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Abstract

Summary: Accurately identifying cell types is a critical step in single-cell sequencing analyses. Here, we present
marker-based automatic cell-type annotation (MACA), a new tool for annotating single-cell transcriptomics datasets.
We developed MACA by testing four cell-type scoring methods with two public cell-marker databases as reference
in six single-cell studies. MACA compares favorably to four existing marker-based cell-type annotation methods in
terms of accuracy and speed. We show that MACA can annotate a large single-nuclei RNA-seq study in minutes on
human hearts with �290K cells. MACA scales easily to large datasets and can broadly help experts to annotate cell
types in single-cell transcriptomics datasets, and we envision MACA provides a new opportunity for integration and
standardization of cell-type annotation across multiple datasets.

Availability and implementation: MACA is written in python and released under GNU General Public License v3.0.
The source code is available at https://github.com/ImXman/MACA.

Contact: yxu71@vols.utk.edu or shayat@ukaachen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying constituent cell types in a single-cell dataset is fundamen-
tal to understand the underlying biology of the system. Many com-
putational methods have been proposed to automatically label cells,
and a benchmark study shows that a standard Support Vector
Machine (SVM) classifier outperforms most other sophisticated
supervised methods and can achieve high accuracy in cell-type as-
signment (Abdelaal et al., 2019). However, due to lack of ground
truth in most single-cell studies, supervised classification approaches
are not feasible and may not be generalized for new single-cell stud-
ies with different experimental designs. Therefore, unsupervised
clustering approaches are still the predominant options for single-
cell data analysis (Lähnemann et al., 2020). Unsupervised
approaches usually require human assistance in both defining clus-
tering resolution and manual annotation of cell types. This results in
cell-type annotation being time-consuming and less reproducible
due to human inference. As more single-cell studies are available,
summarizing markers identified in these studies to construct a mark-
er database becomes an alternative approach for automatic cell-type

annotation. For example, PanglaoDB (Franz�en et al., 2019) and
CellMarker (Zhang et al., 2019b) are two marker databases that
summarize markers found in numerous single-cell studies and cover
a broad range of major cell types in human and mouse. Also,
NeuroExpresso (Mancarci et al., 2017) is a specialized database for
brain cell types. Taking advantage of those databases for robust cell-
type identification, we present a marker-based automatic cell-type
annotation (MACA) method and show how MACA automatically
annotates cell types with high speed and accuracy. We envision
MACA as an aid for cell-type annotation to be used by both experts
and non-experts.

2 MACA implementation

MACA takes as input expression profiles measured by single-cell or
nuclei RNA-seq experiments. MACA calculates two cell-type labels
for each cell based on (i) an individual cell expression profile and (ii)
a collective clustering profile. From these, a final cell-type label is
generated according to a normalized confusion matrix (Fig. 1a).
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MACA first computes cell-type scores for each cell, using a scoring
method based on a marker database or user-defined marker lists.
The scoring method uses the raw gene count to calculate a cell-type
score for each cell, according to gene markers of this cell type. This
results in converting a gene-expression matrix to cell-type score ma-
trix. Then, MACA generates a label (Label 1) for each cell by identi-
fying the cell type associated with the highest score. Independently,
using the matrix of cell-type scores as input, the Louvain community
detection algorithm (Blondel et al., 2008) is applied to generate
Label 2, which is a clustering label to which a cell belongs. Since the
number of cell types is usually unknown, MACA tries clustering at
greater resolution to over-cluster cells into many small but homoge-
neous groups.

Both Labels 1 and 2 serve as complimentary functions. Label 1 is
assigned on a per-cell basis which may result in incorrectly annotating
many cells due to noisiness in the maximum cell-type score for each
cell. This may occur when the putative cell-type feature is covered up
by ambient RNAs from dominant cell types (Pliner et al., 2019). On
the other hand, Label 2 is likely to suffer from a common problem in
single-cell RNA-seq clustering analysis, where cells may share the
same dominant features, even though they have been clustered into
different groups because of subtle differences. Additionally, results
from a clustering analysis can often vary since clustering is nondeter-
ministic. Due to its dependence on user’s decisions, mostly the choices
of clustering resolution and neighborhood size.

To address these issues, MACA combines Labels 1 and 2 to get a
comprehensive cell-type annotation by mapping Label 2 to Label 1
through a normalized confusion matrix. In the confusion matrix
C, ci;j represents the number of cells that were clustered as the ith
cluster in Label 2 and labeled as the jth cell type in Label 1. The
basic assumption of mapping Label 2 to Label 1 through a confusion
matrix is that cells with the same clustering label (Label 2) should
have the same cell-type label (Label 1). Ideally, if cells were identi-
fied to be in the same cluster, they should all share the same cell
type, and this cell type has the highest score for cells in that cluster.
However, in real data, this is rarely the case, as we argued above.
Therefore, using a confusion matrix, we look for consensus between

Labels 1 and 2, by searching for the highest cell-type score in each
cluster. Here, we compute the normalized confusion matrix Cn

through dividing confusion matrix C by the size of the cluster:

ci;j ¼ ci;j

PN

j¼1

ci;j

, and we search for column number with the largest value

for each row (Fig. 1b). If maxj ci;jð Þ � 0:5, the ith cluster would be

assigned as the jth cell type, as >50% of cells in the ith cluster are
labeled as the jth cell type (Case 1). For cases where
maxj ci;jð Þ < 0:5, it is likely that cell identities of some cells were

covered up by ambient RNAs from dominant cell types (Case 2).
Therefore, MACA records significant or at least the top-3 cell types
for each cell in the ith cluster based on cell-type scores. To find sig-
nificant cell types for each cell, we get a distribution of scores of all
cell types for each cell and define those cell types as significant if
their z-scores >3. If the number of significant cell types is <3, we
would keep the top-3 cell types. Doing this can retrieve more poten-
tial cell-type labels for this cluster, and each cell will contribute at
least three candidates into a pool of candidate cell types for this clus-
ter. Then, MACA calculates frequency of each candidate cell type in
this pool and assigns the ith cluster as the cell type with the highest
frequency if the frequency exceeds half the size of the cluster

(maxj fi;j

� �
� 0:5) (Case 2a). Otherwise, the ith cluster would be

labeled as ‘unassigned’ (maxj fi;j

� �
< 0:5) (Case 2b), which is the

case that cells in this cluster do not have an agreement on which cell
types they belong to. For the choice of 0.5, we will show our exam-
ination in Section 3. As we mentioned before, clustering-based cell-
type identification largely depends on user’s choice, e.g. the choices
of clustering resolution and neighborhood size. Therefore, the out-
come may vary among different users. To have a more reproducible
outcome, we cluster cells with different clustering parameters to get
multiple clustering assignments (Label 2s). Repeating the procedure
of mapping Labels 2 to 1 will enable us to get an ensemble annota-
tion through voting, and this ensemble annotation is less influenced
by a single clustering choice (Fig. 1c). Using ensemble approach
also offers a naı̈ve way of scoring MACA-based cell-type predic-
tions. Users can set up a threshold to filter cells whose annotations
are less consistent in outcomes of different clustering trials, and we
also provide examinations in the next section to help users choose a
reasonable threshold for annotation with quality. In this study, we
generated clusters using Louvain method with three different resolu-
tions and three different numbers of neighborhood, which results in
nine different clustering labels (Label 2s). After mapping these nine
Label 2s to Label 1, we generated nine cell-type annotations. Then,
we used a voting approach to get the final annotations (the highest
votes from the nine annotations). Users can also increase the number
of clustering trials to have a larger voting pool for annotation en-
semble or decrease the number to save computation time.

Back to converting gene-expression matrix to cell-type score ma-
trix, we collected four different scoring methods that were proposed
to do the conversion. These scoring methods are either named by
authors, or we named them after the last name of the first author.
PlinerScore was a part of Garnett that was designed to annotate cell
types through supervised classification (Pliner et al., 2019). The
uniqueness of PlinerScore is the use of TF-IDF transformation to
deal with specificity of a gene marker and a cutoff to deal with issue
of free mRNA in single-cell RNA-seq data. AUCell comes from
SENIC, which uses gene sets to quantify regulon activities of single-
cell expression data (Aibar et al., 2017). In this study, AUCell quan-
tifies the enrichment of every cell type as an area under the recovery
curve (AUC) across the ranking of all gene markers in a particular
cell. This assessment is cell-wise and is different from PlinerScore
that requires transformation of the whole dataset. Both CIM and
DingScore simply use the total expression of all gene markers of a
particular cell type as the cell-type score (Ding et al., 2020; Efroni
et al., 2015). CIM normalizes the total expression by multiplying a
weight that is defined as the number of expressed gene markers div-
ided by the number of all gene markers of this cell type. DingScore,
on the other hand, normalizes the total expression of one cell type
by dividing total expression of all genes. Since some cell types have a
longer list of marker genes than others, cell types with more marker

Fig. 1. Schematic workflow of MACA. (a) MACA converts gene-expression matrix

into cell-type score matrix based on cell-marker database. MACA generates Label 1

by using max function and Label 2 by over-clustering all cells into small groups.

MACA finally maps Label 2 to Label 1 via confusion matrix. (b) Use of confusion

matrix for cell-type annotation. (c) In practical implementation, n sets of clustering

parameters are used to generate n Label 2s. Mapping all Label 2s to Label 1 returns

multiple annotations, and MACA ensembles these annotations by voting to generate

the final cell-type prediction

MACA for single-cell annotation 1757

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/6/1756/6478268 by guest on 10 April 2024



genes in the database would have larger cell-type scores.
Normalization in CIM was considered to address this issue.
However, PlinerScore and DingScore were not intentionally
designed to cope with unbalanced marker lists. To deal with this
issue, we did a similar processing to normalization in CIM, which is
dividing the score of each cell type by the number of expressed
markers in that cell type. However, AUCell is a completely different
approach from the other three scoring methods, which does not sim-
ply sum up values of marker genes for a given cell type. So, we ran
AUCell without extra processing for returned values. Meanwhile,
we show that the number of expressed marker genes in both
PanglaoDB and CellMarker across six single-cell datasets tested in
this study, and we found that most cell types in PanglaoDB have
expressed marker genes within 0–60, while most cell types have <10
marker genes expressed in CellMarker (Supplementary Fig. S1). For
both PanglaoDB and CellMarker, we can conclude that cell types
with over 100 expressed marker genes are a minority.

In practice, we build MACA in the analysis pipeline of SCANPY,
and MACA takes data in the format of ‘anndata’ in Python (Wolf
et al., 2018). Expression data are preprocessed through cell and
gene filtering, and transformed by LogNormlization method, the
common practice in single-cell analysis. Then, the user provides
marker information in the form of Python dictionary, and MACA
transforms gene-expression matrix to cell-type score matrix. Next,
annotation by MACA can be summarized into four steps as shown
in Figure 1: (i) Louvain clustering to generate Label 2; (ii) generat-
ing Label 1 via max function; (iii) mapping Label 2 to Label 1
through normalized confusion matrix and (iv) repeating steps 1––3
to have ensembled annotation.

3 Results

The key component for optimal performance of MACA is construct-
ing cell-type scores from the gene-expression matrix. We investi-
gated four scoring methods that have been proposed to transform
gene-expression matrix to cell-type score matrix (Aibar et al., 2017;
Ding et al., 2020; Efroni et al., 2015; Pliner et al., 2019), and we
tested these methods with two public marker databases (Franz�en
et al., 2019; Zhang et al., 2019b) in six single-cell studies that com-
prised 3000–20 000 cells (Baron et al., 2016; Cui et al., 2019; Tian
et al., 2019; Vieira Braga et al., 2019; Wang et al., 2020; Zheng
et al., 2017), which include three benchmark datasets
(Supplementary Table S1; Abdelaal et al., 2019). To evaluate these
annotation outcomes, we used Adjusted Rand Index (ARI) and
Normalized Mutual Information (NMI). Both ARI and NMI are cal-
culated by measuring similarity or agreement between our annota-
tions and authors’ annotations. For the three benchmark datasets,
authors’ annotations would be the ground-truth label, while
authors’ annotations in the other three datasets are at least created
under careful investigation. Therefore, use of ARI and NMI, in this
case, is to show how well we can reproduce authors’ outcomes. We
found annotations using PlinerScore with markers in PanglaoDB
have the largest agreement with authors’ annotations for all six
datasets, in terms of both ARI and NMI (Table 1). Therefore,
MACA uses PanglaoDB with PlinerScore as the main marker data-
base and scoring method, respectively. When we define if Label 2
agrees with Label 1, we selected 0.5 as the threshold. It is out of a
simple reasoning of whether the half agrees. However, it is possible
to set up a less or more stringent threshold to define the consensus
between Labels 1 and 2. Thus, we further tested how different
thresholds will affect MACA’s performance. We changed the thresh-
old from 0.2 to 0.9 and performed our test in these six datasets. We
expect annotations would vary, but surprisingly, MACA’s perform-
ance is quite robust to the choice of this parameter, except that we
observed drops of ARI and NMI in two datasets when using 0.9 as
threshold (Supplementary Table S2).

Next, we seek to compare MACA with other existing marker-
based annotation tools. CellAssign and SCINA are two computa-
tional methods that have been proposed for automatic cell-type
assignment (Zhang et al., 2019a, 2019c). Both methods rely on stat-
istical interference to compute the probabilities of cell types, which

are time- and computation-intensive. Recently, Cell-ID was released
for extraction of gene signature as well as cell-type annotation
(Cortal et al., 2021). We also noticed scCATCH and SCSA, which
are both cluster-based annotation tools (Cao et al., 2020; Shao
et al., 2020). Both scCATCH and SCSA require identifying differen-
tial marker genes for each cluster via a statistical test implemented
in Seurat and then matching identified cluster markers to marker
database (Butler et al., 2018). Here, we compared MACA with
CellAssign, SCINA, Cell-ID and scCATCH using these six single-
cell studies and cell markers in PanglaoDB. We tested MACA,
CellAssign, SCINA, Cell-ID and scCATCH on a workstation with
16-core CPU and 64 GB memory. MACA can finish annotation
within 1 min (cells around 3000) and <2 min for a relatively large
dataset (cells up to 20 000 cells). On the datasets used and on our
computational resources, scCATCH and Cell-ID took longer than
MACA to compute annotations and ranks as the second and the
third fastest. In our hands, SCINA took around 20-min time to fin-
ish annotation for a large dataset, and CellAssign took the longest
time to complete cell-type assignment and failed to annotate data
with more than 20 000 cells due to lack of memory (Supplementary
Table S3). Because annotation by scCATCH needs clustering first
and differential marker identification is highly affected by clustering
outcome, the investigator will need to do a thorough investigation
to make sure that clustering is not overdone or underestimated. In
this study, we reported the highest and the averaged outcomes of
scCATCH in each dataset. Comparing these results with manual
annotations from the authors, we found (i) MACA labels cells had a
higher consensus than CellAssign, SCINA, Cell-ID and scCATCH,
in terms of both ARI and NMI and (ii) MACA and scCATCH iden-
tify similar numbers of cell types to author’s annotations, while the
other three methods, especially Cell-ID, report overall more differ-
ent cell types (Table 1). The low ARIs and NMIs of CellAssign and
Cell-ID can be counted as results of (i) many ‘unassigned’ cells and
(ii) exceeding numbers of different cell types over the numbers
reported by authors. It is important to note that other methods com-
pared here were run on their default parameters. In future, param-
eter tuning of those methods on a computer with higher memory
should be carried out for a comprehensive benchmarking on many
datasets. Finally, to better evaluate annotations, we used a machine-
learning approach to assess cell-type assignment. Training classifiers
was recently proposed by Miao et al. (2020) to assist in finding a
good clustering resolution, and we adopt this idea to evaluate our
annotations. Basically, if the annotation is good enough, we can
train a classifier to predict cell type using gene-expression values
with high accuracy. Conversely, if there are many wrong labels, it
would be hard for a classifier to make the right decision. We per-
formed 5-fold cross-validated training, where we split one dataset
into 4-fold training set and 1-fold testing set and trained an SVM
classifier on the training sets and applied the classifier to predict
labels for the testing set. This procedure repeats five times to get a
mean accuracy. Instead of treating authors’ annotations as ground
truth, this machine-learning evaluation provides an independent
angle to judge annotation quality. Indeed, MACA achieves high con-
cordance with authors’ reported annotations and higher mean of
accuracies than other methods (Supplementary Table S4). Of note,
high accuracy of SVM classifier is not equal to correctness of anno-
tation. Meanwhile, ARI and NMI report similarity between two
annotations but cannot reflect the difference of annotation reso-
lution. For example, MACA may return less cell types than authors.
Moreover, annotation resolution of MACA highly depends on the
number of cell types in the marker database, and it is likely that
MACA cannot annotate some rare subtypes that do not show up in
the marker database. Here, we used confusion matrix to show how
cell-type labels by MACA are against cell-type labels by authors
(Supplementary Fig. S2). Take annotation of human pancreas as an
example, cells annotated by MACA as ‘Pancreatic stellate cells’ fall
into three groups that were annotated by author as ‘activated stellate
cells’, ‘quiescent stellate cells’ and ‘Schwann cells’, respectively.
Since MACA may have a different annotation resolution from the
authors, we performed a test to show how different annotation reso-
lutions can affect calculations of ARI and NMI. We included the
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human kidney (CD10�) data, which has three different annotation
resolutions by the authors, from 5 major cell types to 29 intermedi-
ate cell types, and to 50 fine cell types (Kuppe et al., 2021). We used
MACA to annotate this data and compared MACA’s annotation
with these three annotations. We found NMI is more robust to
change of annotation resolution than ARI. It also suggests that a
higher ARI reflects similar resolution between MACA and author
(Supplementary Fig. S3).

As we mentioned above, using ensemble approach also offers
user an option to filter cells whose annotations are less consistent in
outcomes of different clustering trials. However, it also causes loss
of cells for downstream analysis, like cellular composition analysis.
To find a good balance between having higher annotation quality
and keeping most cells for downstream analysis, we tested threshold
of voting from 1/9 to 9/9, where the numerator means the minimum
number of votes required to keep the cell-annotation. With 1/9, all
cells will be kept, with 2/9, cells with annotations of at least two
votes will be kept, while only cells that have the same annotation
across nine clustering trials will be considered if threshold is set up
as 9/9. We reported the results across 10 datasets in Supplementary
Table S5, and it may provide a reference for user to choose a thresh-
old that serves user’s need. Of note, we kept all cells in other evalua-
tions. Particularly, all cells were used in benchmark with other
methods. Here, we suggest setting up the threshold as 7/9. Next, we

expect to show that annotation by MACA is applicable for most
single-cell RNA-seq platforms. We re-annotated PBMC data from a
new study by Ding et al. (2020). These data consist of two biological
samples from nine platforms. We found that (i) both PBMC samples
have the same major cell types, and these nine platforms can success-
fully profile them (Supplementary Fig. S4a) and (ii) annotation by
MACA shows that all platforms profile similar cellular components
for these two PBMC samples, except CEL-Seq2 (Supplementary Fig.
S4b). These results are largely consistent to the original report (Ding
et al., 2020). However, this PBMC data did not come with a
ground-truth annotation, we further added the human pancreas
data, which consist of five independent studies profiled by four dif-
ferent single-cell RNA-seq platforms (Baron et al., 2016; Grün et al.,
2016; Lawlor et al., 2017; Muraro et al., 2016; Segerstolpe et al.,
2016). Annotation by MACA has 0.929 ARI and 0.908 NMI
against author-reported annotation, and we also observed that all
major cell types were revealed across all four platforms
(Supplementary Fig. S4c).

Finally, we applied MACA to a single-nuclei RNA-seq dataset
from all four chambers of the human heart, comprising �290K nu-
clei (Tucker et al., 2020). MACA could annotate each of the four
chambers comprising �80K cells each in <6 min. Annotations by
MACA have major agreement with author’s reported annotations
with an average ARI and NMI of 0.63 and 0.76, respectively

Table 1. Performance of MACA, CellAssign, SCINA, Cell-ID and scCATACH in six scRNA-seq datasets, measured by ARI and NMI

Method PBMC (Zheng

et al., 2017)

CellBench (Tian

et al., 2019)

Pancreas (Baron

et al., 2016)

Heart (Wang

et al., 2020)

Heart (Cui et al.,

2019)

Lung (Vieira Braga

et al., 2019)

ARI

PanglaoDBþ PlinerScore 0.95 0.92 0.9 0.71 0.61 0.45

PanglaoDBþAUCell 0.04 0 0.78 0.39 0.47 0.29

PanglaoDBþCIM 0.28 0.65 0.9 0.27 0.3 0.33

PanglaoDBþDingScore 0.83 0.74 0.69 0.07 0.44 0.2

CellMarkerþ PlinearScore 0.38 0.43 0.27 0.57 0.13 0.21

CellMarkerþAUCell 0.29 0.52 0.32 0.34 0.09 0.14

CellMarkerþCIM 0.24 0.6 0.54 0.56 0.07 0.09

CellMarkerþDingScore 0.22 0.55 0.38 0.37 0.19 NA

SCINA 0.46 0.63 0.89 0.13 0.55 0.31

CellAssign NA 0 0.89 0.15 0.53 0.26

Cell-ID 0.5 0.17 0.57 0.1 0.49 0.35

scCATCH (best) 0.62 0.56 0.86 0.04 0.14 0.6

scCATCH (average) 0.57 0.4 0.66 0.04 0.05 0.35

NMI

PanglaoDBþ PlinerScore 0.89 0.92 0.88 0.59 0.62 0.59

PanglaoDBþAUCell 0.09 0 0.79 0.41 0.5 0.31

PanglaoDBþCIM 0.51 0.8 0.88 0.3 0.44 0.4

PanglaoDBþDingScore 0.74 0.85 0.7 0.1 0.47 0.33

CellMarkerþ PlinearScore 0.44 0.64 0.57 0.51 0.32 0.42

CellMarkerþAUCell 0.23 0.67 0.46 0.32 0.33 0.17

CellMarkerþCIM 0.49 0.78 0.73 0.41 0.31 0.21

CellMarkerþDingScore 0.43 0.73 0.6 0.34 0.33 0.08

SCINA 0.54 0.71 0.84 0.07 0.54 0.46

CellAssign NA 0.06 0.86 0.08 0.51 0.49

Cell-ID 0.67 0.38 0.74 0.08 0.55 0.58

scCATCH (best) 0.77 0.7 0.84 0.05 0.3 0.73

scCATCH (average) 0.75 0.62 0.75 0.04 0.12 0.63

No. of cell types

MACA 8 6 11 8 7 13

SCINA 14 14 17 16 23 41

CellAssign NA 9 17 18 24 31

Cell-ID 33 55 48 35 37 63

scCATCH (best) 9 5 10 3 3 16

Author’s annotation 5 5 14 5 9 13

Note: Eight different settings of MACA include using four cell-type scoring methods (PlinerScore, AUCell, CIM and DingScore) with two marker databases

(PanglaoDB and CellMarker).
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(Supplementary Table S6). However, we also found some disagree-
ments exist in annotation of cells from left and right atria.
Therefore, we investigated disagreement between MACA’s and

author’s annotations, and found the biggest difference stems from
disagreement in assignments for neuronal cells and lymphocytes,

which are both small-population cell types in this dataset (1702
neuronal cells and 1503 lymphocytes out of �290K). We found
neuronal cells were not revealed and author-reported lymphocytes

were reported as memory T cells in MACA’s annotation
(Supplementary Table S7a and b).

By default, MACA works with the list marker genes and cell
types present in PanglaoDB, but users can also input their own

gene-lists. A major limitation of MACA is that it can only annotate
cell types that are predefined in the marker reference, but with
more marker gene sets becoming available with single-cell sequenc-

ing studies, we believe that MACA will be useful to annotate het-
erogeneous single-cell datasets. This points us two future
directions to improve MACA. First, with more atlas studies that

profile all sorts of biological systems, more refined markers for
small cell populations can be defined, and MACA could reach finer

annotation resolution by integrating markers from these new atlas
studies. Second, weights of markers should be incorporated into
the scoring method of MACA, e.g. marker specificity and expres-

sion strength. However, at the current stage, all markers have
equal weights when they contribute to cell-type scores, and we be-

lieve that incorporating marker weights will be beneficial for ac-
curate annotation. With a more refined marker database and cell-
type scoring method, MACA would rapidly perform integrated an-

notation across multiple datasets, and this is very critical for down-
stream analyses like cellular component analysis across datasets

under different conditions. In fact, we noticed that combining
PlinerScore and PanglaoDB to generate new features has the
advantages of correcting batch effects for integrated annotation

across datasets, and we aim to extend the use of MACA to stand-
ardization of cell-type annotation across datasets in the future (see

application in integrated annotation on GitHub of MACA).
Finally, we conclude that MACA is a suitable tool for automatic
cell-type annotation that can aid both experts and nonexperts in

rapid annotation of their single-cell datasets.
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