive supervised and unsupervised
classification algorithms based on spectral decomposition incorpo-
rating gene network information. Li and Li (2008) and Gao et al.
(2019) introduced a network-constrained regularization procedure
for gene selection that integrated graphical information. Cun and
Frohlich (2012) compared 14 published gene prior knowledge-based
selection methods, while Manica et al. (2019) proposed a pathway-
induced multiple kernel learning method and compared their
method with all approaches mentioned in Cun’s paper. These works
underscore the importance of incorporating prior gene network in-
formation in genomic analysis, focusing either on gene selection or
prediction. However, none of these methods are focused on hypoth-
esis testing by borrowing prior network information. It is thus the
purpose of this work to develop a new testing procedure that evalu-
ate the joint association of multiple genes with a phenotypic trait,
while incorporating prior network/graph knowledge.

In a recent work by Liu et al. (2007), the author presented a ker-
nel association test (KAT) framework, a regression approach to test
for association between multiple genes and a phenotype, while also
taking covariates into consideration. Individual similarity is taken
into account to construct a kernel matrix which is then used to build
a score test to assess associations. In fact, all the KAT-based testing
methods do not consider feature similarities when establishing asso-
ciations. Instead of depicting correlations between individuals, fea-
ture similarity focuses on connectivity between gene features which
are further utilized to improve the power of an association test. The
advancement of pathway knowledge enables us to integrate bio-
logical information and construct such feature similarities. In this
article, building upon the KAT framework, we propose a graph-
embedded kernel association test (gKAT), a method that exploits
prior network information and tests for association between a gene
set and a trait. Based on the prior network information, we can com-
pute a diffusion kernel to describe relationships between genes in a
set. Such information is regarded as a weight matrix when comput-
ing the gKAT test statistic. The simulation study indicates that this
method is effective and has higher power than the original KAT test
that do not borrow the graph information. We apply our method to
a liver enzyme gene expression dataset combined with pathway in-
formation extracted from the KEGG database. Our approach
achieves meaningful result and provides a new tool for gene set
analysis.

2 Materials and methods

2.1 Association test with kernel machine regression

To make the article self-contained, we briefly introduce the KAT-
based method under the kernel machine regression framework.
Kernel machine method is a powerful tool for association analysis.

Association test using the kernel machine regression method was ini-
tially introduced by Liu et al. (2007), where the authors introduced
a score test statistic to evaluate the joint effect of a gene set on a
phenotype, instead of assessing individual gene effect. Some nota-
tions need to be made before we introduce the KAT method.
Consider N samples measured on P genes; for the ith sample, y;
refers to the phenotypic response; Z; = (Zs,Z, . .. ,Z,-M)T denotes
the ith sample measured on M covariates; and X; =
(Xi1, X2, ..., Xip)T denotes P gene variables. The phenotype y;
depends on Z; and X; through the following semi-parametric model:

yi=o0+uZi+h(Xi) +e (1)

where h(X;) is an unknown centered smooth function subjected to
gene expression X;. If we assume h(X;) is linear in Xj, then (1) can
be written as,

yi =0+ odZi+ fXi+e,
when y; is continuous and
logit P(y; = 1) = ag + o Z; + f'X;,

when y; is a binary outcome taking values either 0 or 1. Then, one
can test association between P gene variables and Y by Hy : f = 0.
When the dimension of gene variables P is large, the above linear or
logistic regression model will be under-powered due to large degrees
of freedom. To overcome this issue, KAT assumes the regression
coefficients f§ are random and follow a normal distribution with
mean 0 and variance 12K, where K is a kernel matrix whose (i, j)th
element is K(Xj, X;). Therefore, testing Ho : f = 0 is equivalent to
test Hy : ©2 = 0. For a continuous outcome, the KAT test statistic Q
under the null is defined as,

O=(-Ky-p 2)

where jt = oy + Za is the predicted mean of y under the null hypoth-
esis. Some popular choices of kernel functions include linear kernel,
polynomial kernel, Gaussian kernel and sigmoid kernel. When the
gene variables are SNPs, the kernel matrix can be the IBS kernel
(Kwee et al., 2008; Wu et al., 2011).

In all the KAT-based methods, the kernel matrix K is calculated
assuming genes are independent. Genes function in networks to ful-
fill their joint tasks. When such network information is available,
incorporating such network information can improve the gene selec-
tion performance (e.g. Li and Li, 2008; Gao et al., 2019). However,
no testing work has been developed by borrowing such network in-
formation when assessing associations. Here, we develop a graph-
embedded KAT-based test (gKAT) which can incorporate prior net-
work/graph information to improve association signals.

We take gene expression data to illustrate the idea. Extension to
SNP variables is similar as long as such network/graph information
is available. Figure 1 gives a summary of the proposed gKAT ap-
proach. Figure 1a shows that a subset of gene variables belonging
to a particular gene set (e.g. a KEGG pathway or a GO term) may
form a network which can be expressed as an adjacency matrix.
This set of genes are highlighted with red color and their graph in-
formation can be extracted from a database. Figure 1b shows the
extracted sub-network of genes with which a diffusion kernel can be
defined to extract the gene similarity information in the network.
Such information is then incorporated into step (c) to form the
gKAT statistic for further association evaluation.

2.2 Constructing the diffusion kernel from gene

expression pathway

To consider the regulatory interaction network information in a
gene set, we first introduce feature similarity which can be described
by a diffusion kernel. Kernel-based algorithms are suitable for cap-
turing similarities between data points induced by graph-like struc-
tures. In kernel methods, a symmetric function K:yx x y — R,
where y denotes the input space, is called a kernel function if it satis-
fies the Mercer’s condition (Schélkopf et al., 2002). Kernel function
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(a) Common measurements: X*

Gene Expression

Samples

Common network: G*

(b) Common measurements: X?

Gene Expression

Samples

Diffusion kernel: S=e®!

Gene Expression

Gene Expression

(c) Samples

Samples

K=X1SX1T

Fig. 1. Step (a): a subset of gene variables (red color) is extracted to form a sub-network based on some prior knowledge (e.g. a KEGG pathway or a GO term); (b) compute a
diffusion kernel based on the sub-network graph information extracted from the database; and (c) calculate the final kernel that contains the graph information for further as-

sociation test

implicitly constructs a mapping from the input space to a Hilbert
space Hg, i.e. ¢:y— Hg, which is equipped with the inner
product,

K(x,x") = (p(x), p(x')).

Based on matrix exponential idea, a diffusion kernel is proposed
to construct kernels on graphs, which can be formally described as:

S— oM — lim (1 +‘5—H) , (3)
n—0oo n

where 6 is the bandwidth parameter that controls the extent of diffu-

sion and H is a negative Laplacian matrix. The limit of diffusion ker-

nel always exists and is equivalent to (Kondor and Lafferty, 2002),

5 o 5
e"H:I+5H+7H2+?H3+~--.

Consider a pathway that is represented by an undirected and
unweighted graph G = (V, E), where V denotes a set of nodes corre-
sponding to genes and E = {u ~ v} denotes edges indicating connec-
tions (or interactions) between genes. Such a graph is defined by a
generator H as follows,

1 foru~v

H={ —-d, foru=v

0  otherwise
where the degree of vertex u is defined as d, =3, 1. For an iso-
lated vertex u, we set d,, = 0. It is obvious to see that the negative of
H is the Laplacian matrix. Since H is symmetric, it turns out that

e is always positive semi-definite for any symmetric matrix H

(Kondor and Lafferty, 2002).

The parameter § in the diffusion kernel controls the extent of dif-
fusion and it has similar effect as the scaling parameter in a
Gaussian kernel (Sun ez al., 2008). Selecting appropriate ¢ values is
a key step. In a prediction analysis, one can simply pick the optimal
one by checking the prediction accuracy using cross-validation.
However, things become complicated when the focus is to evaluate
associations in a hypothesis testing situation. In this work, we con-
sider a sequence of & values centered at 0 (the diffusion kernel S
degenerates to an identity matrix if =0) based on which we can
construct different diffusion kernels. Under each S, we can conduct
a hypothesis test and get a P-value. Then, we borrow the omnibus
testing idea to get an aggregated P-value. The details are given in
Section 2.4.

2.3 Combing data information with graph similarity
Given a diffusion kernel which represents relationships between
genes, it can be incorporated into the calculation of the sample simi-
larities to get the sample kernel function. The final kernel function,
thus, considers both the sample and feature similarity information.
For simplicity, we consider a linear kernel to illustrate the idea.

Recall that for a symmetric Laplacian matrix L € RP*P there
exists an eigen-decomposition, L = RART, where columns of R €
R”*P contains orthogonal and normalized eigenvectors of L, and
A = diag(41,...,4p) is a diagonal matrix whose entries are the
eigenvalues of L. As stated by explanation of the function of matri-
ces (Golub and Van Loan, 2012), a diffusion kernel has decompos-
ition as follows,
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ZL3+~~~:RDRT

$2
S—eM = et — 1oL+ 012 -
2
where D = diag(e=%,...,e~%"). Note that, when 6 =0, S is degen-
erated to an identity matrix. In this case, no graph information is
considered.

The linear kernel is the simplest kernel function which is given
by the inner product, i.e. Ky (x,y) = xTy, where x and y € RP*! are
two samples with P measurements. Gene expression pathway infor-
mation is regarded as prior information gathered over biomedical
researches from which we can construct diffusion kernel to describe
similarities between genes, which is shown in Section 2.2. Using this
prior knowledge, a diffusion kernel matrix § € RP*P can be built,
which leads to the final kernel function given as,

Ki(x,y) = x"Sy = x"RDR"y = (x"RD¥)(D!R"y) = d(x)" ®(y)
(4)

Once we calculate K, it can be plugged into Equation (2) to as-
sess the association between a gene set and a phenotypic trait.

One can also consider a weighted graph G = (V,E, W), where
W denotes weights of the edges with w(u, v) being the weight of
edge between node # and v. In this case, the degree of vertex can be
calculated as d, =Y, w(u,v). A normalized Laplacian matrix of
a weighted graph can be defined as,

—w(u,v)/\/d,d, foru~v
L=4q 1-w(u,v)/d, foru=v
0 otherwise

which is symmetric and positive semi-definite. Comparable eigen-
decomposition can be applied to L as described above.

Here, we use a toy example to illustrate the idea (see Fig. 2),
similar as what illustrated in Manica et al. (2019). For two samples
with seven gene variables, an adjacency matrix can be extracted
based on the sub-network information extracted from certain data-
base (Fig. 2a). Applying the graph induction steps described above,
given any fixed tuning parameter d, Figure 2b suggests that the ori-
ginal data can be mapped from the input space to a new space

defined by the newly calculated kernel function specified by the par-
ameter 0.

The idea is illustrated with the linear kernel. It can be generalized
to other kernels, such as the Gaussian and polynomial kernel, or a
combination of different kernels to fully utilize the advantages of dif-
ferent kernel functions. For example, when a Gaussian kernel is
applied, the final kernel function that incorporates the diffusion
kernel S can be given as Kg(x,y) = exp(—ox), where ¢ is the
bandwidth parameter and « = (x —y)"S(x —y) = (x —y)"RDR”

(x=3) = {(x=»"RD}} {DIRT(x —3)} = @x.9) 0(x,y). So
the final diffusion-based Gaussian
K (x,y) = exp{—0®(x,y) ®(x,y)}.

kernel is given as

2.4 P-value aggregation with Cauchy transformation
Since we do not know the optimal tuning parameter ¢ when calcu-
lating the diffusion kernel function, we define a sequence of | 6 val-
ues centered at 0. Note that when 6=0, the diffusion kernel is
degenerated to an identity matrix and the final kernel is the same as
the regular kernel assuming independence between features. For a
given ¢ value, we can get a P-value denoted as p;,j =1,...,]. Since
these | P-values are calculated based on the same dataset, they are
correlated. Borrowing the P-value aggregation idea termed as ACAT
by Liu et al. (2019), we can do a Cauchy transformation of the jth
P-value by w;jtan {(0.5 — p;)n}, where w; is a non-negative weight.
ACAT defines the final test statistic as a linear combination of
Cauchy transformed P-values by,

J
TACAT = Zw,- tan {(05 — p/')TE}
=1
Then the final aggregated P-value can be calculated by,
P —value ~ 0.5 — {arctan(Tacat/w)} /%

based on the cumulative density function of the Cauchy distribution.
If no information is available for the weight function w, it can be
simply taken as 1/].

(a) Molecular measurements: X Interaction Adjacency: Interaction network: G
A B CDEF G A B CDETF G

+11|3|5|2|4|6(7 A 1111 1
-12|4(6|5]|7(3]|1 Bl1 1

cl1]1 1

D1

E 1

F 1 1

G|1 1 1

(b)

&(x) = DYV2RTx

Setting 6 value and plugging

it into formula give
transformed information

Fig. 2. Illustration of the pathway induction idea. (a) Prior graph knowledge is converted to an adjacency matrix; and (b) the geometric representation of the samples in the
mapped space defined by the new kernel function specified by the parameter . The two samples in the mapped space can be considered as projections from the original meas-
urement space to the mapped space defined by the new kernel function incorporating the diffusion kernel
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3 Simulation studies

We conducted simulations under various settings to evaluate the per-
formance of the gKAT method and compared it with the regular KAT
method without considering the graphical information. We fist simu-
lated two gene networks assuming different P (50 and 100). We ran-
domly generated two adjacency matrices with different dimensions
(P=350 and P =100), based on which the R igraph package was used
to depict relationships between nodes. See Figure 3 for the two gene
network structures. We regarded the network structures as known
prior knowledge for the two gene sets. A Laplacian matrix was then
defined according to the graph network information. Next, we com-
puted the Jaccard similarity based on each network that would be
treated as the variance-covariance matrix X of a gene set. The Jaccard
similarity coefficient of two vertices is the number of common neigh-
bors divided by the number of vertices that are neighbors of at least
one of the two vertices being considered. The network information
and matrix X were then used in all the simulations.

To simulate gene variables X, we generated a multivariate normal
distribution with mean 0 and variance-covariance matrix X. Table 1
reported the type I error rates of the test under different data dimen-
sion (P=150, 100) and different sample sizes (N =200, 400, 1000).
We analyzed the data using linear kernel (denoted as L) and Gaussian
kernel (denoted as G). The corresponding ones by incorporating the
graph information with a diffusion kernel were denoted as L, and G,.
We also applied the ACAT idea to integrate P-values obtained with
the linear and Gaussian kernel and the results were denoted by C.
The one by integrating P-values incorporating graph information was
denoted by C,. Since the true gene effect is unknown in practice, this
omnibus testing idea can take advantage of both linear and non-linear
effect in which a group of genes may have on a phenotype, hence
improves the power. In both the type I error and power simulation
studies, the significance level was set as 0.05.

Under different data dimensions (P =350, 100), the type I error
rates are all under-estimated if the graph information is ignored.
Typically the KAT-based method, such as the SKAT method for
sequencing data analysis, gives conservative type I error rate (Lee
et al.,2012). In contrast, the type I error rate is reasonably estimated
when the graph information is incorporated. For example, the type I
error rate is 0.038 for the combined result when N=200 without
considering the graph information, while the estimate is 0.05 when
prior graph information is considered. Interestingly, the Gaussian
kernel gives quite conservative error rate compared to the linear ker-
nel, in particular when no graph information is considered. By inte-
grating the two P-values obtained under the linear and Gaussian
kernel, the type I error rate is reasonably controlled. Overall, the

® e

_
@ @@@
@ @
® ¢899 ® og®

°P

Table 1. Type | error (T1E) under different sample sizes (N=200,
400, 1000) and different data dimensions (P=50, 100) analyzed
with a linear kernel (L), a Gaussian kernel (G) and integrating linear
and Gaussian kernel (C) with and without incorporating the graph
information

P N T1E without graph T1E with graph

L G c L, G, Ce

50 200  0.035 0.025 0.038 0.043 0.037 0.050
400  0.045 0.035 0.038 0.047 0.046 0.052

1000  0.041 0.035 0.039  0.050 0.048 0.055

100 200  0.034 0.011 0.022  0.044 0.038 0.039
400  0.045 0.019 0.026  0.052 0.042 0.047

1000 0.048 0.034 0.038  0.051  0.050  0.050

test by considering the graph information can reasonably control the
type L error.

To evaluate the testing power, three simulation scenarios (A, B
and C) were considered:

AZYi:X,'ﬁ

B:Y;=0.15X;; +0.15X;3 + 0.15X;5 + 0.15X;7 + 0.15X;9
+0.6X1 X3 + 0.6X;5X;7 + 0.6X:9Xi11 + 0.6X:13 X015

16
C:Y, = Zl{o.om,?, +0.015X; + exp(—X;/10)}

j=

In scenario A, we let 25 genes have effects and the rest have no
effect and considered two different settings: (A1) weak effect size,
ie. $=4{0,0.035,0,0.035,...,0,0.035,0,0.035}; and (A2) rela-
tively strong effect size, i.e. f={0,0.05,0,0.05,...,0,0.05}. In
scenario B, both main and interaction effects were considered and in
scenario C, only non-linear effect were considered. The purpose was
to check the testing performance under different situations.

It is worth mentioning that the choice of the bandwidth parameter
4 is a challenging issue when computing the diffusion kernel. Empirical
evidence suggests that considering an interval 6 € [—1, 1] is sufficient to
cover a good range of ¢ values centered at 0. In our analysis, we chose &
values between —1 and 1 with an increment 0.1. A total of 21 diffusion
kernels were computed under each § value. When 6 =0, the result is
the same as the one without incorporating network information since
the diffusion kernel S degenerates to an identity matrix I. The ACAT

Fig. 3. The simulated network structures under different data dimensions (P = 50 for the left figure and P =100 for the right figure)
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Table 2. Testing power under different scenarios with and without
incorporating graph information

P N Scenario B Power without graph  Power with graph

L G C L G, G

50 200 A1 (0,0.035) 0.479 0.383 0.452 0.563 0.462 0.516
A2 (0,0.05) 0.842 0.776 0.808 0.901 0.829 0.865

B 0.386 0.483 0.437 0.392 0.628 0.555
C 0.496 0.506 0.504 0.577 0.585 0.582
400 A1  (0,0.035) 0.863 0.839 0.840 0.906 0.873 0.883
B 0.717 0.859 0.847 0.724 0.957 0.925
C 0.855 0.924 0.906 0.900 0.945 0.939

100 200 A1  (0,0.035) 0.332 0.252 0.325 0.492 0.420 0.483
A2 (0,0.05) 0.741 0.635 0.643 0.873 0.801 0.838

B 0.178 0.120 0.151 0.199 0.179 0.187
C 0.215 0.198 0.199 0.332 0.282 0.300
400 A1  (0,0.035) 0.783 0.699 0.766 0.886 0.836 0.885
B 0.368 0.358 0.361 0.378 0.422 0.417
C 0.576 0.557 0.565 0.669 0.657 0.663

method was then applied to combine the 21 P-values obtained under
the 21 kernels to get the final aggregated P-value. In each scenario, 200
or 400 individuals along with 50 or 100 genes were generated to esti-
mate the empirical power, each with 1000 simulation replicates.

Table 2 shows the empirical power under different scenarios. In gen-
eral, the empirical power improves with increasing sample size and gene
effect. Under scenarios A1 and A2, the linear kernel always outperforms
the Gaussian kernel since the effects are all linear. By further integrating
different P-values obtained under the linear and Gaussian kernel, the inte-
grated power is close to the best one. The same results were observed in
other scenarios. This shows that in practice, one can integrate P-values
obtained under different kernels to get a robust one when the underlying
true gene function is unknown. For fixed N and P, the power increases as
the effect size increases. Under the same P and effect size, the power
increases as the sample size increases. For example, the power increases
from 0.563 to 0.906 when increasing sample size from 200 to 400, ana-
lyzed with the linear kernel incorporating the graph information. Under
the same sample size and effect size, the power decreases as the data di-
mension P increases as we expected, since increasing the null variables
adds more noise to the model. For example, under scenario Al, the
power decreases from 0.563 to 0.492 when P increases from 50 to 100
under the L, model.

Under scenario B and C, the Gaussian kernel performs better
than the linear kernel when P = 50. When P increases to 100, more
noises were added to the model and the Gaussian kernel suffered a
little bit from power loss. This could be due to the fact that the
introduced noises were linear noises having zero effect, which
makes the Gaussian kernel under-performed. In any case, the
gKAT model considering prior graph information always outper-
forms the KAT method without incorporating the graph informa-
tion. In addition, integrating P-values analyzed with different
kernels can be done in practice in order to utilize the strength of
different kernels.

In the above-presented simulation studies, we incorporated the
correct graph information when implementing the gKAT method.
However, as the true graph information may not always available in
practice, it is interesting to investigate the situation where the prior
network knowledge may not be correctly specified. Due to space
limit, we provided the simulations in Supplementary File. The results
showed that the proposed gKAT method does not suffer too much
from power loss even the network information was not correctly
specified, indicating the robustness of the method.

4 Real data analysis

We applied the gKAT method to a human liver cohort dataset to
demonstrate the utility of our approach. Liver tissues of 466

Caucasian samples including 213 females and 253 males whose age
ranging from 0 to 93 with an average of 50 and a standard deviation
of 18 were used. The dataset contains 466 individuals along with
40 638 gene expression measurements and 10 enzyme activity phe-
notypes, which can be downloaded from the Sage Bionetworks’ syn-
apse platform using Synapse ID syn4499 (Gao et al., 2019). Schadt
et al. (2008) and Yang et al. (2010) gave detail description of the
dataset. We picked enzyme activity CYP2E1 as our phenotype
which was further log-transformed to pass the normality test. We
then extracted three gene expression pathways from the KEGG
database, including two CYP2E1-related pathways, hsa00982 and
hsa00980, and one CYP2E1-unrelated pathway hsa00730. Pathway
hsa00982 and hsa0090 contain gene CYP2E1 and served as positive
controls. After matching genes in the dataset with the ones in the
pathways, 66 and 70 genes were, respectively, remained in pathway
hsa00982 and hsa00980, whereas only 12 genes were mapped to the
hsa00730 pathway. Subjects whose information was not complete
(e.g. having missing gene expressions or phenotypic measurement)
were removed, resulting in 379 individuals. Each gene expression
was standardized to have mean 0 and standard deviation 1.

Figure 4 showed the subgraph of (a) hsa00982, (b) hsa00980
and (c) hsa00730 with the matched genes. Based on the subgraph,
we constructed diffusion kernels to quantify the graphical structure
of each pathway. For pathway hsa00982 containing 66 genes (e.g.
66 nodes), the diffusion kernel based on this subgraph was a R®6*¢
matrix. Similarly for pathway hsa00980 and hsa00730, we con-
structed R7%*70 and R'2*!? kernel matrices, respectively. We first
considered the single kernel situation when calculating the Gaussian
and linear kernel while incorporating the graph information to get
the corresponding P-value. The results were compared with those
obtained with the corresponding Gaussian and linear kernel without
incorporating prior graph information. Finally, we integrated the P-
values obtained under the Gaussian and linear kernel to obtain a
final aggregated P-value with the ACAT method. In total, we com-
pared three different cases: 1) results analyzed with the linear kernel
with and without incorporating the diffusion kernel; 2) results ana-
lyzed with the Gaussian kernel with and without incorporating the
diffusion kernel; and 3) results after integrating the linear and
Gaussian kernel with and without considering the graph
information.

As we described in Section 2.4, we selected a sequence of values
for 4, i.e. 6 ={-1.0,—0.9,-0.8,...,0.8,0.9,1.0}. This ended up
with 21 different § values. Under each ¢ value, a diffusion kernel
was computed and further incorporated into the Gaussian or linear
kernel calculation to get a P-value. The 21 P-values were then aggre-
gated with the ACAT method to get the final P-value for the path-
way. Figure 5 shows the distribution of P-values under three
different pathways. When ¢ = 0, the diffusion kernel is degenerated
to an identity matrix; thus, the diffusion combined Gaussian or lin-
ear kernel is the same as the original Gaussian or linear kernel. The
red dot in the figures shows the minimum P-value. For pathway
hsa00982 and hsa00730, the minimum P-values were obtained
when 6 = 0, whereas for pathway hsa00980, the minimum P-value
was obtained when ¢ = —0.1.

Table 3 shows P-values computed using the original Gaussian
and linear kernel, the Cauchy combined P-value and the minimum
P-value along with the optimal bandwidth 6 value for pathway
hsa00982, hsa00980 and hsa00730. In the table, P;, P; and P
refer to P-values calculated using the linear, Gaussian and combin-
ation of the linear and Gaussian kernel, respectively. Similarly, Pp,
Ppc and Pp refer to the corresponding P-values after incorporating
the prior graph information with the diffusion kernel. The data in
the corresponding second line shows the minimum P-value along
with the bandwidth 6 value in the parenthesis.

For pathway hsa00982 and hsa00730, the minimum P-values
were obtained when d =0. There is no power gain by incorporating
prior graph information for these two pathways. Therefore, it is not
surprising to see that the aggregated P-values under different kernels
incorporating the prior graph information are larger than the ones
without considering the graph information. For pathway hsa00980,
the minimum P-value was observed when & = —0.1. The final
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Table 3. List of the final aggregated P-values with and without incorporating prior graph information in different pathways

Pathway Py Pg Pc Ppr Ppc Ppc
hsa00982 2.68E-9 9.52E-9 4.18E-9 1.23E-8 1.10E-7 2.21E-8
2.68E-9(0) 9.52E-9(0)
hsa00980 9.68E-8 1.31E-7 1.11E-7 5.65E-8 2.30E-9 4.42E-9
3.25E-9(-0.1) 1.10E-10(=0.1)
hsa00730 0.20 0.06 0.09 0.25 0.11 0.16
0.20(0) 0.06(0)

Note: The minimum P-value along with the J value (in the parenthesis) is shown with the italic font.

aggregated P-values under different kernels incorporating the graph
information are thus smaller compared to the ones without consid-
ering the graph information, showing the improvement of our
method. For example, the Cauchy aggregated P-value by integrating
the two kernel results is 1.11E-7 without considering the prior graph
information, whereas the P-value reduces to 4.42E-9 when prior
graph information is incorporated. This shows the power gain by
using considering the prior graph information.

For pathway hsa00730, since it is not related to CYP2E1, it
serves as a negative control. Both the Gaussian and linear kernel
gave P-values larger than 0.05, though the Gaussian kernel gener-
ated a smaller P-value than the linear kernel. Gao et al. (2019) re-
cently analyzed this pathway associated with CYP2E1 enzyme
activity using a high-dimensional variable selection model consider-
ing prior graph information. They found no genes with a selection
rate larger than 60% in this pathway. Their result is consistent with
the result obtained in this analysis.

5 Conclusion and discussion

Although it is well-known that genes function in networks to fulfill
their joint task, few association studies considered gene network in-
formation when assessing association between a gene set and a
phenotype. Building upon the KAT framework, we proposed a new
method, termed gKAT that incorporated prior network graph infor-
mation to test for association between a gene set and a trait. We
demonstrated the advantage of our proposed method in simulation

studies when compared with the regular KAT-based method without
considering graph information. The simulation results suggested
that integrating network information can improve the testing power.
In addition, gKAT can correctly control the type I error rate at the
o= 0.05 level. In an application to a liver enzyme dataset, the ana-
lysis results showed that our proposed method could achieve better
performance with a smaller P-value for pathway hsa00980. For
pathway hsa00982, though it is related to CYP2E1 activity, testing
results showed that the smallest P-value was obtained when the dif-
fusion kernel bandwidth parameter is 0. Thus, incorporating net-
work information did not provide power gain for this pathway.
Both simulation and real data analysis demonstrated that the pro-
posed method could be a powerful tool for gene set association ana-
lysis by incorporating prior network knowledge.

It should be noted that choosing optimal bandwidth parameter &
is a challenging task when we compute diffusion kernel to quantify
gene connectivity in a network. Instead of choosing an optimal ¢
value which is difficult to obtain, we tried a range of different ¢ val-
ues and applied the ACAT P-value combination method to combine
all P-values to get an aggregated P-value. The ACAT method works
well under arbitrary correlation structures and performs similarly as
the minimum P-value approach. Since no resampling is involved, it
is computationally faster than the minimum P-value approach does.
We did try to enlarge the range of 6 to [-2,2] and found no difference
compared to the range [-1,1]. On the other hand, the interval size
cannot be too small to miss the point where the minimum P-value
can be obtained. From the empirical evidence, we found that ¢ €
[—1, 1] worked reasonably well.
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In the simulation study, when the number of features increased
from 50 to 100, the model noises increased as the signals were fixed.
Such increased noises had an impact on the testing power. Since the
noises were considered as linear noises with zero effects, they
affected the performance of the Gaussian kernel more than the linear
kernel. This was the reason that we observed better performance of
the linear kernel compared to the Gaussian one in scenario B and C,
even though the relationship between Y and X was non-linear under
P =100. With the increase of noises, sometimes the testing size may
not be well controlled. In this case, feature selection needs to be
done to improve the testing performance. To avoid using the same
dataset to do the feature selection and testing, one can split the data
into two halves, with one half being used for feature selection and
the other half for testing (Meinshausen et al., 2009). This will be
investigated in our future study.

Our method is illustrated with the gene expression data. It can
be applied to other genetic or genomic data with the goal to assess
the association of a gene set with a phenotypic trait, as long as the
graph information is available for the variants in a set. Under the
ACAT framework, kernels other than the linear and Gaussian ker-
nels, such as the polynomial kernel, can be applied to achieve a
more robust omnibus testing power. Our method provides a general
quantitative framework to assess gene set associations while consid-
ering gene network graph information.
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